/src/icu/source/common/normalizer2impl.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ******************************************************************************* |
5 | | * |
6 | | * Copyright (C) 2009-2014, International Business Machines |
7 | | * Corporation and others. All Rights Reserved. |
8 | | * |
9 | | ******************************************************************************* |
10 | | * file name: normalizer2impl.cpp |
11 | | * encoding: UTF-8 |
12 | | * tab size: 8 (not used) |
13 | | * indentation:4 |
14 | | * |
15 | | * created on: 2009nov22 |
16 | | * created by: Markus W. Scherer |
17 | | */ |
18 | | |
19 | | #include "unicode/utypes.h" |
20 | | |
21 | | #if !UCONFIG_NO_NORMALIZATION |
22 | | |
23 | | #include "unicode/normalizer2.h" |
24 | | #include "unicode/udata.h" |
25 | | #include "unicode/ustring.h" |
26 | | #include "unicode/utf16.h" |
27 | | #include "cmemory.h" |
28 | | #include "mutex.h" |
29 | | #include "normalizer2impl.h" |
30 | | #include "putilimp.h" |
31 | | #include "uassert.h" |
32 | | #include "uset_imp.h" |
33 | | #include "utrie2.h" |
34 | | #include "uvector.h" |
35 | | |
36 | | U_NAMESPACE_BEGIN |
37 | | |
38 | | // ReorderingBuffer -------------------------------------------------------- *** |
39 | | |
40 | 6.95M | UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) { |
41 | 6.95M | int32_t length=str.length(); |
42 | 6.95M | start=str.getBuffer(destCapacity); |
43 | 6.95M | if(start==NULL) { |
44 | | // getBuffer() already did str.setToBogus() |
45 | 0 | errorCode=U_MEMORY_ALLOCATION_ERROR; |
46 | 0 | return FALSE; |
47 | 0 | } |
48 | 6.95M | limit=start+length; |
49 | 6.95M | remainingCapacity=str.getCapacity()-length; |
50 | 6.95M | reorderStart=start; |
51 | 6.95M | if(start==limit) { |
52 | 6.57M | lastCC=0; |
53 | 6.57M | } else { |
54 | 379k | setIterator(); |
55 | 379k | lastCC=previousCC(); |
56 | | // Set reorderStart after the last code point with cc<=1 if there is one. |
57 | 379k | if(lastCC>1) { |
58 | 0 | while(previousCC()>1) {} |
59 | 0 | } |
60 | 379k | reorderStart=codePointLimit; |
61 | 379k | } |
62 | 6.95M | return TRUE; |
63 | 6.95M | } |
64 | | |
65 | 4.43k | UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const { |
66 | 4.43k | int32_t length=(int32_t)(limit-start); |
67 | 4.43k | return |
68 | 4.43k | length==(int32_t)(otherLimit-otherStart) && |
69 | 4.43k | 0==u_memcmp(start, otherStart, length); |
70 | 4.43k | } |
71 | | |
72 | 8.71k | UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) { |
73 | 8.71k | if(remainingCapacity<2 && !resize(2, errorCode)) { |
74 | 0 | return FALSE; |
75 | 0 | } |
76 | 8.71k | if(lastCC<=cc || cc==0) { |
77 | 7.94k | limit[0]=U16_LEAD(c); |
78 | 7.94k | limit[1]=U16_TRAIL(c); |
79 | 7.94k | limit+=2; |
80 | 7.94k | lastCC=cc; |
81 | 7.94k | if(cc<=1) { |
82 | 4.14k | reorderStart=limit; |
83 | 4.14k | } |
84 | 7.94k | } else { |
85 | 771 | insert(c, cc); |
86 | 771 | } |
87 | 8.71k | remainingCapacity-=2; |
88 | 8.71k | return TRUE; |
89 | 8.71k | } |
90 | | |
91 | | UBool ReorderingBuffer::append(const UChar *s, int32_t length, |
92 | | uint8_t leadCC, uint8_t trailCC, |
93 | 2.03M | UErrorCode &errorCode) { |
94 | 2.03M | if(length==0) { |
95 | 385k | return TRUE; |
96 | 385k | } |
97 | 1.64M | if(remainingCapacity<length && !resize(length, errorCode)) { |
98 | 0 | return FALSE; |
99 | 0 | } |
100 | 1.64M | remainingCapacity-=length; |
101 | 1.64M | if(lastCC<=leadCC || leadCC==0) { |
102 | 1.64M | if(trailCC<=1) { |
103 | 717k | reorderStart=limit+length; |
104 | 924k | } else if(leadCC<=1) { |
105 | 922k | reorderStart=limit+1; // Ok if not a code point boundary. |
106 | 922k | } |
107 | 1.64M | const UChar *sLimit=s+length; |
108 | 3.40M | do { *limit++=*s++; } while(s!=sLimit); |
109 | 1.64M | lastCC=trailCC; |
110 | 1.64M | } else { |
111 | 4.23k | int32_t i=0; |
112 | 4.23k | UChar32 c; |
113 | 4.23k | U16_NEXT(s, i, length, c); |
114 | 4.23k | insert(c, leadCC); // insert first code point |
115 | 8.14k | while(i<length) { |
116 | 3.91k | U16_NEXT(s, i, length, c); |
117 | 3.91k | if(i<length) { |
118 | | // s must be in NFD, otherwise we need to use getCC(). |
119 | 0 | leadCC=Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); |
120 | 3.91k | } else { |
121 | 3.91k | leadCC=trailCC; |
122 | 3.91k | } |
123 | 3.91k | append(c, leadCC, errorCode); |
124 | 3.91k | } |
125 | 4.23k | } |
126 | 1.64M | return TRUE; |
127 | 1.64M | } |
128 | | |
129 | 0 | UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) { |
130 | 0 | int32_t cpLength=U16_LENGTH(c); |
131 | 0 | if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) { |
132 | 0 | return FALSE; |
133 | 0 | } |
134 | 0 | remainingCapacity-=cpLength; |
135 | 0 | if(cpLength==1) { |
136 | 0 | *limit++=(UChar)c; |
137 | 0 | } else { |
138 | 0 | limit[0]=U16_LEAD(c); |
139 | 0 | limit[1]=U16_TRAIL(c); |
140 | 0 | limit+=2; |
141 | 0 | } |
142 | 0 | lastCC=0; |
143 | 0 | reorderStart=limit; |
144 | 0 | return TRUE; |
145 | 0 | } |
146 | | |
147 | 3.43M | UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) { |
148 | 3.43M | if(s==sLimit) { |
149 | 0 | return TRUE; |
150 | 0 | } |
151 | 3.43M | int32_t length=(int32_t)(sLimit-s); |
152 | 3.43M | if(remainingCapacity<length && !resize(length, errorCode)) { |
153 | 0 | return FALSE; |
154 | 0 | } |
155 | 3.43M | u_memcpy(limit, s, length); |
156 | 3.43M | limit+=length; |
157 | 3.43M | remainingCapacity-=length; |
158 | 3.43M | lastCC=0; |
159 | 3.43M | reorderStart=limit; |
160 | 3.43M | return TRUE; |
161 | 3.43M | } |
162 | | |
163 | 3.18k | void ReorderingBuffer::remove() { |
164 | 3.18k | reorderStart=limit=start; |
165 | 3.18k | remainingCapacity=str.getCapacity(); |
166 | 3.18k | lastCC=0; |
167 | 3.18k | } |
168 | | |
169 | 1.04M | void ReorderingBuffer::removeSuffix(int32_t suffixLength) { |
170 | 1.04M | if(suffixLength<(limit-start)) { |
171 | 59.2k | limit-=suffixLength; |
172 | 59.2k | remainingCapacity+=suffixLength; |
173 | 984k | } else { |
174 | 984k | limit=start; |
175 | 984k | remainingCapacity=str.getCapacity(); |
176 | 984k | } |
177 | 1.04M | lastCC=0; |
178 | 1.04M | reorderStart=limit; |
179 | 1.04M | } |
180 | | |
181 | 2.89k | UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) { |
182 | 2.89k | int32_t reorderStartIndex=(int32_t)(reorderStart-start); |
183 | 2.89k | int32_t length=(int32_t)(limit-start); |
184 | 2.89k | str.releaseBuffer(length); |
185 | 2.89k | int32_t newCapacity=length+appendLength; |
186 | 2.89k | int32_t doubleCapacity=2*str.getCapacity(); |
187 | 2.89k | if(newCapacity<doubleCapacity) { |
188 | 2.89k | newCapacity=doubleCapacity; |
189 | 2.89k | } |
190 | 2.89k | if(newCapacity<256) { |
191 | 688 | newCapacity=256; |
192 | 688 | } |
193 | 2.89k | start=str.getBuffer(newCapacity); |
194 | 2.89k | if(start==NULL) { |
195 | | // getBuffer() already did str.setToBogus() |
196 | 0 | errorCode=U_MEMORY_ALLOCATION_ERROR; |
197 | 0 | return FALSE; |
198 | 0 | } |
199 | 2.89k | reorderStart=start+reorderStartIndex; |
200 | 2.89k | limit=start+length; |
201 | 2.89k | remainingCapacity=str.getCapacity()-length; |
202 | 2.89k | return TRUE; |
203 | 2.89k | } |
204 | | |
205 | 21.7k | void ReorderingBuffer::skipPrevious() { |
206 | 21.7k | codePointLimit=codePointStart; |
207 | 21.7k | UChar c=*--codePointStart; |
208 | 21.7k | if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) { |
209 | 1.22k | --codePointStart; |
210 | 1.22k | } |
211 | 21.7k | } |
212 | | |
213 | 415k | uint8_t ReorderingBuffer::previousCC() { |
214 | 415k | codePointLimit=codePointStart; |
215 | 415k | if(reorderStart>=codePointStart) { |
216 | 11.5k | return 0; |
217 | 11.5k | } |
218 | 403k | UChar32 c=*--codePointStart; |
219 | 403k | if(c<Normalizer2Impl::MIN_CCC_LCCC_CP) { |
220 | 379k | return 0; |
221 | 379k | } |
222 | | |
223 | 24.1k | UChar c2; |
224 | 24.1k | if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) { |
225 | 2.53k | --codePointStart; |
226 | 2.53k | c=U16_GET_SUPPLEMENTARY(c2, c); |
227 | 2.53k | } |
228 | 24.1k | return Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); |
229 | 403k | } |
230 | | |
231 | | // Inserts c somewhere before the last character. |
232 | | // Requires 0<cc<lastCC which implies reorderStart<limit. |
233 | 21.7k | void ReorderingBuffer::insert(UChar32 c, uint8_t cc) { |
234 | 35.8k | for(setIterator(), skipPrevious(); previousCC()>cc;) {} |
235 | | // insert c at codePointLimit, after the character with prevCC<=cc |
236 | 21.7k | UChar *q=limit; |
237 | 21.7k | UChar *r=limit+=U16_LENGTH(c); |
238 | 38.9k | do { |
239 | 38.9k | *--r=*--q; |
240 | 38.9k | } while(codePointLimit!=q); |
241 | 21.7k | writeCodePoint(q, c); |
242 | 21.7k | if(cc<=1) { |
243 | 761 | reorderStart=r; |
244 | 761 | } |
245 | 21.7k | } |
246 | | |
247 | | // Normalizer2Impl --------------------------------------------------------- *** |
248 | | |
249 | | struct CanonIterData : public UMemory { |
250 | | CanonIterData(UErrorCode &errorCode); |
251 | | ~CanonIterData(); |
252 | | void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode); |
253 | | UTrie2 *trie; |
254 | | UVector canonStartSets; // contains UnicodeSet * |
255 | | }; |
256 | | |
257 | 0 | Normalizer2Impl::~Normalizer2Impl() { |
258 | 0 | delete fCanonIterData; |
259 | 0 | } |
260 | | |
261 | | void |
262 | | Normalizer2Impl::init(const int32_t *inIndexes, const UTrie2 *inTrie, |
263 | 2 | const uint16_t *inExtraData, const uint8_t *inSmallFCD) { |
264 | 2 | minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP]; |
265 | 2 | minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP]; |
266 | | |
267 | 2 | minYesNo=inIndexes[IX_MIN_YES_NO]; |
268 | 2 | minYesNoMappingsOnly=inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]; |
269 | 2 | minNoNo=inIndexes[IX_MIN_NO_NO]; |
270 | 2 | limitNoNo=inIndexes[IX_LIMIT_NO_NO]; |
271 | 2 | minMaybeYes=inIndexes[IX_MIN_MAYBE_YES]; |
272 | | |
273 | 2 | normTrie=inTrie; |
274 | | |
275 | 2 | maybeYesCompositions=inExtraData; |
276 | 2 | extraData=maybeYesCompositions+(MIN_NORMAL_MAYBE_YES-minMaybeYes); |
277 | | |
278 | 2 | smallFCD=inSmallFCD; |
279 | | |
280 | | // Build tccc180[]. |
281 | | // gennorm2 enforces lccc=0 for c<MIN_CCC_LCCC_CP=U+0300. |
282 | 2 | uint8_t bits=0; |
283 | 26 | for(UChar c=0; c<0x180; bits>>=1) { |
284 | 24 | if((c&0xff)==0) { |
285 | 4 | bits=smallFCD[c>>8]; // one byte per 0x100 code points |
