/src/icu/source/common/utrie2_builder.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ****************************************************************************** |
5 | | * |
6 | | * Copyright (C) 2001-2014, International Business Machines |
7 | | * Corporation and others. All Rights Reserved. |
8 | | * |
9 | | ****************************************************************************** |
10 | | * file name: utrie2_builder.cpp |
11 | | * encoding: UTF-8 |
12 | | * tab size: 8 (not used) |
13 | | * indentation:4 |
14 | | * |
15 | | * created on: 2008sep26 (split off from utrie2.c) |
16 | | * created by: Markus W. Scherer |
17 | | * |
18 | | * This is a common implementation of a Unicode trie. |
19 | | * It is a kind of compressed, serializable table of 16- or 32-bit values associated with |
20 | | * Unicode code points (0..0x10ffff). |
21 | | * This is the second common version of a Unicode trie (hence the name UTrie2). |
22 | | * See utrie2.h for a comparison. |
23 | | * |
24 | | * This file contains only the builder code. |
25 | | * See utrie2.c for the runtime and enumeration code. |
26 | | */ |
27 | | #ifdef UTRIE2_DEBUG |
28 | | # include <stdio.h> |
29 | | #endif |
30 | | |
31 | | #include "unicode/utypes.h" |
32 | | #include "cmemory.h" |
33 | | #include "utrie2.h" |
34 | | #include "utrie2_impl.h" |
35 | | |
36 | | #include "utrie.h" /* for utrie2_fromUTrie() and utrie_swap() */ |
37 | | |
38 | | /* Implementation notes ----------------------------------------------------- */ |
39 | | |
40 | | /* |
41 | | * The UTRIE2_SHIFT_1, UTRIE2_SHIFT_2, UTRIE2_INDEX_SHIFT and other values |
42 | | * have been chosen to minimize trie sizes overall. |
43 | | * Most of the code is flexible enough to work with a range of values, |
44 | | * within certain limits. |
45 | | * |
46 | | * Exception: Support for separate values for lead surrogate code _units_ |
47 | | * vs. code _points_ was added after the constants were fixed, |
48 | | * and has not been tested nor particularly designed for different constant values. |
49 | | * (Especially the utrie2_enum() code that jumps to the special LSCP index-2 |
50 | | * part and back.) |
51 | | * |
52 | | * Requires UTRIE2_SHIFT_2<=6. Otherwise 0xc0 which is the top of the ASCII-linear data |
53 | | * including the bad-UTF-8-data block is not a multiple of UTRIE2_DATA_BLOCK_LENGTH |
54 | | * and map[block>>UTRIE2_SHIFT_2] (used in reference counting and compaction |
55 | | * remapping) stops working. |
56 | | * |
57 | | * Requires UTRIE2_SHIFT_1>=10 because utrie2_enumForLeadSurrogate() |
58 | | * assumes that a single index-2 block is used for 0x400 code points |
59 | | * corresponding to one lead surrogate. |
60 | | * |
61 | | * Requires UTRIE2_SHIFT_1<=16. Otherwise one single index-2 block contains |
62 | | * more than one Unicode plane, and the split of the index-2 table into a BMP |
63 | | * part and a supplementary part, with a gap in between, would not work. |
64 | | * |
65 | | * Requires UTRIE2_INDEX_SHIFT>=1 not because of the code but because |
66 | | * there is data with more than 64k distinct values, |
67 | | * for example for Unihan collation with a separate collation weight per |
68 | | * Han character. |
69 | | */ |
70 | | |
71 | | /* Building a trie ----------------------------------------------------------*/ |
72 | | |
73 | | enum { |
74 | | /** The null index-2 block, following the gap in the index-2 table. */ |
75 | | UNEWTRIE2_INDEX_2_NULL_OFFSET=UNEWTRIE2_INDEX_GAP_OFFSET+UNEWTRIE2_INDEX_GAP_LENGTH, |
76 | | |
77 | | /** The start of allocated index-2 blocks. */ |
78 | | UNEWTRIE2_INDEX_2_START_OFFSET=UNEWTRIE2_INDEX_2_NULL_OFFSET+UTRIE2_INDEX_2_BLOCK_LENGTH, |
79 | | |
80 | | /** |
81 | | * The null data block. |
82 | | * Length 64=0x40 even if UTRIE2_DATA_BLOCK_LENGTH is smaller, |
83 | | * to work with 6-bit trail bytes from 2-byte UTF-8. |
84 | | */ |
85 | | UNEWTRIE2_DATA_NULL_OFFSET=UTRIE2_DATA_START_OFFSET, |
86 | | |
87 | | /** The start of allocated data blocks. */ |
88 | | UNEWTRIE2_DATA_START_OFFSET=UNEWTRIE2_DATA_NULL_OFFSET+0x40, |
89 | | |
90 | | /** |
91 | | * The start of data blocks for U+0800 and above. |
92 | | * Below, compaction uses a block length of 64 for 2-byte UTF-8. |
93 | | * From here on, compaction uses UTRIE2_DATA_BLOCK_LENGTH. |
94 | | * Data values for 0x780 code points beyond ASCII. |
95 | | */ |
96 | | UNEWTRIE2_DATA_0800_OFFSET=UNEWTRIE2_DATA_START_OFFSET+0x780 |
97 | | }; |
98 | | |
99 | | /* Start with allocation of 16k data entries. */ |
100 | 0 | #define UNEWTRIE2_INITIAL_DATA_LENGTH ((int32_t)1<<14) |
101 | | |
102 | | /* Grow about 8x each time. */ |
103 | 0 | #define UNEWTRIE2_MEDIUM_DATA_LENGTH ((int32_t)1<<17) |
104 | | |
105 | | static int32_t |
106 | | allocIndex2Block(UNewTrie2 *trie); |
107 | | |
108 | | U_CAPI UTrie2 * U_EXPORT2 |
109 | 0 | utrie2_open(uint32_t initialValue, uint32_t errorValue, UErrorCode *pErrorCode) { |
110 | 0 | UTrie2 *trie; |
111 | 0 | UNewTrie2 *newTrie; |
112 | 0 | uint32_t *data; |
113 | 0 | int32_t i, j; |
114 | |
|
115 | 0 | if(U_FAILURE(*pErrorCode)) { |
116 | 0 | return NULL; |
117 | 0 | } |
118 | | |
119 | 0 | trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2)); |
120 | 0 | newTrie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2)); |
121 | 0 | data=(uint32_t *)uprv_malloc(UNEWTRIE2_INITIAL_DATA_LENGTH*4); |
122 | 0 | if(trie==NULL || newTrie==NULL || data==NULL) { |
123 | 0 | uprv_free(trie); |
124 | 0 | uprv_free(newTrie); |
125 | 0 | uprv_free(data); |
126 | 0 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
127 | 0 | return 0; |
128 | 0 | } |
129 | | |
130 | 0 | uprv_memset(trie, 0, sizeof(UTrie2)); |
131 | 0 | trie->initialValue=initialValue; |
132 | 0 | trie->errorValue=errorValue; |
133 | 0 | trie->highStart=0x110000; |
134 | 0 | trie->newTrie=newTrie; |
135 | |
|
136 | 0 | newTrie->data=data; |
137 | 0 | newTrie->dataCapacity=UNEWTRIE2_INITIAL_DATA_LENGTH; |
138 | 0 | newTrie->initialValue=initialValue; |
139 | 0 | newTrie->errorValue=errorValue; |
140 | 0 | newTrie->highStart=0x110000; |
141 | 0 | newTrie->firstFreeBlock=0; /* no free block in the list */ |
142 | 0 | newTrie->isCompacted=FALSE; |
143 | | |
144 | | /* |
145 | | * preallocate and reset |
146 | | * - ASCII |
147 | | * - the bad-UTF-8-data block |
148 | | * - the null data block |
149 | | */ |
150 | 0 | for(i=0; i<0x80; ++i) { |
151 | 0 | newTrie->data[i]=initialValue; |
152 | 0 | } |
153 | 0 | for(; i<0xc0; ++i) { |
154 | 0 | newTrie->data[i]=errorValue; |
155 | 0 | } |
156 | 0 | for(i=UNEWTRIE2_DATA_NULL_OFFSET; i<UNEWTRIE2_DATA_START_OFFSET; ++i) { |
157 | 0 | newTrie->data[i]=initialValue; |
158 | 0 | } |
159 | 0 | newTrie->dataNullOffset=UNEWTRIE2_DATA_NULL_OFFSET; |
160 | 0 | newTrie->dataLength=UNEWTRIE2_DATA_START_OFFSET; |
161 | | |
162 | | /* set the index-2 indexes for the 2=0x80>>UTRIE2_SHIFT_2 ASCII data blocks */ |
163 | 0 | for(i=0, j=0; j<0x80; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { |
164 | 0 | newTrie->index2[i]=j; |
165 | 0 | newTrie->map[i]=1; |
166 | 0 | } |
167 | | /* reference counts for the bad-UTF-8-data block */ |
168 | 0 | for(; j<0xc0; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { |
169 | 0 | newTrie->map[i]=0; |
170 | 0 | } |
171 | | /* |
172 | | * Reference counts for the null data block: all blocks except for the ASCII blocks. |
173 | | * Plus 1 so that we don't drop this block during compaction. |
174 | | * Plus as many as needed for lead surrogate code points. |
175 | | */ |
176 | | /* i==newTrie->dataNullOffset */ |
177 | 0 | newTrie->map[i++]= |
178 | 0 | (0x110000>>UTRIE2_SHIFT_2)- |
179 | 0 | (0x80>>UTRIE2_SHIFT_2)+ |
180 | 0 | 1+ |
181 | 0 | UTRIE2_LSCP_INDEX_2_LENGTH; |
182 | 0 | j+=UTRIE2_DATA_BLOCK_LENGTH; |
183 | 0 | for(; j<UNEWTRIE2_DATA_START_OFFSET; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { |
184 | 0 | newTrie->map[i]=0; |
185 | 0 | } |
186 | | |
187 | | /* |
188 | | * set the remaining indexes in the BMP index-2 block |
189 | | * to the null data block |
190 | | */ |
191 | 0 | for(i=0x80>>UTRIE2_SHIFT_2; i<UTRIE2_INDEX_2_BMP_LENGTH; ++i) { |
192 | 0 | newTrie->index2[i]=UNEWTRIE2_DATA_NULL_OFFSET; |
193 | 0 | } |
194 | | |
195 | | /* |
196 | | * Fill the index gap with impossible values so that compaction |
197 | | * does not overlap other index-2 blocks with the gap. |
198 | | */ |
199 | 0 | for(i=0; i<UNEWTRIE2_INDEX_GAP_LENGTH; ++i) { |
200 | 0 | newTrie->index2[UNEWTRIE2_INDEX_GAP_OFFSET+i]=-1; |
201 | 0 | } |
202 | | |
203 | | /* set the indexes in the null index-2 block */ |
204 | 0 | for(i=0; i<UTRIE2_INDEX_2_BLOCK_LENGTH; ++i) { |
205 | 0 | newTrie->index2[UNEWTRIE2_INDEX_2_NULL_OFFSET+i]=UNEWTRIE2_DATA_NULL_OFFSET; |
206 | 0 | } |
207 | 0 | newTrie->index2NullOffset=UNEWTRIE2_INDEX_2_NULL_OFFSET; |
208 | 0 | newTrie->index2Length=UNEWTRIE2_INDEX_2_START_OFFSET; |
209 | | |
210 | | /* set the index-1 indexes for the linear index-2 block */ |
211 | 0 | for(i=0, j=0; |
212 | 0 | i<UTRIE2_OMITTED_BMP_INDEX_1_LENGTH; |
213 | 0 | ++i, j+=UTRIE2_INDEX_2_BLOCK_LENGTH |
214 | 0 | ) { |
215 | 0 | newTrie->index1[i]=j; |
216 | 0 | } |
217 | | |
218 | | /* set the remaining index-1 indexes to the null index-2 block */ |
219 | 0 | for(; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) { |
220 | 0 | newTrie->index1[i]=UNEWTRIE2_INDEX_2_NULL_OFFSET; |
221 | 0 | } |
222 | | |
223 | | /* |
224 | | * Preallocate and reset data for U+0080..U+07ff, |
225 | | * for 2-byte UTF-8 which will be compacted in 64-blocks |
226 | | * even if UTRIE2_DATA_BLOCK_LENGTH is smaller. |
227 | | */ |
228 | 0 | for(i=0x80; i<0x800; i+=UTRIE2_DATA_BLOCK_LENGTH) { |
229 | 0 | utrie2_set32(trie, i, initialValue, pErrorCode); |
230 | 0 | } |
231 | |
|
232 | 0 | return trie; |
233 | 0 | } |
234 | | |
235 | | static UNewTrie2 * |
236 | 0 | cloneBuilder(const UNewTrie2 *other) { |
237 | 0 | UNewTrie2 *trie; |
238 | |
|
239 | 0 | trie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2)); |
240 | 0 | if(trie==NULL) { |
241 | 0 | return NULL; |
242 | 0 | } |
243 | | |
244 | 0 | trie->data=(uint32_t *)uprv_malloc(other->dataCapacity*4); |
245 | 0 | if(trie->data==NULL) { |
246 | 0 | uprv_free(trie); |
247 | 0 | return NULL; |
248 | 0 | } |
249 | 0 | trie->dataCapacity=other->dataCapacity; |
250 | | |
251 | | /* clone data */ |
252 | 0 | uprv_memcpy(trie->index1, other->index1, sizeof(trie->index1)); |
253 | 0 | uprv_memcpy(trie->index2, other->index2, (size_t)other->index2Length*4); |
254 | 0 | trie->index2NullOffset=other->index2NullOffset; |
255 | 0 | trie->index2Length=other->index2Length; |
256 | |
|
257 | 0 | uprv_memcpy(trie->data, other->data, (size_t)other->dataLength*4); |
258 | 0 | trie->dataNullOffset=other->dataNullOffset; |
259 | 0 | trie->dataLength=other->dataLength; |
260 | | |
261 | | /* reference counters */ |
262 | 0 | if(other->isCompacted) { |
263 | 0 | trie->firstFreeBlock=0; |
264 | 0 | } else { |
265 | 0 | uprv_memcpy(trie->map, other->map, ((size_t)other->dataLength>>UTRIE2_SHIFT_2)*4); |
266 | 0 | trie->firstFreeBlock=other->firstFreeBlock; |
267 | 0 | } |
268 | |
|
269 | 0 | trie->initialValue=other->initialValue; |
270 | 0 | trie->errorValue=other->errorValue; |
271 | 0 | trie->highStart=other->highStart; |
272 | 0 | trie->isCompacted=other->isCompacted; |
273 | |
|
274 | 0 | return trie; |
275 | 0 | } |
276 | | |
277 | | U_CAPI UTrie2 * U_EXPORT2 |
278 | 0 | utrie2_clone(const UTrie2 *other, UErrorCode *pErrorCode) { |
279 | 0 | UTrie2 *trie; |
280 | |
|
281 | 0 | if(U_FAILURE(*pErrorCode)) { |
282 | 0 | return NULL; |
283 | 0 | } |
284 | 0 | if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) { |
285 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
286 | 0 | return NULL; |
287 | 0 | } |
288 | | |