286 | 4 | } |
287 | 24 | if(bits&1) { |
288 | 396 | for(int i=0; i<0x20; ++i, ++c) { |
289 | 384 | tccc180[c]=(uint8_t)getFCD16FromNormData(c); |
290 | 384 | } |
291 | 12 | } else { |
292 | 12 | uprv_memset(tccc180+c, 0, 0x20); |
293 | 12 | c+=0x20; |
294 | 12 | } |
295 | 24 | } |
296 | 2 | } |
297 | | |
298 | 0 | uint8_t Normalizer2Impl::getTrailCCFromCompYesAndZeroCC(const UChar *cpStart, const UChar *cpLimit) const { |
299 | 0 | UChar32 c; |
300 | 0 | if(cpStart==(cpLimit-1)) { |
301 | 0 | c=*cpStart; |
302 | 0 | } else { |
303 | 0 | c=U16_GET_SUPPLEMENTARY(cpStart[0], cpStart[1]); |
304 | 0 | } |
305 | 0 | uint16_t prevNorm16=getNorm16(c); |
306 | 0 | if(prevNorm16<=minYesNo) { |
307 | 0 | return 0; // yesYes and Hangul LV/LVT have ccc=tccc=0 |
308 | 0 | } else { |
309 | 0 | return (uint8_t)(*getMapping(prevNorm16)>>8); // tccc from yesNo |
310 | 0 | } |
311 | 0 | } |
312 | | |
313 | | namespace { |
314 | | |
315 | | class LcccContext { |
316 | | public: |
317 | 0 | LcccContext(const Normalizer2Impl &ni, UnicodeSet &s) : impl(ni), set(s) {} |
318 | | |
319 | 0 | void handleRange(UChar32 start, UChar32 end, uint16_t norm16) { |
320 | 0 | if(impl.isAlgorithmicNoNo(norm16)) { |
321 | | // Range of code points with same-norm16-value algorithmic decompositions. |
322 | | // They might have different non-zero FCD16 values. |
323 | 0 | do { |
324 | 0 | uint16_t fcd16=impl.getFCD16(start); |
325 | 0 | if(fcd16>0xff) { set.add(start); } |
326 | 0 | } while(++start<=end); |
327 | 0 | } else { |
328 | 0 | uint16_t fcd16=impl.getFCD16(start); |
329 | 0 | if(fcd16>0xff) { set.add(start, end); } |
330 | 0 | } |
331 | 0 | } |
332 | | |
333 | | private: |
334 | | const Normalizer2Impl &impl; |
335 | | UnicodeSet &set; |
336 | | }; |
337 | | |
338 | | struct PropertyStartsContext { |
339 | | PropertyStartsContext(const Normalizer2Impl &ni, const USetAdder *adder) |
340 | 0 | : impl(ni), sa(adder) {} |
341 | | |
342 | | const Normalizer2Impl &impl; |
343 | | const USetAdder *sa; |
344 | | }; |
345 | | |
346 | | } // namespace |
347 | | |
348 | | U_CDECL_BEGIN |
349 | | |
350 | | static UBool U_CALLCONV |
351 | 0 | enumLcccRange(const void *context, UChar32 start, UChar32 end, uint32_t value) { |
352 | 0 | ((LcccContext *)context)->handleRange(start, end, (uint16_t)value); |
353 | 0 | return TRUE; |
354 | 0 | } |
355 | | |
356 | | static UBool U_CALLCONV |
357 | 0 | enumNorm16PropertyStartsRange(const void *context, UChar32 start, UChar32 end, uint32_t value) { |
358 | | /* add the start code point to the USet */ |
359 | 0 | const PropertyStartsContext *ctx=(const PropertyStartsContext *)context; |
360 | 0 | const USetAdder *sa=ctx->sa; |
361 | 0 | sa->add(sa->set, start); |
362 | 0 | if(start!=end && ctx->impl.isAlgorithmicNoNo((uint16_t)value)) { |
363 | | // Range of code points with same-norm16-value algorithmic decompositions. |
364 | | // They might have different non-zero FCD16 values. |
365 | 0 | uint16_t prevFCD16=ctx->impl.getFCD16(start); |
366 | 0 | while(++start<=end) { |
367 | 0 | uint16_t fcd16=ctx->impl.getFCD16(start); |
368 | 0 | if(fcd16!=prevFCD16) { |
369 | 0 | sa->add(sa->set, start); |
370 | 0 | prevFCD16=fcd16; |
371 | 0 | } |
372 | 0 | } |
373 | 0 | } |
374 | 0 | return TRUE; |
375 | 0 | } |
376 | | |
377 | | static UBool U_CALLCONV |
378 | 0 | enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uint32_t /*value*/) { |
379 | | /* add the start code point to the USet */ |
380 | 0 | const USetAdder *sa=(const USetAdder *)context; |
381 | 0 | sa->add(sa->set, start); |
382 | 0 | return TRUE; |
383 | 0 | } |
384 | | |
385 | | static uint32_t U_CALLCONV |
386 | 0 | segmentStarterMapper(const void * /*context*/, uint32_t value) { |
387 | 0 | return value&CANON_NOT_SEGMENT_STARTER; |
388 | 0 | } |
389 | | |
390 | | U_CDECL_END |
391 | | |
392 | | void |
393 | 0 | Normalizer2Impl::addLcccChars(UnicodeSet &set) const { |
394 | | /* add the start code point of each same-value range of each trie */ |
395 | 0 | LcccContext context(*this, set); |
396 | 0 | utrie2_enum(normTrie, NULL, enumLcccRange, &context); |
397 | 0 | } |
398 | | |
399 | | void |
400 | 0 | Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const { |
401 | | /* add the start code point of each same-value range of each trie */ |
402 | 0 | PropertyStartsContext context(*this, sa); |
403 | 0 | utrie2_enum(normTrie, NULL, enumNorm16PropertyStartsRange, &context); |
404 | | |
405 | | /* add Hangul LV syllables and LV+1 because of skippables */ |
406 | 0 | for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) { |
407 | 0 | sa->add(sa->set, c); |
408 | 0 | sa->add(sa->set, c+1); |
409 | 0 | } |
410 | 0 | sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */ |
411 | 0 | } |
412 | | |
413 | | void |
414 | 0 | Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const { |
415 | | /* add the start code point of each same-value range of the canonical iterator data trie */ |
416 | 0 | if(ensureCanonIterData(errorCode)) { |
417 | | // currently only used for the SEGMENT_STARTER property |
418 | 0 | utrie2_enum(fCanonIterData->trie, segmentStarterMapper, enumPropertyStartsRange, sa); |
419 | 0 | } |
420 | 0 | } |
421 | | |
422 | | const UChar * |
423 | | Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src, |
424 | | UChar32 minNeedDataCP, |
425 | | ReorderingBuffer *buffer, |
426 | 0 | UErrorCode &errorCode) const { |
427 | | // Make some effort to support NUL-terminated strings reasonably. |
428 | | // Take the part of the fast quick check loop that does not look up |
429 | | // data and check the first part of the string. |
430 | | // After this prefix, determine the string length to simplify the rest |
431 | | // of the code. |
432 | 0 | const UChar *prevSrc=src; |
433 | 0 | UChar c; |
434 | 0 | while((c=*src++)<minNeedDataCP && c!=0) {} |
435 | | // Back out the last character for full processing. |
436 | | // Copy this prefix. |
437 | 0 | if(--src!=prevSrc) { |
438 | 0 | if(buffer!=NULL) { |
439 | 0 | buffer->appendZeroCC(prevSrc, src, errorCode); |
440 | 0 | } |
441 | 0 | } |
442 | 0 | return src; |
443 | 0 | } |
444 | | |
445 | | UnicodeString & |
446 | | Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest, |
447 | 0 | UErrorCode &errorCode) const { |
448 | 0 | if(U_FAILURE(errorCode)) { |
449 | 0 | dest.setToBogus(); |
450 | 0 | return dest; |
451 | 0 | } |
452 | 0 | const UChar *sArray=src.getBuffer(); |
453 | 0 | if(&dest==&src || sArray==NULL) { |
454 | 0 | errorCode=U_ILLEGAL_ARGUMENT_ERROR; |
455 | 0 | dest.setToBogus(); |
456 | 0 | return dest; |
457 | 0 | } |
458 | 0 | decompose(sArray, sArray+src.length(), dest, src.length(), errorCode); |
459 | 0 | return dest; |
460 | 0 | } |
461 | | |
462 | | void |
463 | | Normalizer2Impl::decompose(const UChar *src, const UChar *limit, |
464 | | UnicodeString &dest, |
465 | | int32_t destLengthEstimate, |
466 | 0 | UErrorCode &errorCode) const { |
467 | 0 | if(destLengthEstimate<0 && limit!=NULL) { |
468 | 0 | destLengthEstimate=(int32_t)(limit-src); |
469 | 0 | } |
470 | 0 | dest.remove(); |
471 | 0 | ReorderingBuffer buffer(*this, dest); |
472 | 0 | if(buffer.init(destLengthEstimate, errorCode)) { |
473 | 0 | decompose(src, limit, &buffer, errorCode); |
474 | 0 | } |
475 | 0 | } |
476 | | |
477 | | // Dual functionality: |
478 | | // buffer!=NULL: normalize |
479 | | // buffer==NULL: isNormalized/spanQuickCheckYes |
480 | | const UChar * |
481 | | Normalizer2Impl::decompose(const UChar *src, const UChar *limit, |
482 | | ReorderingBuffer *buffer, |
483 | 0 | UErrorCode &errorCode) const { |
484 | 0 | UChar32 minNoCP=minDecompNoCP; |
485 | 0 | if(limit==NULL) { |
486 | 0 | src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode); |
487 | 0 | if(U_FAILURE(errorCode)) { |
488 | 0 | return src; |
489 | 0 | } |
490 | 0 | limit=u_strchr(src, 0); |
491 | 0 | } |
492 | | |
493 | 0 | const UChar *prevSrc; |
494 | 0 | UChar32 c=0; |
495 | 0 | uint16_t norm16=0; |
496 | | |
497 | | // only for quick check |
498 | 0 | const UChar *prevBoundary=src; |
499 | 0 | uint8_t prevCC=0; |
500 | |
|
501 | 0 | for(;;) { |
502 | | // count code units below the minimum or with irrelevant data for the quick check |
503 | 0 | for(prevSrc=src; src!=limit;) { |
504 | 0 | if( (c=*src)<minNoCP || |
505 | 0 | isMostDecompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) |
506 | 0 | ) { |
507 | 0 | ++src; |
508 | 0 | } else if(!U16_IS_SURROGATE(c)) { |
509 | 0 | break; |
510 | 0 | } else { |
511 | 0 | UChar c2; |
512 | 0 | if(U16_IS_SURROGATE_LEAD(c)) { |
513 | 0 | if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
514 | 0 | c=U16_GET_SUPPLEMENTARY(c, c2); |
515 | 0 | } |
516 | 0 | } else /* trail surrogate */ { |
517 | 0 | if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
518 | 0 | --src; |
519 | 0 | c=U16_GET_SUPPLEMENTARY(c2, c); |
520 | 0 | } |
521 | 0 | } |
522 | 0 | if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) { |
523 | 0 | src+=U16_LENGTH(c); |
524 | 0 | } else { |
525 | 0 | break; |
526 | 0 | } |
527 | 0 | } |
528 | 0 | } |
529 | | // copy these code units all at once |
530 | 0 | if(src!=prevSrc) { |
531 | 0 | if(buffer!=NULL) { |
532 | 0 | if(!buffer->appendZeroCC(prevSrc, src, errorCode)) { |
533 | 0 | break; |
534 | 0 | } |
535 | 0 | } else { |
536 | 0 | prevCC=0; |
537 | 0 | prevBoundary=src; |
538 | 0 | } |
539 | 0 | } |
540 | 0 | if(src==limit) { |
541 | 0 | break; |
542 | 0 | } |
543 | | |
544 | | // Check one above-minimum, relevant code point. |
545 | 0 | src+=U16_LENGTH(c); |
546 | 0 | if(buffer!=NULL) { |
547 | 0 | if(!decompose(c, norm16, *buffer, errorCode)) { |
548 | 0 | break; |
549 | 0 | } |
550 | 0 | } else { |
551 | 0 | if(isDecompYes(norm16)) { |
552 | 0 | uint8_t cc=getCCFromYesOrMaybe(norm16); |
553 | 0 | if(prevCC<=cc || cc==0) { |
554 | 0 | prevCC=cc; |
555 | 0 | if(cc<=1) { |
556 | 0 | prevBoundary=src; |
557 | 0 | } |
558 | 0 | continue; |
559 | 0 | } |
560 | 0 | } |
561 | 0 | return prevBoundary; // "no" or cc out of order |
562 | 0 | } |
563 | 0 | } |
564 | 0 | return src; |
565 | 0 | } |
566 | | |
567 | | // Decompose a short piece of text which is likely to contain characters that |
568 | | // fail the quick check loop and/or where the quick check loop's overhead |
569 | | // is unlikely to be amortized. |
570 | | // Called by the compose() and makeFCD() implementations. |
571 | | UBool Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit, |