289 | 0 | trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2)); |
290 | 0 | if(trie==NULL) { |
291 | 0 | return NULL; |
292 | 0 | } |
293 | 0 | uprv_memcpy(trie, other, sizeof(UTrie2)); |
294 | |
|
295 | 0 | if(other->memory!=NULL) { |
296 | 0 | trie->memory=uprv_malloc(other->length); |
297 | 0 | if(trie->memory!=NULL) { |
298 | 0 | trie->isMemoryOwned=TRUE; |
299 | 0 | uprv_memcpy(trie->memory, other->memory, other->length); |
300 | | |
301 | | /* make the clone's pointers point to its own memory */ |
302 | 0 | trie->index=(uint16_t *)trie->memory+(other->index-(uint16_t *)other->memory); |
303 | 0 | if(other->data16!=NULL) { |
304 | 0 | trie->data16=(uint16_t *)trie->memory+(other->data16-(uint16_t *)other->memory); |
305 | 0 | } |
306 | 0 | if(other->data32!=NULL) { |
307 | 0 | trie->data32=(uint32_t *)trie->memory+(other->data32-(uint32_t *)other->memory); |
308 | 0 | } |
309 | 0 | } |
310 | 0 | } else /* other->newTrie!=NULL */ { |
311 | 0 | trie->newTrie=cloneBuilder(other->newTrie); |
312 | 0 | } |
313 | |
|
314 | 0 | if(trie->memory==NULL && trie->newTrie==NULL) { |
315 | 0 | uprv_free(trie); |
316 | 0 | trie=NULL; |
317 | 0 | } |
318 | 0 | return trie; |
319 | 0 | } |
320 | | |
321 | | typedef struct NewTrieAndStatus { |
322 | | UTrie2 *trie; |
323 | | UErrorCode errorCode; |
324 | | UBool exclusiveLimit; /* rather than inclusive range end */ |
325 | | } NewTrieAndStatus; |
326 | | |
327 | | static UBool U_CALLCONV |
328 | 0 | copyEnumRange(const void *context, UChar32 start, UChar32 end, uint32_t value) { |
329 | 0 | NewTrieAndStatus *nt=(NewTrieAndStatus *)context; |
330 | 0 | if(value!=nt->trie->initialValue) { |
331 | 0 | if(nt->exclusiveLimit) { |
332 | 0 | --end; |
333 | 0 | } |
334 | 0 | if(start==end) { |
335 | 0 | utrie2_set32(nt->trie, start, value, &nt->errorCode); |
336 | 0 | } else { |
337 | 0 | utrie2_setRange32(nt->trie, start, end, value, TRUE, &nt->errorCode); |
338 | 0 | } |
339 | 0 | return U_SUCCESS(nt->errorCode); |
340 | 0 | } else { |
341 | 0 | return TRUE; |
342 | 0 | } |
343 | 0 | } |
344 | | |
345 | | #ifdef UTRIE2_DEBUG |
346 | | static void |
347 | | utrie_printLengths(const UTrie *trie) { |
348 | | long indexLength=trie->indexLength; |
349 | | long dataLength=(long)trie->dataLength; |
350 | | long totalLength=(long)sizeof(UTrieHeader)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2); |
351 | | printf("**UTrieLengths** index:%6ld data:%6ld serialized:%6ld\n", |
352 | | indexLength, dataLength, totalLength); |
353 | | } |
354 | | |
355 | | static void |
356 | | utrie2_printLengths(const UTrie2 *trie, const char *which) { |
357 | | long indexLength=trie->indexLength; |
358 | | long dataLength=(long)trie->dataLength; |
359 | | long totalLength=(long)sizeof(UTrie2Header)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2); |
360 | | printf("**UTrie2Lengths(%s)** index:%6ld data:%6ld serialized:%6ld\n", |
361 | | which, indexLength, dataLength, totalLength); |
362 | | } |
363 | | #endif |
364 | | |
365 | | U_CAPI UTrie2 * U_EXPORT2 |
366 | 0 | utrie2_cloneAsThawed(const UTrie2 *other, UErrorCode *pErrorCode) { |
367 | 0 | NewTrieAndStatus context; |
368 | 0 | UChar lead; |
369 | |
|
370 | 0 | if(U_FAILURE(*pErrorCode)) { |
371 | 0 | return NULL; |
372 | 0 | } |
373 | 0 | if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) { |
374 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
375 | 0 | return NULL; |
376 | 0 | } |
377 | 0 | if(other->newTrie!=NULL && !other->newTrie->isCompacted) { |
378 | 0 | return utrie2_clone(other, pErrorCode); /* clone an unfrozen trie */ |
379 | 0 | } |
380 | | |
381 | | /* Clone the frozen trie by enumerating it and building a new one. */ |
382 | 0 | context.trie=utrie2_open(other->initialValue, other->errorValue, pErrorCode); |
383 | 0 | if(U_FAILURE(*pErrorCode)) { |
384 | 0 | return NULL; |
385 | 0 | } |
386 | 0 | context.exclusiveLimit=FALSE; |
387 | 0 | context.errorCode=*pErrorCode; |
388 | 0 | utrie2_enum(other, NULL, copyEnumRange, &context); |
389 | 0 | *pErrorCode=context.errorCode; |
390 | 0 | for(lead=0xd800; lead<0xdc00; ++lead) { |
391 | 0 | uint32_t value; |
392 | 0 | if(other->data32==NULL) { |
393 | 0 | value=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(other, lead); |
394 | 0 | } else { |
395 | 0 | value=UTRIE2_GET32_FROM_U16_SINGLE_LEAD(other, lead); |
396 | 0 | } |
397 | 0 | if(value!=other->initialValue) { |
398 | 0 | utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode); |
399 | 0 | } |
400 | 0 | } |
401 | 0 | if(U_FAILURE(*pErrorCode)) { |
402 | 0 | utrie2_close(context.trie); |
403 | 0 | context.trie=NULL; |
404 | 0 | } |
405 | 0 | return context.trie; |
406 | 0 | } |
407 | | |
408 | | /* Almost the same as utrie2_cloneAsThawed() but copies a UTrie and freezes the clone. */ |
409 | | U_CAPI UTrie2 * U_EXPORT2 |
410 | 0 | utrie2_fromUTrie(const UTrie *trie1, uint32_t errorValue, UErrorCode *pErrorCode) { |
411 | 0 | NewTrieAndStatus context; |
412 | 0 | UChar lead; |
413 | |
|
414 | 0 | if(U_FAILURE(*pErrorCode)) { |
415 | 0 | return NULL; |
416 | 0 | } |
417 | 0 | if(trie1==NULL) { |
418 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
419 | 0 | return NULL; |
420 | 0 | } |
421 | 0 | context.trie=utrie2_open(trie1->initialValue, errorValue, pErrorCode); |
422 | 0 | if(U_FAILURE(*pErrorCode)) { |
423 | 0 | return NULL; |
424 | 0 | } |
425 | 0 | context.exclusiveLimit=TRUE; |
426 | 0 | context.errorCode=*pErrorCode; |
427 | 0 | utrie_enum(trie1, NULL, copyEnumRange, &context); |
428 | 0 | *pErrorCode=context.errorCode; |
429 | 0 | for(lead=0xd800; lead<0xdc00; ++lead) { |
430 | 0 | uint32_t value; |
431 | 0 | if(trie1->data32==NULL) { |
432 | 0 | value=UTRIE_GET16_FROM_LEAD(trie1, lead); |
433 | 0 | } else { |
434 | 0 | value=UTRIE_GET32_FROM_LEAD(trie1, lead); |
435 | 0 | } |
436 | 0 | if(value!=trie1->initialValue) { |
437 | 0 | utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode); |
438 | 0 | } |
439 | 0 | } |
440 | 0 | if(U_SUCCESS(*pErrorCode)) { |
441 | 0 | utrie2_freeze(context.trie, |
442 | 0 | trie1->data32!=NULL ? UTRIE2_32_VALUE_BITS : UTRIE2_16_VALUE_BITS, |
443 | 0 | pErrorCode); |
444 | 0 | } |
445 | | #ifdef UTRIE2_DEBUG |
446 | | if(U_SUCCESS(*pErrorCode)) { |
447 | | utrie_printLengths(trie1); |
448 | | utrie2_printLengths(context.trie, "fromUTrie"); |
449 | | } |
450 | | #endif |
451 | 0 | if(U_FAILURE(*pErrorCode)) { |
452 | 0 | utrie2_close(context.trie); |
453 | 0 | context.trie=NULL; |
454 | 0 | } |
455 | 0 | return context.trie; |
456 | 0 | } |
457 | | |
458 | | static inline UBool |
459 | 0 | isInNullBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { |
460 | 0 | int32_t i2, block; |
461 | |
|
462 | 0 | if(U_IS_LEAD(c) && forLSCP) { |
463 | 0 | i2=(UTRIE2_LSCP_INDEX_2_OFFSET-(0xd800>>UTRIE2_SHIFT_2))+ |
464 | 0 | (c>>UTRIE2_SHIFT_2); |
465 | 0 | } else { |
466 | 0 | i2=trie->index1[c>>UTRIE2_SHIFT_1]+ |
467 | 0 | ((c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK); |
468 | 0 | } |
469 | 0 | block=trie->index2[i2]; |
470 | 0 | return (UBool)(block==trie->dataNullOffset); |
471 | 0 | } |
472 | | |
473 | | static int32_t |
474 | 0 | allocIndex2Block(UNewTrie2 *trie) { |
475 | 0 | int32_t newBlock, newTop; |
476 | |
|
477 | 0 | newBlock=trie->index2Length; |
478 | 0 | newTop=newBlock+UTRIE2_INDEX_2_BLOCK_LENGTH; |
479 | 0 | if(newTop>UPRV_LENGTHOF(trie->index2)) { |
480 | | /* |
481 | | * Should never occur. |
482 | | * Either UTRIE2_MAX_BUILD_TIME_INDEX_LENGTH is incorrect, |
483 | | * or the code writes more values than should be possible. |
484 | | */ |
485 | 0 | return -1; |
486 | 0 | } |
487 | 0 | trie->index2Length=newTop; |
488 | 0 | uprv_memcpy(trie->index2+newBlock, trie->index2+trie->index2NullOffset, UTRIE2_INDEX_2_BLOCK_LENGTH*4); |
489 | 0 | return newBlock; |
490 | 0 | } |
491 | | |
492 | | static int32_t |