572 | | ReorderingBuffer &buffer, |
573 | 4.02M | UErrorCode &errorCode) const { |
574 | 8.37M | while(src<limit) { |
575 | 4.34M | UChar32 c; |
576 | 4.34M | uint16_t norm16; |
577 | 4.34M | UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16); |
578 | 4.34M | if(!decompose(c, norm16, buffer, errorCode)) { |
579 | 0 | return FALSE; |
580 | 0 | } |
581 | 4.34M | } |
582 | 4.02M | return TRUE; |
583 | 4.02M | } |
584 | | |
585 | | UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16, |
586 | | ReorderingBuffer &buffer, |
587 | 4.34M | UErrorCode &errorCode) const { |
588 | | // Only loops for 1:1 algorithmic mappings. |
589 | 6.97M | for(;;) { |
590 | | // get the decomposition and the lead and trail cc's |
591 | 6.97M | if(isDecompYes(norm16)) { |
592 | | // c does not decompose |
593 | 2.31M | return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode); |
594 | 4.66M | } else if(isHangul(norm16)) { |
595 | | // Hangul syllable: decompose algorithmically |
596 | 432 | UChar jamos[3]; |
597 | 432 | return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode); |
598 | 4.66M | } else if(isDecompNoAlgorithmic(norm16)) { |
599 | 2.62M | c=mapAlgorithmic(c, norm16); |
600 | 2.62M | norm16=getNorm16(c); |
601 | 2.62M | } else { |
602 | | // c decomposes, get everything from the variable-length extra data |
603 | 2.03M | const uint16_t *mapping=getMapping(norm16); |
604 | 2.03M | uint16_t firstUnit=*mapping; |
605 | 2.03M | int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
606 | 2.03M | uint8_t leadCC, trailCC; |
607 | 2.03M | trailCC=(uint8_t)(firstUnit>>8); |
608 | 2.03M | if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
609 | 6.71k | leadCC=(uint8_t)(*(mapping-1)>>8); |
610 | 2.02M | } else { |
611 | 2.02M | leadCC=0; |
612 | 2.02M | } |
613 | 2.03M | return buffer.append((const UChar *)mapping+1, length, leadCC, trailCC, errorCode); |
614 | 2.03M | } |
615 | 6.97M | } |
616 | 4.34M | } |
617 | | |
618 | | const UChar * |
619 | 0 | Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const { |
620 | 0 | const UChar *decomp=NULL; |
621 | 0 | uint16_t norm16; |
622 | 0 | for(;;) { |
623 | 0 | if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { |
624 | | // c does not decompose |
625 | 0 | return decomp; |
626 | 0 | } else if(isHangul(norm16)) { |
627 | | // Hangul syllable: decompose algorithmically |
628 | 0 | length=Hangul::decompose(c, buffer); |
629 | 0 | return buffer; |
630 | 0 | } else if(isDecompNoAlgorithmic(norm16)) { |
631 | 0 | c=mapAlgorithmic(c, norm16); |
632 | 0 | decomp=buffer; |
633 | 0 | length=0; |
634 | 0 | U16_APPEND_UNSAFE(buffer, length, c); |
635 | 0 | } else { |
636 | | // c decomposes, get everything from the variable-length extra data |
637 | 0 | const uint16_t *mapping=getMapping(norm16); |
638 | 0 | length=*mapping&MAPPING_LENGTH_MASK; |
639 | 0 | return (const UChar *)mapping+1; |
640 | 0 | } |
641 | 0 | } |
642 | 0 | } |
643 | | |
644 | | // The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1 |
645 | | // so that a raw mapping fits that consists of one unit ("rm0") |
646 | | // plus all but the first two code units of the normal mapping. |
647 | | // The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK. |
648 | | const UChar * |
649 | 0 | Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const { |
650 | | // We do not loop in this method because an algorithmic mapping itself |
651 | | // becomes a final result rather than having to be decomposed recursively. |
652 | 0 | uint16_t norm16; |
653 | 0 | if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { |
654 | | // c does not decompose |
655 | 0 | return NULL; |
656 | 0 | } else if(isHangul(norm16)) { |
657 | | // Hangul syllable: decompose algorithmically |
658 | 0 | Hangul::getRawDecomposition(c, buffer); |
659 | 0 | length=2; |
660 | 0 | return buffer; |
661 | 0 | } else if(isDecompNoAlgorithmic(norm16)) { |
662 | 0 | c=mapAlgorithmic(c, norm16); |
663 | 0 | length=0; |
664 | 0 | U16_APPEND_UNSAFE(buffer, length, c); |
665 | 0 | return buffer; |
666 | 0 | } else { |
667 | | // c decomposes, get everything from the variable-length extra data |
668 | 0 | const uint16_t *mapping=getMapping(norm16); |
669 | 0 | uint16_t firstUnit=*mapping; |
670 | 0 | int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping |
671 | 0 | if(firstUnit&MAPPING_HAS_RAW_MAPPING) { |
672 | | // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word. |
673 | | // Bit 7=MAPPING_HAS_CCC_LCCC_WORD |
674 | 0 | const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1; |
675 | 0 | uint16_t rm0=*rawMapping; |
676 | 0 | if(rm0<=MAPPING_LENGTH_MASK) { |
677 | 0 | length=rm0; |
678 | 0 | return (const UChar *)rawMapping-rm0; |
679 | 0 | } else { |
680 | | // Copy the normal mapping and replace its first two code units with rm0. |
681 | 0 | buffer[0]=(UChar)rm0; |
682 | 0 | u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2); |
683 | 0 | length=mLength-1; |
684 | 0 | return buffer; |
685 | 0 | } |
686 | 0 | } else { |
687 | 0 | length=mLength; |
688 | 0 | return (const UChar *)mapping+1; |
689 | 0 | } |
690 | 0 | } |
691 | 0 | } |
692 | | |
693 | | void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit, |
694 | | UBool doDecompose, |
695 | | UnicodeString &safeMiddle, |
696 | | ReorderingBuffer &buffer, |
697 | 0 | UErrorCode &errorCode) const { |
698 | 0 | buffer.copyReorderableSuffixTo(safeMiddle); |
699 | 0 | if(doDecompose) { |
700 | 0 | decompose(src, limit, &buffer, errorCode); |
701 | 0 | return; |
702 | 0 | } |
703 | | // Just merge the strings at the boundary. |
704 | 0 | ForwardUTrie2StringIterator iter(normTrie, src, limit); |
705 | 0 | uint8_t firstCC, prevCC, cc; |
706 | 0 | firstCC=prevCC=cc=getCC(iter.next16()); |
707 | 0 | while(cc!=0) { |
708 | 0 | prevCC=cc; |
709 | 0 | cc=getCC(iter.next16()); |
710 | 0 | }; |
711 | 0 | if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
712 | 0 | limit=u_strchr(iter.codePointStart, 0); |
713 | 0 | } |
714 | |
|
715 | 0 | if (buffer.append(src, (int32_t)(iter.codePointStart-src), firstCC, prevCC, errorCode)) { |
716 | 0 | buffer.appendZeroCC(iter.codePointStart, limit, errorCode); |
717 | 0 | } |
718 | 0 | } |
719 | | |
720 | | // Note: hasDecompBoundary() could be implemented as aliases to |
721 | | // hasFCDBoundaryBefore() and hasFCDBoundaryAfter() |
722 | | // at the cost of building the FCD trie for a decomposition normalizer. |
723 | 0 | UBool Normalizer2Impl::hasDecompBoundary(UChar32 c, UBool before) const { |
724 | 0 | for(;;) { |
725 | 0 | if(c<minDecompNoCP) { |
726 | 0 | return TRUE; |
727 | 0 | } |
728 | 0 | uint16_t norm16=getNorm16(c); |
729 | 0 | if(isHangul(norm16) || isDecompYesAndZeroCC(norm16)) { |
730 | 0 | return TRUE; |
731 | 0 | } else if(norm16>MIN_NORMAL_MAYBE_YES) { |
732 | 0 | return FALSE; // ccc!=0 |
733 | 0 | } else if(isDecompNoAlgorithmic(norm16)) { |
734 | 0 | c=mapAlgorithmic(c, norm16); |
735 | 0 | } else { |
736 | | // c decomposes, get everything from the variable-length extra data |
737 | 0 | const uint16_t *mapping=getMapping(norm16); |
738 | 0 | uint16_t firstUnit=*mapping; |
739 | 0 | if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
740 | 0 | return FALSE; |
741 | 0 | } |
742 | 0 | if(!before) { |
743 | | // decomp after-boundary: same as hasFCDBoundaryAfter(), |
744 | | // fcd16<=1 || trailCC==0 |
745 | 0 | if(firstUnit>0x1ff) { |
746 | 0 | return FALSE; // trailCC>1 |
747 | 0 | } |
748 | 0 | if(firstUnit<=0xff) { |
749 | 0 | return TRUE; // trailCC==0 |
750 | 0 | } |
751 | | // if(trailCC==1) test leadCC==0, same as checking for before-boundary |
752 | 0 | } |
753 | | // TRUE if leadCC==0 (hasFCDBoundaryBefore()) |
754 | 0 | return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0; |
755 | 0 | } |
756 | 0 | } |
757 | 0 | } |
758 | | |
759 | | /* |
760 | | * Finds the recomposition result for |
761 | | * a forward-combining "lead" character, |
762 | | * specified with a pointer to its compositions list, |
763 | | * and a backward-combining "trail" character. |
764 | | * |
765 | | * If the lead and trail characters combine, then this function returns |
766 | | * the following "compositeAndFwd" value: |
767 | | * Bits 21..1 composite character |
768 | | * Bit 0 set if the composite is a forward-combining starter |
769 | | * otherwise it returns -1. |
770 | | * |
771 | | * The compositions list has (trail, compositeAndFwd) pair entries, |
772 | | * encoded as either pairs or triples of 16-bit units. |
773 | | * The last entry has the high bit of its first unit set. |
774 | | * |
775 | | * The list is sorted by ascending trail characters (there are no duplicates). |
776 | | * A linear search is used. |
777 | | * |
778 | | * See normalizer2impl.h for a more detailed description |
779 | | * of the compositions list format. |
780 | | */ |
781 | 924k | int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) { |
782 | 924k | uint16_t key1, firstUnit; |
783 | 924k | if(trail<COMP_1_TRAIL_LIMIT) { |
784 | | // trail character is 0..33FF |
785 | | // result entry may have 2 or 3 units |
786 | 922k | key1=(uint16_t)(trail<<1); |
787 | 5.56M | while(key1>(firstUnit=*list)) { |
788 | 4.64M | list+=2+(firstUnit&COMP_1_TRIPLE); |
789 | 4.64M | } |
790 | 922k | if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
791 | 920k | if(firstUnit&COMP_1_TRIPLE) { |
792 | 0 | return ((int32_t)list[1]<<16)|list[2]; |
793 | 920k | } else { |
794 | 920k | return list[1]; |
795 | 920k | } |
796 | 920k | } |
797 | 922k | } else { |
798 | | // trail character is 3400..10FFFF |
799 | | // result entry has 3 units |
800 | 2.00k | key1=(uint16_t)(COMP_1_TRAIL_LIMIT+ |
801 | 2.00k | (((trail>>COMP_1_TRAIL_SHIFT))& |
802 | 2.00k | ~COMP_1_TRIPLE)); |
803 | 2.00k | uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT); |
804 | 2.00k | uint16_t secondUnit; |
805 | 7.79k | for(;;) { |
806 | 7.79k | if(key1>(firstUnit=*list)) { |
807 | 4.42k | list+=2+(firstUnit&COMP_1_TRIPLE); |
808 | 4.42k | } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
809 | 3.02k | if(key2>(secondUnit=list[1])) { |
810 | 1.55k | if(firstUnit&COMP_1_LAST_TUPLE) { |
811 | 195 | break; |
812 | 1.35k | } else { |
813 | 1.35k | list+=3; |
814 | 1.35k | } |
815 | 1.55k | } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) { |
816 | 1.15k | return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2]; |
817 | 1.15k | } else { |