493 | 0 | getIndex2Block(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { |
494 | 0 | int32_t i1, i2; |
495 | |
|
496 | 0 | if(U_IS_LEAD(c) && forLSCP) { |
497 | 0 | return UTRIE2_LSCP_INDEX_2_OFFSET; |
498 | 0 | } |
499 | | |
500 | 0 | i1=c>>UTRIE2_SHIFT_1; |
501 | 0 | i2=trie->index1[i1]; |
502 | 0 | if(i2==trie->index2NullOffset) { |
503 | 0 | i2=allocIndex2Block(trie); |
504 | 0 | if(i2<0) { |
505 | 0 | return -1; /* program error */ |
506 | 0 | } |
507 | 0 | trie->index1[i1]=i2; |
508 | 0 | } |
509 | 0 | return i2; |
510 | 0 | } |
511 | | |
512 | | static int32_t |
513 | 0 | allocDataBlock(UNewTrie2 *trie, int32_t copyBlock) { |
514 | 0 | int32_t newBlock, newTop; |
515 | |
|
516 | 0 | if(trie->firstFreeBlock!=0) { |
517 | | /* get the first free block */ |
518 | 0 | newBlock=trie->firstFreeBlock; |
519 | 0 | trie->firstFreeBlock=-trie->map[newBlock>>UTRIE2_SHIFT_2]; |
520 | 0 | } else { |
521 | | /* get a new block from the high end */ |
522 | 0 | newBlock=trie->dataLength; |
523 | 0 | newTop=newBlock+UTRIE2_DATA_BLOCK_LENGTH; |
524 | 0 | if(newTop>trie->dataCapacity) { |
525 | | /* out of memory in the data array */ |
526 | 0 | int32_t capacity; |
527 | 0 | uint32_t *data; |
528 | |
|
529 | 0 | if(trie->dataCapacity<UNEWTRIE2_MEDIUM_DATA_LENGTH) { |
530 | 0 | capacity=UNEWTRIE2_MEDIUM_DATA_LENGTH; |
531 | 0 | } else if(trie->dataCapacity<UNEWTRIE2_MAX_DATA_LENGTH) { |
532 | 0 | capacity=UNEWTRIE2_MAX_DATA_LENGTH; |
533 | 0 | } else { |
534 | | /* |
535 | | * Should never occur. |
536 | | * Either UNEWTRIE2_MAX_DATA_LENGTH is incorrect, |
537 | | * or the code writes more values than should be possible. |
538 | | */ |
539 | 0 | return -1; |
540 | 0 | } |
541 | 0 | data=(uint32_t *)uprv_malloc(capacity*4); |
542 | 0 | if(data==NULL) { |
543 | 0 | return -1; |
544 | 0 | } |
545 | 0 | uprv_memcpy(data, trie->data, (size_t)trie->dataLength*4); |
546 | 0 | uprv_free(trie->data); |
547 | 0 | trie->data=data; |
548 | 0 | trie->dataCapacity=capacity; |
549 | 0 | } |
550 | 0 | trie->dataLength=newTop; |
551 | 0 | } |
552 | 0 | uprv_memcpy(trie->data+newBlock, trie->data+copyBlock, UTRIE2_DATA_BLOCK_LENGTH*4); |
553 | 0 | trie->map[newBlock>>UTRIE2_SHIFT_2]=0; |
554 | 0 | return newBlock; |
555 | 0 | } |
556 | | |
557 | | /* call when the block's reference counter reaches 0 */ |
558 | | static void |
559 | 0 | releaseDataBlock(UNewTrie2 *trie, int32_t block) { |
560 | | /* put this block at the front of the free-block chain */ |
561 | 0 | trie->map[block>>UTRIE2_SHIFT_2]=-trie->firstFreeBlock; |
562 | 0 | trie->firstFreeBlock=block; |
563 | 0 | } |
564 | | |
565 | | static inline UBool |
566 | 0 | isWritableBlock(UNewTrie2 *trie, int32_t block) { |
567 | 0 | return (UBool)(block!=trie->dataNullOffset && 1==trie->map[block>>UTRIE2_SHIFT_2]); |
568 | 0 | } |
569 | | |
570 | | static inline void |
571 | 0 | setIndex2Entry(UNewTrie2 *trie, int32_t i2, int32_t block) { |
572 | 0 | int32_t oldBlock; |
573 | 0 | ++trie->map[block>>UTRIE2_SHIFT_2]; /* increment first, in case block==oldBlock! */ |
574 | 0 | oldBlock=trie->index2[i2]; |
575 | 0 | if(0 == --trie->map[oldBlock>>UTRIE2_SHIFT_2]) { |
576 | 0 | releaseDataBlock(trie, oldBlock); |
577 | 0 | } |
578 | 0 | trie->index2[i2]=block; |
579 | 0 | } |
580 | | |
581 | | /** |
582 | | * No error checking for illegal arguments. |
583 | | * |
584 | | * @return -1 if no new data block available (out of memory in data array) |
585 | | * @internal |
586 | | */ |
587 | | static int32_t |
588 | 0 | getDataBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { |
589 | 0 | int32_t i2, oldBlock, newBlock; |
590 | |
|
591 | 0 | i2=getIndex2Block(trie, c, forLSCP); |
592 | 0 | if(i2<0) { |
593 | 0 | return -1; /* program error */ |
594 | 0 | } |
595 | | |
596 | 0 | i2+=(c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK; |
597 | 0 | oldBlock=trie->index2[i2]; |
598 | 0 | if(isWritableBlock(trie, oldBlock)) { |
599 | 0 | return oldBlock; |