818 | 310 | break; |
819 | 310 | } |
820 | 3.02k | } else { |
821 | 347 | break; |
822 | 347 | } |
823 | 7.79k | } |
824 | 2.00k | } |
825 | 2.76k | return -1; |
826 | 924k | } |
827 | | |
828 | | /** |
829 | | * @param list some character's compositions list |
830 | | * @param set recursively receives the composites from these compositions |
831 | | */ |
832 | 0 | void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const { |
833 | 0 | uint16_t firstUnit; |
834 | 0 | int32_t compositeAndFwd; |
835 | 0 | do { |
836 | 0 | firstUnit=*list; |
837 | 0 | if((firstUnit&COMP_1_TRIPLE)==0) { |
838 | 0 | compositeAndFwd=list[1]; |
839 | 0 | list+=2; |
840 | 0 | } else { |
841 | 0 | compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2]; |
842 | 0 | list+=3; |
843 | 0 | } |
844 | 0 | UChar32 composite=compositeAndFwd>>1; |
845 | 0 | if((compositeAndFwd&1)!=0) { |
846 | 0 | addComposites(getCompositionsListForComposite(getNorm16(composite)), set); |
847 | 0 | } |
848 | 0 | set.add(composite); |
849 | 0 | } while((firstUnit&COMP_1_LAST_TUPLE)==0); |
850 | 0 | } |
851 | | |
852 | | /* |
853 | | * Recomposes the buffer text starting at recomposeStartIndex |
854 | | * (which is in NFD - decomposed and canonically ordered), |
855 | | * and truncates the buffer contents. |
856 | | * |
857 | | * Note that recomposition never lengthens the text: |
858 | | * Any character consists of either one or two code units; |
859 | | * a composition may contain at most one more code unit than the original starter, |
860 | | * while the combining mark that is removed has at least one code unit. |
861 | | */ |
862 | | void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex, |
863 | 4.02M | UBool onlyContiguous) const { |
864 | 4.02M | UChar *p=buffer.getStart()+recomposeStartIndex; |
865 | 4.02M | UChar *limit=buffer.getLimit(); |
866 | 4.02M | if(p==limit) { |
867 | 374k | return; |
868 | 374k | } |
869 | | |
870 | 3.65M | UChar *starter, *pRemove, *q, *r; |
871 | 3.65M | const uint16_t *compositionsList; |
872 | 3.65M | UChar32 c, compositeAndFwd; |
873 | 3.65M | uint16_t norm16; |
874 | 3.65M | uint8_t cc, prevCC; |
875 | 3.65M | UBool starterIsSupplementary; |
876 | | |
877 | | // Some of the following variables are not used until we have a forward-combining starter |
878 | | // and are only initialized now to avoid compiler warnings. |
879 | 3.65M | compositionsList=NULL; // used as indicator for whether we have a forward-combining starter |
880 | 3.65M | starter=NULL; |
881 | 3.65M | starterIsSupplementary=FALSE; |
882 | 3.65M | prevCC=0; |
883 | | |
884 | 5.71M | for(;;) { |
885 | 5.71M | UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16); |
886 | 5.71M | cc=getCCFromYesOrMaybe(norm16); |
887 | 5.71M | if( // this character combines backward and |
888 | 5.71M | isMaybe(norm16) && |
889 | | // we have seen a starter that combines forward and |
890 | 5.71M | compositionsList!=NULL && |
891 | | // the backward-combining character is not blocked |
892 | 5.71M | (prevCC<cc || prevCC==0) |
893 | 5.71M | ) { |
894 | 928k | if(isJamoVT(norm16)) { |
895 | | // c is a Jamo V/T, see if we can compose it with the previous character. |
896 | 3.68k | if(c<Hangul::JAMO_T_BASE) { |
897 | | // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. |
898 | 3.48k | UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE); |
899 | 3.48k | if(prev<Hangul::JAMO_L_COUNT) { |
900 | 3.28k | pRemove=p-1; |
901 | 3.28k | UChar syllable=(UChar) |
902 | 3.28k | (Hangul::HANGUL_BASE+ |
903 | 3.28k | (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* |
904 | 3.28k | Hangul::JAMO_T_COUNT); |
905 | 3.28k | UChar t; |
906 | 3.28k | if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { |
907 | 620 | ++p; |
908 | 620 | syllable+=t; // The next character was a Jamo T. |
909 | 620 | } |
910 | 3.28k | *starter=syllable; |
911 | | // remove the Jamo V/T |
912 | 3.28k | q=pRemove; |
913 | 3.28k | r=p; |
914 | 5.23k | while(r<limit) { |
915 | 1.94k | *q++=*r++; |
916 | 1.94k | } |
917 | 3.28k | limit=q; |
918 | 3.28k | p=pRemove; |
919 | 3.28k | } |
920 | 3.48k | } |
921 | | /* |
922 | | * No "else" for Jamo T: |
923 | | * Since the input is in NFD, there are no Hangul LV syllables that |
924 | | * a Jamo T could combine with. |
925 | | * All Jamo Ts are combined above when handling Jamo Vs. |
926 | | */ |
927 | 3.68k | if(p==limit) { |
928 | 2.58k | break; |
929 | 2.58k | } |
930 | 1.09k | compositionsList=NULL; |
931 | 1.09k | continue; |
932 | 924k | } else if((compositeAndFwd=combine(compositionsList, c))>=0) { |
933 | | // The starter and the combining mark (c) do combine. |
934 | 921k | UChar32 composite=compositeAndFwd>>1; |
935 | | |
936 | | // Replace the starter with the composite, remove the combining mark. |
937 | 921k | pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark |
938 | 921k | if(starterIsSupplementary) { |
939 | 1.15k | if(U_IS_SUPPLEMENTARY(composite)) { |
940 | | // both are supplementary |
941 | 1.15k | starter[0]=U16_LEAD(composite); |
942 | 1.15k | starter[1]=U16_TRAIL(composite); |
943 | 1.15k | } else { |
944 | 0 | *starter=(UChar)composite; |
945 | | // The composite is shorter than the starter, |
946 | | // move the intermediate characters forward one. |
947 | 0 | starterIsSupplementary=FALSE; |
948 | 0 | q=starter+1; |
949 | 0 | r=q+1; |
950 | 0 | while(r<pRemove) { |
951 | 0 | *q++=*r++; |
952 | 0 | } |
953 | 0 | --pRemove; |
954 | 0 | } |
955 | 920k | } else if(U_IS_SUPPLEMENTARY(composite)) { |
956 | | // The composite is longer than the starter, |
957 | | // move the intermediate characters back one. |
958 | 0 | starterIsSupplementary=TRUE; |
959 | 0 | ++starter; // temporarily increment for the loop boundary |
960 | 0 | q=pRemove; |
961 | 0 | r=++pRemove; |
962 | 0 | while(starter<q) { |
963 | 0 | *--r=*--q; |
964 | 0 | } |
965 | 0 | *starter=U16_TRAIL(composite); |
966 | 0 | *--starter=U16_LEAD(composite); // undo the temporary increment |
967 | 920k | } else { |
968 | | // both are on the BMP |
969 | 920k | *starter=(UChar)composite; |
970 | 920k | } |
971 | | |
972 | | /* remove the combining mark by moving the following text over it */ |
973 | 921k | if(pRemove<p) { |
974 | 921k | q=pRemove; |
975 | 921k | r=p; |
976 | 926k | while(r<limit) { |
977 | 4.51k | *q++=*r++; |
978 | 4.51k | } |
979 | 921k | limit=q; |
980 | 921k | p=pRemove; |
981 | 921k | } |
982 | | // Keep prevCC because we removed the combining mark. |
983 | | |
984 | 921k | if(p==limit) { |
985 | 919k | break; |
986 | 919k | } |
987 | | // Is the composite a starter that combines forward? |
988 | 2.16k | if(compositeAndFwd&1) { |
989 | 592 | compositionsList= |
990 | 592 | getCompositionsListForComposite(getNorm16(composite)); |
991 | 1.57k | } else { |
992 | 1.57k | compositionsList=NULL; |
993 | 1.57k | } |
994 | | |
995 | | // We combined; continue with looking for compositions. |
996 | 2.16k | continue; |
997 | 921k | } |
998 | 928k | } |
999 | | |
1000 | | // no combination this time |
1001 | 4.78M | prevCC=cc; |
1002 | 4.78M | if(p==limit) { |
1003 | 2.72M | break; |
1004 | 2.72M | } |
1005 | | |
1006 | | // If c did not combine, then check if it is a starter. |
1007 | 2.05M | if(cc==0) { |
1008 | | // Found a new starter. |
1009 | 2.02M | if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) { |
1010 | | // It may combine with something, prepare for it. |
1011 | 1.18M | if(U_IS_BMP(c)) { |
1012 | 1.17M | starterIsSupplementary=FALSE; |
1013 | 1.17M | starter=p-1; |
1014 | 1.17M | } else { |
1015 | 1.70k | starterIsSupplementary=TRUE; |
1016 | 1.70k | starter=p-2; |
1017 | 1.70k | } |
1018 | 1.18M | } |
1019 | 2.02M | } else if(onlyContiguous) { |
1020 | | // FCC: no discontiguous compositions; any intervening character blocks. |
1021 | 0 | compositionsList=NULL; |
1022 | 0 | } |
1023 | 2.05M | } |
1024 | 3.65M | buffer.setReorderingLimit(limit); |
1025 | 3.65M | } |
1026 | | |
1027 | | UChar32 |
1028 | 0 | Normalizer2Impl::composePair(UChar32 a, UChar32 b) const { |
1029 | 0 | uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16=0 |
1030 | 0 | const uint16_t *list; |
1031 | 0 | if(isInert(norm16)) { |
1032 | 0 | return U_SENTINEL; |
1033 | 0 | } else if(norm16<minYesNoMappingsOnly) { |
1034 | 0 | if(isJamoL(norm16)) { |
1035 | 0 | b-=Hangul::JAMO_V_BASE; |
1036 | 0 | if(0<=b && b<Hangul::JAMO_V_COUNT) { |
1037 | 0 | return |
1038 | 0 | (Hangul::HANGUL_BASE+ |
1039 | 0 | ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)* |
1040 | 0 | Hangul::JAMO_T_COUNT); |
1041 | 0 | } else { |
1042 | 0 | return U_SENTINEL; |
1043 | 0 | } |
1044 | 0 | } else if(isHangul(norm16)) { |
1045 | 0 | b-=Hangul::JAMO_T_BASE; |
1046 | 0 | if(Hangul::isHangulWithoutJamoT(a) && 0<b && b<Hangul::JAMO_T_COUNT) { // not b==0! |
1047 | 0 | return a+b; |
1048 | 0 | } else { |
1049 | 0 | return U_SENTINEL; |
1050 | 0 | } |
1051 | 0 | } else { |
1052 | | // 'a' has a compositions list in extraData |
1053 | 0 | list=extraData+norm16; |
1054 | 0 | if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list |
1055 | 0 | list+= // mapping pointer |
1056 | 0 | 1+ // +1 to skip the first unit with the mapping lenth |
1057 | 0 | (*list&MAPPING_LENGTH_MASK); // + mapping length |
1058 | 0 | } |
1059 | 0 | } |
1060 | 0 | } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) { |
1061 | 0 | return U_SENTINEL; |
1062 | 0 | } else { |
1063 | 0 | list=maybeYesCompositions+norm16-minMaybeYes; |
1064 | 0 | } |
1065 | 0 | if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b |
1066 | 0 | return U_SENTINEL; |
1067 | 0 | } |
1068 | 0 | #if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC |
1069 | 0 | return combine(list, b)>>1; |
1070 | | #else |
1071 | | int32_t compositeAndFwd=combine(list, b); |
1072 | | return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL; |
1073 | | #endif |
1074 | 0 | } |
1075 | | |
1076 | | // Very similar to composeQuickCheck(): Make the same changes in both places if relevant. |
1077 | | // doCompose: normalize |
1078 | | // !doCompose: isNormalized (buffer must be empty and initialized) |
1079 | | UBool |
1080 | | Normalizer2Impl::compose(const UChar *src, const UChar *limit, |
1081 | | UBool onlyContiguous, |
1082 | | UBool doCompose, |
1083 | | ReorderingBuffer &buffer, |
1084 | 7.32M | UErrorCode &errorCode) const { |
1085 | | /* |
1086 | | * prevBoundary points to the last character before the current one |