600 | 0 | } |
601 | | |
602 | | /* allocate a new data block */ |
603 | 0 | newBlock=allocDataBlock(trie, oldBlock); |
604 | 0 | if(newBlock<0) { |
605 | | /* out of memory in the data array */ |
606 | 0 | return -1; |
607 | 0 | } |
608 | 0 | setIndex2Entry(trie, i2, newBlock); |
609 | 0 | return newBlock; |
610 | 0 | } |
611 | | |
612 | | /** |
613 | | * @return TRUE if the value was successfully set |
614 | | */ |
615 | | static void |
616 | | set32(UNewTrie2 *trie, |
617 | | UChar32 c, UBool forLSCP, uint32_t value, |
618 | 0 | UErrorCode *pErrorCode) { |
619 | 0 | int32_t block; |
620 | |
|
621 | 0 | if(trie==NULL || trie->isCompacted) { |
622 | 0 | *pErrorCode=U_NO_WRITE_PERMISSION; |
623 | 0 | return; |
624 | 0 | } |
625 | | |
626 | 0 | block=getDataBlock(trie, c, forLSCP); |
627 | 0 | if(block<0) { |
628 | 0 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
629 | 0 | return; |
630 | 0 | } |
631 | | |
632 | 0 | trie->data[block+(c&UTRIE2_DATA_MASK)]=value; |
633 | 0 | } |
634 | | |
635 | | U_CAPI void U_EXPORT2 |
636 | 0 | utrie2_set32(UTrie2 *trie, UChar32 c, uint32_t value, UErrorCode *pErrorCode) { |
637 | 0 | if(U_FAILURE(*pErrorCode)) { |
638 | 0 | return; |
639 | 0 | } |
640 | 0 | if((uint32_t)c>0x10ffff) { |
641 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
642 | 0 | return; |
643 | 0 | } |
644 | 0 | set32(trie->newTrie, c, TRUE, value, pErrorCode); |
645 | 0 | } |
646 | | |
647 | | U_CAPI void U_EXPORT2 |
648 | | utrie2_set32ForLeadSurrogateCodeUnit(UTrie2 *trie, |
649 | | UChar32 c, uint32_t value, |
650 | 0 | UErrorCode *pErrorCode) { |
651 | 0 | if(U_FAILURE(*pErrorCode)) { |
652 | 0 | return; |
653 | 0 | } |
654 | 0 | if(!U_IS_LEAD(c)) { |
655 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
656 | 0 | return; |
657 | 0 | } |
658 | 0 | set32(trie->newTrie, c, FALSE, value, pErrorCode); |
659 | 0 | } |
660 | | |
661 | | static void |
662 | 0 | writeBlock(uint32_t *block, uint32_t value) { |
663 | 0 | uint32_t *limit=block+UTRIE2_DATA_BLOCK_LENGTH; |
664 | 0 | while(block<limit) { |
665 | 0 | *block++=value; |
666 | 0 | } |
667 | 0 | } |
668 | | |
669 | | /** |
670 | | * initialValue is ignored if overwrite=TRUE |
671 | | * @internal |
672 | | */ |
673 | | static void |
674 | | fillBlock(uint32_t *block, UChar32 start, UChar32 limit, |
675 | 0 | uint32_t value, uint32_t initialValue, UBool overwrite) { |
676 | 0 | uint32_t *pLimit; |
677 | |
|
678 | 0 | pLimit=block+limit; |
679 | 0 | block+=start; |
680 | 0 | if(overwrite) { |
681 | 0 | while(block<pLimit) { |
682 | 0 | *block++=value; |
683 | 0 | } |
684 | 0 | } else { |
685 | 0 | while(block<pLimit) { |
686 | 0 | if(*block==initialValue) { |
687 | 0 | *block=value; |
688 | 0 | } |
689 | 0 | ++block; |
690 | 0 | } |
691 | 0 | } |
692 | 0 | } |
693 | | |
694 | | U_CAPI void U_EXPORT2 |
695 | | utrie2_setRange32(UTrie2 *trie, |
696 | | UChar32 start, UChar32 end, |
697 | | uint32_t value, UBool overwrite, |
698 | 0 | UErrorCode *pErrorCode) { |
699 | | /* |
700 | | * repeat value in [start..end] |
701 | | * mark index values for repeat-data blocks by setting bit 31 of the index values |
702 | | * fill around existing values if any, if(overwrite) |
703 | | */ |
704 | 0 | UNewTrie2 *newTrie; |
705 | 0 | int32_t block, rest, repeatBlock; |
706 | 0 | UChar32 limit; |
707 | |
|
708 | 0 | if(U_FAILURE(*pErrorCode)) { |
709 | 0 | return; |
710 | 0 | } |
711 | 0 | if((uint32_t)start>0x10ffff || (uint32_t)end>0x10ffff || start>end) { |
712 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
713 | 0 | return; |
714 | 0 | } |
715 | 0 | newTrie=trie->newTrie; |
716 | 0 | if(newTrie==NULL || newTrie->isCompacted) { |
717 | 0 | *pErrorCode=U_NO_WRITE_PERMISSION; |
718 | 0 | return; |
719 | 0 | } |
720 | 0 | if(!overwrite && value==newTrie->initialValue) { |
721 | 0 | return; /* nothing to do */ |
722 | 0 | } |
723 | | |
724 | 0 | limit=end+1; |
725 | 0 | if(start&UTRIE2_DATA_MASK) { |