1087 | | * that has a composition boundary before it with ccc==0 and quick check "yes". |
1088 | | * Keeping track of prevBoundary saves us looking for a composition boundary |
1089 | | * when we find a "no" or "maybe". |
1090 | | * |
1091 | | * When we back out from prevSrc back to prevBoundary, |
1092 | | * then we also remove those same characters (which had been simply copied |
1093 | | * or canonically-order-inserted) from the ReorderingBuffer. |
1094 | | * Therefore, at all times, the [prevBoundary..prevSrc[ source units |
1095 | | * must correspond 1:1 to destination units at the end of the destination buffer. |
1096 | | */ |
1097 | 7.32M | const UChar *prevBoundary=src; |
1098 | 7.32M | UChar32 minNoMaybeCP=minCompNoMaybeCP; |
1099 | 7.32M | if(limit==NULL) { |
1100 | 0 | src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, |
1101 | 0 | doCompose ? &buffer : NULL, |
1102 | 0 | errorCode); |
1103 | 0 | if(U_FAILURE(errorCode)) { |
1104 | 0 | return FALSE; |
1105 | 0 | } |
1106 | 0 | if(prevBoundary<src) { |
1107 | | // Set prevBoundary to the last character in the prefix. |
1108 | 0 | prevBoundary=src-1; |
1109 | 0 | } |
1110 | 0 | limit=u_strchr(src, 0); |
1111 | 0 | } |
1112 | | |
1113 | 7.32M | const UChar *prevSrc; |
1114 | 7.32M | UChar32 c=0; |
1115 | 7.32M | uint16_t norm16=0; |
1116 | | |
1117 | | // only for isNormalized |
1118 | 7.32M | uint8_t prevCC=0; |
1119 | | |
1120 | 11.7M | for(;;) { |
1121 | | // count code units below the minimum or with irrelevant data for the quick check |
1122 | 15.3M | for(prevSrc=src; src!=limit;) { |
1123 | 7.99M | if( (c=*src)<minNoMaybeCP || |
1124 | 7.99M | isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) |
1125 | 7.99M | ) { |
1126 | 3.54M | ++src; |
1127 | 4.44M | } else if(!U16_IS_SURROGATE(c)) { |
1128 | 4.43M | break; |
1129 | 4.43M | } else { |
1130 | 15.0k | UChar c2; |
1131 | 15.0k | if(U16_IS_SURROGATE_LEAD(c)) { |
1132 | 15.0k | if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
1133 | 15.0k | c=U16_GET_SUPPLEMENTARY(c, c2); |
1134 | 15.0k | } |
1135 | 15.0k | } else /* trail surrogate */ { |
1136 | 0 | if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
1137 | 0 | --src; |
1138 | 0 | c=U16_GET_SUPPLEMENTARY(c2, c); |
1139 | 0 | } |
1140 | 0 | } |
1141 | 15.0k | if(isCompYesAndZeroCC(norm16=getNorm16(c))) { |
1142 | 7.96k | src+=U16_LENGTH(c); |
1143 | 7.96k | } else { |
1144 | 7.07k | break; |
1145 | 7.07k | } |
1146 | 15.0k | } |
1147 | 7.99M | } |
1148 | | // copy these code units all at once |
1149 | 11.7M | if(src!=prevSrc) { |
1150 | 3.43M | if(doCompose) { |
1151 | 3.43M | if(!buffer.appendZeroCC(prevSrc, src, errorCode)) { |
1152 | 0 | break; |
1153 | 0 | } |
1154 | 3.43M | } else { |
1155 | 5.29k | prevCC=0; |
1156 | 5.29k | } |
1157 | 3.43M | if(src==limit) { |
1158 | 3.03M | break; |
1159 | 3.03M | } |
1160 | | // Set prevBoundary to the last character in the quick check loop. |
1161 | 401k | prevBoundary=src-1; |
1162 | 401k | if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && |
1163 | 401k | U16_IS_LEAD(*(prevBoundary-1)) |
1164 | 401k | ) { |
1165 | 1.96k | --prevBoundary; |
1166 | 1.96k | } |
1167 | | // The start of the current character (c). |
1168 | 401k | prevSrc=src; |
1169 | 8.33M | } else if(src==limit) { |
1170 | 4.29M | break; |
1171 | 4.29M | } |
1172 | | |
1173 | 4.43M | src+=U16_LENGTH(c); |
1174 | | /* |
1175 | | * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
1176 | | * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) |
1177 | | * or has ccc!=0. |
1178 | | * Check for Jamo V/T, then for regular characters. |
1179 | | * c is not a Hangul syllable or Jamo L because those have "yes" properties. |
1180 | | */ |
1181 | 4.43M | if(isJamoVT(norm16) && prevBoundary!=prevSrc) { |
1182 | 3.99k | UChar prev=*(prevSrc-1); |
1183 | 3.99k | UBool needToDecompose=FALSE; |
1184 | 3.99k | if(c<Hangul::JAMO_T_BASE) { |
1185 | | // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. |
1186 | 2.39k | prev=(UChar)(prev-Hangul::JAMO_L_BASE); |
1187 | 2.39k | if(prev<Hangul::JAMO_L_COUNT) { |
1188 | 2.13k | if(!doCompose) { |
1189 | 194 | return FALSE; |
1190 | 194 | } |
1191 | 1.94k | UChar syllable=(UChar) |
1192 | 1.94k | (Hangul::HANGUL_BASE+ |
1193 | 1.94k | (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* |
1194 | 1.94k | Hangul::JAMO_T_COUNT); |
1195 | 1.94k | UChar t; |
1196 | 1.94k | if(src!=limit && (t=(UChar)(*src-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { |
1197 | 194 | ++src; |
1198 | 194 | syllable+=t; // The next character was a Jamo T. |
1199 | 194 | prevBoundary=src; |
1200 | 194 | buffer.setLastChar(syllable); |
1201 | 194 | continue; |
1202 | 194 | } |
1203 | | // If we see L+V+x where x!=T then we drop to the slow path, |
1204 | | // decompose and recompose. |
1205 | | // This is to deal with NFKC finding normal L and V but a |
1206 | | // compatibility variant of a T. We need to either fully compose that |
1207 | | // combination here (which would complicate the code and may not work |
1208 | | // with strange custom data) or use the slow path -- or else our replacing |
1209 | | // two input characters (L+V) with one output character (LV syllable) |
1210 | | // would violate the invariant that [prevBoundary..prevSrc[ has the same |
1211 | | // length as what we appended to the buffer since prevBoundary. |
1212 | 1.74k | needToDecompose=TRUE; |
1213 | 1.74k | } |
1214 | 2.39k | } else if(Hangul::isHangulWithoutJamoT(prev)) { |
1215 | | // c is a Jamo Trailing consonant, |
1216 | | // compose with previous Hangul LV that does not contain a Jamo T. |
1217 | 505 | if(!doCompose) { |
1218 | 238 | return FALSE; |
1219 | 238 | } |
1220 | 267 | buffer.setLastChar((UChar)(prev+c-Hangul::JAMO_T_BASE)); |
1221 | 267 | prevBoundary=src; |
1222 | 267 | continue; |
1223 | 505 | } |
1224 | 3.09k | if(!needToDecompose) { |
1225 | | // The Jamo V/T did not compose into a Hangul syllable. |
1226 | 1.35k | if(doCompose) { |
1227 | 321 | if(!buffer.appendBMP((UChar)c, 0, errorCode)) { |
1228 | 0 | break; |
1229 | 0 | } |
1230 | 1.03k | } else { |
1231 | 1.03k | prevCC=0; |
1232 | 1.03k | } |
1233 | 1.35k | continue; |
1234 | 1.35k | } |
1235 | 3.09k | } |
1236 | | /* |
1237 | | * Source buffer pointers: |
1238 | | * |
1239 | | * all done quick check current char not yet |
1240 | | * "yes" but (c) processed |
1241 | | * may combine |
1242 | | * forward |
1243 | | * [-------------[-------------[-------------[-------------[ |
1244 | | * | | | | | |
1245 | | * orig. src prevBoundary prevSrc src limit |
1246 | | * |
1247 | | * |
1248 | | * Destination buffer pointers inside the ReorderingBuffer: |
1249 | | * |
1250 | | * all done might take not filled yet |
1251 | | * characters for |
1252 | | * reordering |
1253 | | * [-------------[-------------[-------------[ |
1254 | | * | | | | |
1255 | | * start reorderStart limit | |
1256 | | * +remainingCap.+ |
1257 | | */ |
1258 | 4.43M | if(norm16>=MIN_YES_YES_WITH_CC) { |
1259 | 412k | uint8_t cc=(uint8_t)norm16; // cc!=0 |
1260 | 412k | if( onlyContiguous && // FCC |
1261 | 412k | (doCompose ? buffer.getLastCC() : prevCC)==0 && |
1262 | 412k | prevBoundary<prevSrc && |
1263 | | // buffer.getLastCC()==0 && prevBoundary<prevSrc tell us that |
1264 | | // [prevBoundary..prevSrc[ (which is exactly one character under these conditions) |
1265 | | // passed the quick check "yes && ccc==0" test. |
1266 | | // Check whether the last character was a "yesYes" or a "yesNo". |
1267 | | // If a "yesNo", then we get its trailing ccc from its |
1268 | | // mapping and check for canonical order. |
1269 | | // All other cases are ok. |
1270 | 412k | getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc |
1271 | 412k | ) { |
1272 | | // Fails FCD test, need to decompose and contiguously recompose. |
1273 | 0 | if(!doCompose) { |
1274 | 0 | return FALSE; |
1275 | 0 | } |
1276 | 412k | } else if(doCompose) { |
1277 | 410k | if(!buffer.append(c, cc, errorCode)) { |
1278 | 0 | break; |
1279 | 0 | } |
1280 | 410k | continue; |
1281 | 410k | } else if(prevCC<=cc) { |
1282 | 1.32k | prevCC=cc; |
1283 | 1.32k | continue; |
1284 | 1.32k | } else { |
1285 | 195 | return FALSE; |
1286 | 195 | } |
1287 | 4.02M | } else if(!doCompose && !isMaybeOrNonZeroCC(norm16)) { |
1288 | 567 | return FALSE; |
1289 | 567 | } |
1290 | | |
1291 | | /* |
1292 | | * Find appropriate boundaries around this character, |
1293 | | * decompose the source text from between the boundaries, |
1294 | | * and recompose it. |
1295 | | * |
1296 | | * We may need to remove the last few characters from the ReorderingBuffer |
1297 | | * to account for source text that was copied or appended |
1298 | | * but needs to take part in the recomposition. |
1299 | | */ |
1300 | | |
1301 | | /* |
1302 | | * Find the last composition boundary in [prevBoundary..src[. |
1303 | | * It is either the decomposition of the current character (at prevSrc), |
1304 | | * or prevBoundary. |
1305 | | */ |
1306 | 4.02M | if(hasCompBoundaryBefore(c, norm16)) { |
1307 | 3.34M | prevBoundary=prevSrc; |
1308 | 3.34M | } else if(doCompose) { |
1309 | 672k | buffer.removeSuffix((int32_t)(prevSrc-prevBoundary)); |
1310 | 672k | } |
1311 | | |
1312 | | // Find the next composition boundary in [src..limit[ - |
1313 | | // modifies src to point to the next starter. |
1314 | 4.02M | src=(UChar *)findNextCompBoundary(src, limit); |
1315 | | |
1316 | | // Decompose [prevBoundary..src[ into the buffer and then recompose that part of it. |
1317 | 4.02M | int32_t recomposeStartIndex=buffer.length(); |
1318 | 4.02M | if(!decomposeShort(prevBoundary, src, buffer, errorCode)) { |
1319 | 0 | break; |
1320 | 0 | } |
1321 | 4.02M | recompose(buffer, recomposeStartIndex, onlyContiguous); |
1322 | 4.02M | if(!doCompose) { |
1323 | 4.43k | if(!buffer.equals(prevBoundary, src)) { |
1324 | 1.25k | return FALSE; |
1325 | 1.25k | } |
1326 | 3.18k | buffer.remove(); |
1327 | 3.18k | prevCC=0; |
1328 | 3.18k | } |
1329 | | |
1330 | | // Move to the next starter. We never need to look back before this point again. |
1331 | 4.02M | prevBoundary=src; |
1332 | 4.02M | } |
1333 | 7.32M | return TRUE; |
1334 | 7.32M | } |
1335 | | |
1336 | | // Very similar to compose(): Make the same changes in both places if relevant. |
1337 | | // pQCResult==NULL: spanQuickCheckYes |
1338 | | // pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES) |
1339 | | const UChar * |
1340 | | Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit, |
1341 | | UBool onlyContiguous, |
1342 | 0 | UNormalizationCheckResult *pQCResult) const { |
1343 | | /* |
1344 | | * prevBoundary points to the last character before the current one |
1345 | | * that has a composition boundary before it with ccc==0 and quick check "yes". |
1346 | | */ |
1347 | 0 | const UChar *prevBoundary=src; |
1348 | 0 | UChar32 minNoMaybeCP=minCompNoMaybeCP; |
1349 | 0 | if(limit==NULL) { |
1350 | 0 | UErrorCode errorCode=U_ZERO_ERROR; |
1351 | 0 | src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode); |
1352 | 0 | if(prevBoundary<src) { |
1353 | | // Set prevBoundary to the last character in the prefix. |
1354 | 0 | prevBoundary=src-1; |
1355 | 0 | } |
1356 | 0 | limit=u_strchr(src, 0); |
1357 | 0 | } |
1358 | |
|
1359 | 0 | const UChar *prevSrc; |
1360 | 0 | UChar32 c=0; |
1361 | 0 | uint16_t norm16=0; |
1362 | 0 | uint8_t prevCC=0; |
1363 | |
|
1364 | 0 | for(;;) { |
1365 | | // count code units below the minimum or with irrelevant data for the quick check |
1366 | 0 | for(prevSrc=src;;) { |
1367 | 0 | if(src==limit) { |
1368 | 0 | return src; |
1369 | 0 | } |
1370 | 0 | if( (c=*src)<minNoMaybeCP || |
1371 | 0 | isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) |
1372 | 0 | ) { |
1373 | 0 | ++src; |
1374 | 0 | } else if(!U16_IS_SURROGATE(c)) { |
1375 | 0 | break; |
1376 | 0 | } else { |
1377 | 0 | UChar c2; |
1378 | 0 | if(U16_IS_SURROGATE_LEAD(c)) { |
1379 | 0 | if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
1380 | 0 | c=U16_GET_SUPPLEMENTARY(c, c2); |
1381 | 0 | } |
1382 | 0 | } else /* trail surrogate */ { |
1383 | 0 | if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
1384 | 0 | --src; |
1385 | 0 | c=U16_GET_SUPPLEMENTARY(c2, c); |
1386 | 0 | } |
1387 | 0 | } |
1388 | 0 | if(isCompYesAndZeroCC(norm16=getNorm16(c))) { |
1389 | 0 | src+=U16_LENGTH(c); |
1390 | 0 | } else { |
1391 | 0 | break; |
1392 | 0 | } |
1393 | 0 | } |
1394 | 0 | } |
1395 | 0 | if(src!=prevSrc) { |
1396 | | // Set prevBoundary to the last character in the quick check loop. |
1397 | 0 | prevBoundary=src-1; |
1398 | 0 | if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && |
1399 | 0 | U16_IS_LEAD(*(prevBoundary-1)) |
1400 | 0 | ) { |
1401 | 0 | --prevBoundary; |
1402 | 0 | } |
1403 | 0 | prevCC=0; |
1404 | | // The start of the current character (c). |
1405 | 0 | prevSrc=src; |
1406 | 0 | } |
1407 | |
|
1408 | 0 | src+=U16_LENGTH(c); |
1409 | | /* |
1410 | | * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
1411 | | * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) |
1412 | | * or has ccc!=0. |
1413 | | */ |
1414 | 0 | if(isMaybeOrNonZeroCC(norm16)) { |
1415 | 0 | uint8_t cc=getCCFromYesOrMaybe(norm16); |
1416 | 0 | if( onlyContiguous && // FCC |
1417 | 0 | cc!=0 && |
1418 | 0 | prevCC==0 && |
1419 | 0 | prevBoundary<prevSrc && |
1420 | | // prevCC==0 && prevBoundary<prevSrc tell us that |
1421 | | // [prevBoundary..prevSrc[ (which is exactly one character under these conditions) |
1422 | | // passed the quick check "yes && ccc==0" test. |
1423 | | // Check whether the last character was a "yesYes" or a "yesNo". |
1424 | | // If a "yesNo", then we get its trailing ccc from its |
1425 | | // mapping and check for canonical order. |
1426 | | // All other cases are ok. |
1427 | 0 | getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc |
1428 | 0 | ) { |
1429 | | // Fails FCD test. |
1430 | 0 | } else if(prevCC<=cc || cc==0) { |
1431 | 0 | prevCC=cc; |
1432 | 0 | if(norm16<MIN_YES_YES_WITH_CC) { |
1433 | 0 | if(pQCResult!=NULL) { |
1434 | 0 | *pQCResult=UNORM_MAYBE; |
1435 | 0 | } else { |
1436 | 0 | return prevBoundary; |
1437 | 0 | } |
1438 | 0 | } |
1439 | 0 | continue; |
1440 | 0 | } |
1441 | 0 | } |
1442 | 0 | if(pQCResult!=NULL) { |
1443 | 0 | *pQCResult=UNORM_NO; |
1444 | 0 | } |
1445 | 0 | return prevBoundary; |
1446 | 0 | } |
1447 | 0 | } |
1448 | | |
1449 | | void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit, |
1450 | | UBool doCompose, |
1451 | | UBool onlyContiguous, |
1452 | | UnicodeString &safeMiddle, |
1453 | | ReorderingBuffer &buffer, |
1454 | 379k | UErrorCode &errorCode) const { |
1455 | 379k | if(!buffer.isEmpty()) { |
1456 | 379k | const UChar *firstStarterInSrc=findNextCompBoundary(src, limit); |
1457 | 379k | if(src!=firstStarterInSrc) { |
1458 | 371k | const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(), |
1459 | 371k | buffer.getLimit()); |
1460 | 371k | int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest); |
1461 | 371k | UnicodeString middle(lastStarterInDest, destSuffixLength); |
1462 | 371k | buffer.removeSuffix(destSuffixLength); |
1463 | 371k | safeMiddle=middle; |
1464 | 371k | middle.append(src, (int32_t)(firstStarterInSrc-src)); |
1465 | 371k | const UChar *middleStart=middle.getBuffer(); |
1466 | 371k | compose(middleStart, middleStart+middle.length(), onlyContiguous, |
1467 | 371k | TRUE, buffer, errorCode); |
1468 | 371k | if(U_FAILURE(errorCode)) { |
1469 | 0 | return; |
1470 | 0 | } |
1471 | 371k | src=firstStarterInSrc; |
1472 | 371k | } |
1473 | 379k | } |
1474 | 379k | if(doCompose) { |
1475 | 379k | compose(src, limit, onlyContiguous, TRUE, buffer, errorCode); |
1476 | 379k | } else { |
1477 | 0 | if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
1478 | 0 | limit=u_strchr(src, 0); |
1479 | 0 | } |
1480 | 0 | buffer.appendZeroCC(src, limit, errorCode); |
1481 | 0 | } |
1482 | 379k | } |
1483 | | |
1484 | | /** |
1485 | | * Does c have a composition boundary before it? |
1486 | | * True if its decomposition begins with a character that has |
1487 | | * ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()). |
1488 | | * As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes |
1489 | | * (isCompYesAndZeroCC()) so we need not decompose. |
1490 | | */ |
1491 | 9.22M | UBool Normalizer2Impl::hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const { |
1492 | 11.8M | for(;;) { |
1493 | 11.8M | if(isCompYesAndZeroCC(norm16)) { |
1494 | 7.31M | return TRUE; |
1495 | 7.31M | } else if(isMaybeOrNonZeroCC(norm16)) { |
1496 | 696k | return FALSE; |
1497 | 3.84M | } else if(isDecompNoAlgorithmic(norm16)) { |
1498 | 2.63M | c=mapAlgorithmic(c, norm16); |
1499 | 2.63M | norm16=getNorm16(c); |
1500 | 2.63M | } else { |
1501 | | // c decomposes, get everything from the variable-length extra data |
1502 | 1.21M | const uint16_t *mapping=getMapping(norm16); |
1503 | 1.21M | uint16_t firstUnit=*mapping; |
1504 | 1.21M | if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
1505 | 393k | return FALSE; |
1506 | 393k | } |
1507 | 818k | if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD) && (*(mapping-1)&0xff00)) { |
1508 | 7.21k | return FALSE; // non-zero leadCC |
1509 | 7.21k | } |
1510 | 810k | int32_t i=1; // skip over the firstUnit |
1511 | 810k | UChar32 c; |
1512 | 810k | U16_NEXT_UNSAFE(mapping, i, c); |
1513 | 810k | return isCompYesAndZeroCC(getNorm16(c)); |
1514 | 818k | } |
1515 | 11.8M | } |
1516 | 9.22M | } |
1517 | | |
1518 | 0 | UBool Normalizer2Impl::hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous, UBool testInert) const { |
1519 | 0 | for(;;) { |
1520 | 0 | uint16_t norm16=getNorm16(c); |
1521 | 0 | if(isInert(norm16)) { |
1522 | 0 | return TRUE; |
1523 | 0 | } else if(norm16<=minYesNo) { |
1524 | | // Hangul: norm16==minYesNo |
1525 | | // Hangul LVT has a boundary after it. |
1526 | | // Hangul LV and non-inert yesYes characters combine forward. |
1527 | 0 | return isHangul(norm16) && !Hangul::isHangulWithoutJamoT((UChar)c); |
1528 | 0 | } else if(norm16>= (testInert ? minNoNo : minMaybeYes)) { |
1529 | 0 | return FALSE; |
1530 | 0 | } else if(isDecompNoAlgorithmic(norm16)) { |
1531 | 0 | c=mapAlgorithmic(c, norm16); |
1532 | 0 | } else { |
1533 | | // c decomposes, get everything from the variable-length extra data. |
1534 | | // If testInert, then c must be a yesNo character which has lccc=0, |
1535 | | // otherwise it could be a noNo. |
1536 | 0 | const uint16_t *mapping=getMapping(norm16); |
1537 | 0 | uint16_t firstUnit=*mapping; |
1538 | | // TRUE if |
1539 | | // not MAPPING_NO_COMP_BOUNDARY_AFTER |
1540 | | // (which is set if |
1541 | | // c is not deleted, and |
1542 | | // it and its decomposition do not combine forward, and it has a starter) |
1543 | | // and if FCC then trailCC<=1 |
1544 | 0 | return |
1545 | 0 | (firstUnit&MAPPING_NO_COMP_BOUNDARY_AFTER)==0 && |
1546 | 0 | (!onlyContiguous || firstUnit<=0x1ff); |
1547 | 0 | } |
1548 | 0 | } |
1549 | 0 | } |
1550 | | |
1551 | 371k | const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p) const { |
1552 | 371k | BackwardUTrie2StringIterator iter(normTrie, start, p); |
1553 | 371k | uint16_t norm16; |
1554 | 371k | do { |
1555 | 371k | norm16=iter.previous16(); |
1556 | 371k | } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); |
1557 | | // We could also test hasCompBoundaryAfter() and return iter.codePointLimit, |
1558 | | // but that's probably not worth the extra cost. |
1559 | 371k | return iter.codePointStart; |
1560 | 371k | } |
1561 | | |
1562 | 4.40M | const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit) const { |
1563 | 4.40M | ForwardUTrie2StringIterator iter(normTrie, p, limit); |
1564 | 4.40M | uint16_t norm16; |
1565 | 4.82M | do { |
1566 | 4.82M | norm16=iter.next16(); |
1567 | 4.82M | } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); |
1568 | 4.40M | return iter.codePointStart; |
1569 | 4.40M | } |
1570 | | |
1571 | | // Note: normalizer2impl.cpp r30982 (2011-nov-27) |
1572 | | // still had getFCDTrie() which built and cached an FCD trie. |
1573 | | // That provided faster access to FCD data than getFCD16FromNormData() |
1574 | | // but required synchronization and consumed some 10kB of heap memory |
1575 | | // in any process that uses FCD (e.g., via collation). |
1576 | | // tccc180[] and smallFCD[] are intended to help with any loss of performance, |
1577 | | // at least for Latin & CJK. |
1578 | | |
1579 | | // Gets the FCD value from the regular normalization data. |
1580 | 384 | uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const { |
1581 | | // Only loops for 1:1 algorithmic mappings. |
1582 | 502 | for(;;) { |
1583 | 502 | uint16_t norm16=getNorm16(c); |
1584 | 502 | if(norm16<=minYesNo) { |
1585 | | // no decomposition or Hangul syllable, all zeros |
1586 | 72 | return 0; |
1587 | 430 | } else if(norm16>=MIN_NORMAL_MAYBE_YES) { |
1588 | | // combining mark |
1589 | 0 | norm16&=0xff; |
1590 | 0 | return norm16|(norm16<<8); |
1591 | 430 | } else if(norm16>=minMaybeYes) { |
1592 | 0 | return 0; |
1593 | 430 | } else if(isDecompNoAlgorithmic(norm16)) { |
1594 | 118 | c=mapAlgorithmic(c, norm16); |
1595 | 312 | } else { |
1596 | | // c decomposes, get everything from the variable-length extra data |
1597 | 312 | const uint16_t *mapping=getMapping(norm16); |
1598 | 312 | uint16_t firstUnit=*mapping; |
1599 | 312 | if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
1600 | | // A character that is deleted (maps to an empty string) must |
1601 | | // get the worst-case lccc and tccc values because arbitrary |
1602 | | // characters on both sides will become adjacent. |
1603 | 2 | return 0x1ff; |
1604 | 310 | } else { |
1605 | 310 | norm16=firstUnit>>8; // tccc |
1606 | 310 | if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
1607 | 0 | norm16|=*(mapping-1)&0xff00; // lccc |
1608 | 0 | } |
1609 | 310 | return norm16; |
1610 | 310 | } |
1611 | 312 | } |
1612 | 502 | } |
1613 | 384 | } |
1614 | | |
1615 | | // Dual functionality: |
1616 | | // buffer!=NULL: normalize |
1617 | | // buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes |
1618 | | const UChar * |
1619 | | Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit, |
1620 | | ReorderingBuffer *buffer, |
1621 | 0 | UErrorCode &errorCode) const { |
1622 | | // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1. |
1623 | | // Similar to the prevBoundary in the compose() implementation. |
1624 | 0 | const UChar *prevBoundary=src; |
1625 | 0 | int32_t prevFCD16=0; |
1626 | 0 | if(limit==NULL) { |
1627 | 0 | src=copyLowPrefixFromNulTerminated(src, MIN_CCC_LCCC_CP, buffer, errorCode); |
1628 | 0 | if(U_FAILURE(errorCode)) { |
1629 | 0 | return src; |
1630 | 0 | } |
1631 | 0 | if(prevBoundary<src) { |
1632 | 0 | prevBoundary=src; |
1633 | | // We know that the previous character's lccc==0. |
1634 | | // Fetching the fcd16 value was deferred for this below-U+0300 code point. |
1635 | 0 | prevFCD16=getFCD16(*(src-1)); |
1636 | 0 | if(prevFCD16>1) { |
1637 | 0 | --prevBoundary; |
1638 | 0 | } |
1639 | 0 | } |
1640 | 0 | limit=u_strchr(src, 0); |
1641 | 0 | } |
1642 | | |
1643 | | // Note: In this function we use buffer->appendZeroCC() because we track |
1644 | | // the lead and trail combining classes here, rather than leaving it to |
1645 | | // the ReorderingBuffer. |
1646 | | // The exception is the call to decomposeShort() which uses the buffer |
1647 | | // in the normal way. |
1648 | | |
1649 | 0 | const UChar *prevSrc; |
1650 | 0 | UChar32 c=0; |
1651 | 0 | uint16_t fcd16=0; |
1652 | |
|
1653 | 0 | for(;;) { |
1654 | | // count code units with lccc==0 |
1655 | 0 | for(prevSrc=src; src!=limit;) { |
1656 | 0 | if((c=*src)<MIN_CCC_LCCC_CP) { |
1657 | 0 | prevFCD16=~c; |
1658 | 0 | ++src; |
1659 | 0 | } else if(!singleLeadMightHaveNonZeroFCD16(c)) { |
1660 | 0 | prevFCD16=0; |
1661 | 0 | ++src; |
1662 | 0 | } else { |
1663 | 0 | if(U16_IS_SURROGATE(c)) { |
1664 | 0 | UChar c2; |
1665 | 0 | if(U16_IS_SURROGATE_LEAD(c)) { |
1666 | 0 | if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
1667 | 0 | c=U16_GET_SUPPLEMENTARY(c, c2); |
1668 | 0 | } |
1669 | 0 | } else /* trail surrogate */ { |
1670 | 0 | if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
1671 | 0 | --src; |
1672 | 0 | c=U16_GET_SUPPLEMENTARY(c2, c); |
1673 | 0 | } |
1674 | 0 | } |
1675 | 0 | } |
1676 | 0 | if((fcd16=getFCD16FromNormData(c))<=0xff) { |
1677 | 0 | prevFCD16=fcd16; |
1678 | 0 | src+=U16_LENGTH(c); |
1679 | 0 | } else { |
1680 | 0 | break; |
1681 | 0 | } |
1682 | 0 | } |
1683 | 0 | } |
1684 | | // copy these code units all at once |
1685 | 0 | if(src!=prevSrc) { |
1686 | 0 | if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) { |
1687 | 0 | break; |
1688 | 0 | } |
1689 | 0 | if(src==limit) { |
1690 | 0 | break; |
1691 | 0 | } |
1692 | 0 | prevBoundary=src; |
1693 | | // We know that the previous character's lccc==0. |
1694 | 0 | if(prevFCD16<0) { |
1695 | | // Fetching the fcd16 value was deferred for this below-U+0300 code point. |
1696 | 0 | UChar32 prev=~prevFCD16; |
1697 | 0 | prevFCD16= prev<0x180 ? tccc180[prev] : getFCD16FromNormData(prev); |
1698 | 0 | if(prevFCD16>1) { |
1699 | 0 | --prevBoundary; |
1700 | 0 | } |
1701 | 0 | } else { |
1702 | 0 | const UChar *p=src-1; |
1703 | 0 | if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) { |
1704 | 0 | --p; |
1705 | | // Need to fetch the previous character's FCD value because |
1706 | | // prevFCD16 was just for the trail surrogate code point. |
1707 | 0 | prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1])); |
1708 | | // Still known to have lccc==0 because its lead surrogate unit had lccc==0. |
1709 | 0 | } |
1710 | 0 | if(prevFCD16>1) { |
1711 | 0 | prevBoundary=p; |
1712 | 0 | } |
1713 | 0 | } |
1714 | | // The start of the current character (c). |
1715 | 0 | prevSrc=src; |
1716 | 0 | } else if(src==limit) { |
1717 | 0 | break; |
1718 | 0 | } |
1719 | | |
1720 | 0 | src+=U16_LENGTH(c); |
1721 | | // The current character (c) at [prevSrc..src[ has a non-zero lead combining class. |
1722 | | // Check for proper order, and decompose locally if necessary. |
1723 | 0 | if((prevFCD16&0xff)<=(fcd16>>8)) { |
1724 | | // proper order: prev tccc <= current lccc |
1725 | 0 | if((fcd16&0xff)<=1) { |
1726 | 0 | prevBoundary=src; |
1727 | 0 | } |
1728 | 0 | if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) { |
1729 | 0 | break; |
1730 | 0 | } |
1731 | 0 | prevFCD16=fcd16; |
1732 | 0 | continue; |
1733 | 0 | } else if(buffer==NULL) { |
1734 | 0 | return prevBoundary; // quick check "no" |
1735 | 0 | } else { |
1736 | | /* |
1737 | | * Back out the part of the source that we copied or appended |
1738 | | * already but is now going to be decomposed. |
1739 | | * prevSrc is set to after what was copied/appended. |
1740 | | */ |
1741 | 0 | buffer->removeSuffix((int32_t)(prevSrc-prevBoundary)); |
1742 | | /* |
1743 | | * Find the part of the source that needs to be decomposed, |
1744 | | * up to the next safe boundary. |
1745 | | */ |
1746 | 0 | src=findNextFCDBoundary(src, limit); |
1747 | | /* |
1748 | | * The source text does not fulfill the conditions for FCD. |
1749 | | * Decompose and reorder a limited piece of the text. |
1750 | | */ |
1751 | 0 | if(!decomposeShort(prevBoundary, src, *buffer, errorCode)) { |
1752 | 0 | break; |
1753 | 0 | } |
1754 | 0 | prevBoundary=src; |
1755 | 0 | prevFCD16=0; |
1756 | 0 | } |
1757 | 0 | } |
1758 | 0 | return src; |
1759 | 0 | } |
1760 | | |
1761 | | void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit, |
1762 | | UBool doMakeFCD, |
1763 | | UnicodeString &safeMiddle, |
1764 | | ReorderingBuffer &buffer, |
1765 | 0 | UErrorCode &errorCode) const { |
1766 | 0 | if(!buffer.isEmpty()) { |
1767 | 0 | const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit); |
1768 | 0 | if(src!=firstBoundaryInSrc) { |
1769 | 0 | const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(), |
1770 | 0 | buffer.getLimit()); |
1771 | 0 | int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest); |
1772 | 0 | UnicodeString middle(lastBoundaryInDest, destSuffixLength); |
1773 | 0 | buffer.removeSuffix(destSuffixLength); |
1774 | 0 | safeMiddle=middle; |
1775 | 0 | middle.append(src, (int32_t)(firstBoundaryInSrc-src)); |
1776 | 0 | const UChar *middleStart=middle.getBuffer(); |
1777 | 0 | makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode); |
1778 | 0 | if(U_FAILURE(errorCode)) { |
1779 | 0 | return; |
1780 | 0 | } |
1781 | 0 | src=firstBoundaryInSrc; |
1782 | 0 | } |
1783 | 0 | } |
1784 | 0 | if(doMakeFCD) { |
1785 | 0 | makeFCD(src, limit, &buffer, errorCode); |
1786 | 0 | } else { |
1787 | 0 | if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
1788 | 0 | limit=u_strchr(src, 0); |
1789 | 0 | } |
1790 | 0 | buffer.appendZeroCC(src, limit, errorCode); |
1791 | 0 | } |
1792 | 0 | } |
1793 | | |
1794 | 0 | const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const { |
1795 | 0 | while(start<p && previousFCD16(start, p)>0xff) {} |
1796 | 0 | return p; |
1797 | 0 | } |
1798 | | |
1799 | 0 | const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const { |
1800 | 0 | while(p<limit) { |
1801 | 0 | const UChar *codePointStart=p; |
1802 | 0 | if(nextFCD16(p, limit)<=0xff) { |
1803 | 0 | return codePointStart; |
1804 | 0 | } |
1805 | 0 | } |
1806 | 0 | return p; |
1807 | 0 | } |
1808 | | |
1809 | | // CanonicalIterator data -------------------------------------------------- *** |
1810 | | |
1811 | | CanonIterData::CanonIterData(UErrorCode &errorCode) : |
1812 | | trie(utrie2_open(0, 0, &errorCode)), |
1813 | 0 | canonStartSets(uprv_deleteUObject, NULL, errorCode) {} |
1814 | | |
1815 | 0 | CanonIterData::~CanonIterData() { |
1816 | 0 | utrie2_close(trie); |
1817 | 0 | } |
1818 | | |
1819 | 0 | void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) { |
1820 | 0 | uint32_t canonValue=utrie2_get32(trie, decompLead); |
1821 | 0 | if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) { |
1822 | | // origin is the first character whose decomposition starts with |
1823 | | // the character for which we are setting the value. |
1824 | 0 | utrie2_set32(trie, decompLead, canonValue|origin, &errorCode); |
1825 | 0 | } else { |
1826 | | // origin is not the first character, or it is U+0000. |
1827 | 0 | UnicodeSet *set; |
1828 | 0 | if((canonValue&CANON_HAS_SET)==0) { |
1829 | 0 | set=new UnicodeSet; |
1830 | 0 | if(set==NULL) { |
1831 | 0 | errorCode=U_MEMORY_ALLOCATION_ERROR; |
1832 | 0 | return; |
1833 | 0 | } |
1834 | 0 | UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK); |
1835 | 0 | canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size(); |
1836 | 0 | utrie2_set32(trie, decompLead, canonValue, &errorCode); |
1837 | 0 | canonStartSets.addElement(set, errorCode); |
1838 | 0 | if(firstOrigin!=0) { |
1839 | 0 | set->add(firstOrigin); |
1840 | 0 | } |
1841 | 0 | } else { |
1842 | 0 | set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)]; |
1843 | 0 | } |
1844 | 0 | set->add(origin); |
1845 | 0 | } |
1846 | 0 | } |
1847 | | |
1848 | | U_CDECL_BEGIN |
1849 | | |
1850 | | // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters. |
1851 | | // context: the Normalizer2Impl |
1852 | | static UBool U_CALLCONV |
1853 | 0 | enumCIDRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) { |
1854 | 0 | UErrorCode errorCode = U_ZERO_ERROR; |
1855 | 0 | if (value != 0) { |
1856 | 0 | Normalizer2Impl *impl = (Normalizer2Impl *)context; |
1857 | 0 | impl->makeCanonIterDataFromNorm16( |
1858 | 0 | start, end, (uint16_t)value, *impl->fCanonIterData, errorCode); |
1859 | 0 | } |
1860 | 0 | return U_SUCCESS(errorCode); |
1861 | 0 | } |
1862 | | |
1863 | | |
1864 | | |
1865 | | // UInitOnce instantiation function for CanonIterData |
1866 | | |
1867 | | static void U_CALLCONV |
1868 | 0 | initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) { |
1869 | 0 | U_ASSERT(impl->fCanonIterData == NULL); |
1870 | 0 | impl->fCanonIterData = new CanonIterData(errorCode); |
1871 | 0 | if (impl->fCanonIterData == NULL) { |
1872 | 0 | errorCode=U_MEMORY_ALLOCATION_ERROR; |
1873 | 0 | } |
1874 | 0 | if (U_SUCCESS(errorCode)) { |
1875 | 0 | utrie2_enum(impl->getNormTrie(), NULL, enumCIDRangeHandler, impl); |
1876 | 0 | utrie2_freeze(impl->fCanonIterData->trie, UTRIE2_32_VALUE_BITS, &errorCode); |
1877 | 0 | } |
1878 | 0 | if (U_FAILURE(errorCode)) { |
1879 | 0 | delete impl->fCanonIterData; |
1880 | 0 | impl->fCanonIterData = NULL; |
1881 | 0 | } |
1882 | 0 | } |
1883 | | |
1884 | | U_CDECL_END |
1885 | | |
1886 | | void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, uint16_t norm16, |
1887 | | CanonIterData &newData, |
1888 | 0 | UErrorCode &errorCode) const { |
1889 | 0 | if(norm16==0 || (minYesNo<=norm16 && norm16<minNoNo)) { |
1890 | | // Inert, or 2-way mapping (including Hangul syllable). |
1891 | | // We do not write a canonStartSet for any yesNo character. |
1892 | | // Composites from 2-way mappings are added at runtime from the |
1893 | | // starter's compositions list, and the other characters in |
1894 | | // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are |
1895 | | // "maybe" characters. |
1896 | 0 | return; |
1897 | 0 | } |
1898 | 0 | for(UChar32 c=start; c<=end; ++c) { |
1899 | 0 | uint32_t oldValue=utrie2_get32(newData.trie, c); |
1900 | 0 | uint32_t newValue=oldValue; |
1901 | 0 | if(norm16>=minMaybeYes) { |
1902 | | // not a segment starter if it occurs in a decomposition or has cc!=0 |
1903 | 0 | newValue|=CANON_NOT_SEGMENT_STARTER; |
1904 | 0 | if(norm16<MIN_NORMAL_MAYBE_YES) { |
1905 | 0 | newValue|=CANON_HAS_COMPOSITIONS; |
1906 | 0 | } |
1907 | 0 | } else if(norm16<minYesNo) { |
1908 | 0 | newValue|=CANON_HAS_COMPOSITIONS; |
1909 | 0 | } else { |
1910 | | // c has a one-way decomposition |
1911 | 0 | UChar32 c2=c; |
1912 | 0 | uint16_t norm16_2=norm16; |
1913 | 0 | while(limitNoNo<=norm16_2 && norm16_2<minMaybeYes) { |
1914 | 0 | c2=mapAlgorithmic(c2, norm16_2); |
1915 | 0 | norm16_2=getNorm16(c2); |
1916 | 0 | } |
1917 | 0 | if(minYesNo<=norm16_2 && norm16_2<limitNoNo) { |
1918 | | // c decomposes, get everything from the variable-length extra data |
1919 | 0 | const uint16_t *mapping=getMapping(norm16_2); |
1920 | 0 | uint16_t firstUnit=*mapping; |
1921 | 0 | int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
1922 | 0 | if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) { |
1923 | 0 | if(c==c2 && (*(mapping-1)&0xff)!=0) { |
1924 | 0 | newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0 |
1925 | 0 | } |
1926 | 0 | } |
1927 | | // Skip empty mappings (no characters in the decomposition). |
1928 | 0 | if(length!=0) { |
1929 | 0 | ++mapping; // skip over the firstUnit |
1930 | | // add c to first code point's start set |
1931 | 0 | int32_t i=0; |
1932 | 0 | U16_NEXT_UNSAFE(mapping, i, c2); |
1933 | 0 | newData.addToStartSet(c, c2, errorCode); |
1934 | | // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a |
1935 | | // one-way mapping. A 2-way mapping is possible here after |
1936 | | // intermediate algorithmic mapping. |
1937 | 0 | if(norm16_2>=minNoNo) { |
1938 | 0 | while(i<length) { |
1939 | 0 | U16_NEXT_UNSAFE(mapping, i, c2); |
1940 | 0 | uint32_t c2Value=utrie2_get32(newData.trie, c2); |
1941 | 0 | if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) { |
1942 | 0 | utrie2_set32(newData.trie, c2, c2Value|CANON_NOT_SEGMENT_STARTER, |
1943 | 0 | &errorCode); |
1944 | 0 | } |
1945 | 0 | } |
1946 | 0 | } |
1947 | 0 | } |
1948 | 0 | } else { |
1949 | | // c decomposed to c2 algorithmically; c has cc==0 |
1950 | 0 | newData.addToStartSet(c, c2, errorCode); |
1951 | 0 | } |
1952 | 0 | } |
1953 | 0 | if(newValue!=oldValue) { |
1954 | 0 | utrie2_set32(newData.trie, c, newValue, &errorCode); |
1955 | 0 | } |
1956 | 0 | } |
1957 | 0 | } |
1958 | | |
1959 | 0 | UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const { |
1960 | | // Logically const: Synchronized instantiation. |
1961 | 0 | Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this); |
1962 | 0 | umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode); |
1963 | 0 | return U_SUCCESS(errorCode); |
1964 | 0 | } |
1965 | | |
1966 | 0 | int32_t Normalizer2Impl::getCanonValue(UChar32 c) const { |
1967 | 0 | return (int32_t)utrie2_get32(fCanonIterData->trie, c); |
1968 | 0 | } |
1969 | | |
1970 | 0 | const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const { |
1971 | 0 | return *(const UnicodeSet *)fCanonIterData->canonStartSets[n]; |
1972 | 0 | } |
1973 | | |
1974 | 0 | UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const { |
1975 | 0 | return getCanonValue(c)>=0; |
1976 | 0 | } |
1977 | | |
1978 | 0 | UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const { |
1979 | 0 | int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER; |
1980 | 0 | if(canonValue==0) { |
1981 | 0 | return FALSE; |
1982 | 0 | } |
1983 | 0 | set.clear(); |
1984 | 0 | int32_t value=canonValue&CANON_VALUE_MASK; |
1985 | 0 | if((canonValue&CANON_HAS_SET)!=0) { |
1986 | 0 | set.addAll(getCanonStartSet(value)); |
1987 | 0 | } else if(value!=0) { |
1988 | 0 | set.add(value); |
1989 | 0 | } |
1990 | 0 | if((canonValue&CANON_HAS_COMPOSITIONS)!=0) { |
1991 | 0 | uint16_t norm16=getNorm16(c); |
1992 | 0 | if(norm16==JAMO_L) { |
1993 | 0 | UChar32 syllable= |
1994 | 0 | (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT); |
1995 | 0 | set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1); |
1996 | 0 | } else { |
1997 | 0 | addComposites(getCompositionsList(norm16), set); |
1998 | 0 | } |
1999 | 0 | } |
2000 | 0 | return TRUE; |
2001 | 0 | } |
2002 | | |
2003 | | U_NAMESPACE_END |
2004 | | |
2005 | | // Normalizer2 data swapping ----------------------------------------------- *** |
2006 | | |
2007 | | U_NAMESPACE_USE |
2008 | | |
2009 | | U_CAPI int32_t U_EXPORT2 |
2010 | | unorm2_swap(const UDataSwapper *ds, |
2011 | | const void *inData, int32_t length, void *outData, |
2012 | 0 | UErrorCode *pErrorCode) { |
2013 | 0 | const UDataInfo *pInfo; |
2014 | 0 | int32_t headerSize; |
2015 | |
|
2016 | 0 | const uint8_t *inBytes; |
2017 | 0 | uint8_t *outBytes; |
2018 | |
|
2019 | 0 | const int32_t *inIndexes; |
2020 | 0 | int32_t indexes[Normalizer2Impl::IX_MIN_MAYBE_YES+1]; |
2021 | |
|
2022 | 0 | int32_t i, offset, nextOffset, size; |
2023 | | |
2024 | | /* udata_swapDataHeader checks the arguments */ |
2025 | 0 | headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode); |
2026 | 0 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
2027 | 0 | return 0; |
2028 | 0 | } |
2029 | | |
2030 | | /* check data format and format version */ |
2031 | 0 | pInfo=(const UDataInfo *)((const char *)inData+4); |
2032 | 0 | if(!( |
2033 | 0 | pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ |
2034 | 0 | pInfo->dataFormat[1]==0x72 && |
2035 | 0 | pInfo->dataFormat[2]==0x6d && |
2036 | 0 | pInfo->dataFormat[3]==0x32 && |
2037 | 0 | (pInfo->formatVersion[0]==1 || pInfo->formatVersion[0]==2) |
2038 | 0 | )) { |
2039 | 0 | udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n", |
2040 | 0 | pInfo->dataFormat[0], pInfo->dataFormat[1], |
2041 | 0 | pInfo->dataFormat[2], pInfo->dataFormat[3], |
2042 | 0 | pInfo->formatVersion[0]); |
2043 | 0 | *pErrorCode=U_UNSUPPORTED_ERROR; |
2044 | 0 | return 0; |
2045 | 0 | } |
2046 | | |
2047 | 0 | inBytes=(const uint8_t *)inData+headerSize; |
2048 | 0 | outBytes=(uint8_t *)outData+headerSize; |
2049 | |
|
2050 | 0 | inIndexes=(const int32_t *)inBytes; |
2051 | |
|
2052 | 0 | if(length>=0) { |
2053 | 0 | length-=headerSize; |
2054 | 0 | if(length<(int32_t)sizeof(indexes)) { |
2055 | 0 | udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n", |
2056 | 0 | length); |
2057 | 0 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
2058 | 0 | return 0; |
2059 | 0 | } |
2060 | 0 | } |
2061 | | |
2062 | | /* read the first few indexes */ |
2063 | 0 | for(i=0; i<=Normalizer2Impl::IX_MIN_MAYBE_YES; ++i) { |
2064 | 0 | indexes[i]=udata_readInt32(ds, inIndexes[i]); |
2065 | 0 | } |
2066 | | |
2067 | | /* get the total length of the data */ |
2068 | 0 | size=indexes[Normalizer2Impl::IX_TOTAL_SIZE]; |
2069 | |
|
2070 | 0 | if(length>=0) { |
2071 | 0 | if(length<size) { |
2072 | 0 | udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n", |
2073 | 0 | length); |
2074 | 0 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
2075 | 0 | return 0; |
2076 | 0 | } |
2077 | | |
2078 | | /* copy the data for inaccessible bytes */ |
2079 | 0 | if(inBytes!=outBytes) { |
2080 | 0 | uprv_memcpy(outBytes, inBytes, size); |
2081 | 0 | } |
2082 | |
|
2083 | 0 | offset=0; |
2084 | | |
2085 | | /* swap the int32_t indexes[] */ |
2086 | 0 | nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET]; |
2087 | 0 | ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode); |
2088 | 0 | offset=nextOffset; |
2089 | | |
2090 | | /* swap the UTrie2 */ |
2091 | 0 | nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET]; |
2092 | 0 | utrie2_swap(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); |
2093 | 0 | offset=nextOffset; |
2094 | | |
2095 | | /* swap the uint16_t extraData[] */ |
2096 | 0 | nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET]; |
2097 | 0 | ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); |
2098 | 0 | offset=nextOffset; |
2099 | | |
2100 | | /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */ |
2101 | 0 | nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1]; |
2102 | 0 | offset=nextOffset; |
2103 | |
|
2104 | 0 | U_ASSERT(offset==size); |
2105 | 0 | } |
2106 | | |
2107 | 0 | return headerSize+size; |
2108 | 0 | } |
2109 | | |
2110 | | #endif // !UCONFIG_NO_NORMALIZATION |