726 | 0 | UChar32 nextStart; |
727 | | |
728 | | /* set partial block at [start..following block boundary[ */ |
729 | 0 | block=getDataBlock(newTrie, start, TRUE); |
730 | 0 | if(block<0) { |
731 | 0 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
732 | 0 | return; |
733 | 0 | } |
734 | | |
735 | 0 | nextStart=(start+UTRIE2_DATA_BLOCK_LENGTH)&~UTRIE2_DATA_MASK; |
736 | 0 | if(nextStart<=limit) { |
737 | 0 | fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, UTRIE2_DATA_BLOCK_LENGTH, |
738 | 0 | value, newTrie->initialValue, overwrite); |
739 | 0 | start=nextStart; |
740 | 0 | } else { |
741 | 0 | fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, limit&UTRIE2_DATA_MASK, |
742 | 0 | value, newTrie->initialValue, overwrite); |
743 | 0 | return; |
744 | 0 | } |
745 | 0 | } |
746 | | |
747 | | /* number of positions in the last, partial block */ |
748 | 0 | rest=limit&UTRIE2_DATA_MASK; |
749 | | |
750 | | /* round down limit to a block boundary */ |
751 | 0 | limit&=~UTRIE2_DATA_MASK; |
752 | | |
753 | | /* iterate over all-value blocks */ |
754 | 0 | if(value==newTrie->initialValue) { |
755 | 0 | repeatBlock=newTrie->dataNullOffset; |
756 | 0 | } else { |
757 | 0 | repeatBlock=-1; |
758 | 0 | } |
759 | |
|
760 | 0 | while(start<limit) { |
761 | 0 | int32_t i2; |
762 | 0 | UBool setRepeatBlock=FALSE; |
763 | |
|
764 | 0 | if(value==newTrie->initialValue && isInNullBlock(newTrie, start, TRUE)) { |
765 | 0 | start+=UTRIE2_DATA_BLOCK_LENGTH; /* nothing to do */ |
766 | 0 | continue; |
767 | 0 | } |
768 | | |
769 | | /* get index value */ |
770 | 0 | i2=getIndex2Block(newTrie, start, TRUE); |
771 | 0 | if(i2<0) { |
772 | 0 | *pErrorCode=U_INTERNAL_PROGRAM_ERROR; |
773 | 0 | return; |
774 | 0 | } |
775 | 0 | i2+=(start>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK; |
776 | 0 | block=newTrie->index2[i2]; |
777 | 0 | if(isWritableBlock(newTrie, block)) { |
778 | | /* already allocated */ |
779 | 0 | if(overwrite && block>=UNEWTRIE2_DATA_0800_OFFSET) { |
780 | | /* |
781 | | * We overwrite all values, and it's not a |
782 | | * protected (ASCII-linear or 2-byte UTF-8) block: |
783 | | * replace with the repeatBlock. |
784 | | */ |
785 | 0 | setRepeatBlock=TRUE; |
786 | 0 | } else { |
787 | | /* !overwrite, or protected block: just write the values into this block */ |
788 | 0 | fillBlock(newTrie->data+block, |
789 | 0 | 0, UTRIE2_DATA_BLOCK_LENGTH, |
790 | 0 | value, newTrie->initialValue, overwrite); |
791 | 0 | } |
792 | 0 | } else if(newTrie->data[block]!=value && (overwrite || block==newTrie->dataNullOffset)) { |
793 | | /* |
794 | | * Set the repeatBlock instead of the null block or previous repeat block: |
795 | | * |
796 | | * If !isWritableBlock() then all entries in the block have the same value |
797 | | * because it's the null block or a range block (the repeatBlock from a previous |
798 | | * call to utrie2_setRange32()). |
799 | | * No other blocks are used multiple times before compacting. |
800 | | * |
801 | | * The null block is the only non-writable block with the initialValue because |
802 | | * of the repeatBlock initialization above. (If value==initialValue, then |
803 | | * the repeatBlock will be the null data block.) |
804 | | * |
805 | | * We set our repeatBlock if the desired value differs from the block's value, |
806 | | * and if we overwrite any data or if the data is all initial values |
807 | | * (which is the same as the block being the null block, see above). |
808 | | */ |
809 | 0 | setRepeatBlock=TRUE; |
810 | 0 | } |
811 | 0 | if(setRepeatBlock) { |
812 | 0 | if(repeatBlock>=0) { |
813 | 0 | setIndex2Entry(newTrie, i2, repeatBlock); |
814 | 0 | } else { |
815 | | /* create and set and fill the repeatBlock */ |
816 | 0 | repeatBlock=getDataBlock(newTrie, start, TRUE); |
817 | 0 | if(repeatBlock<0) { |
818 | 0 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
819 | 0 | return; |
820 | 0 | } |
821 | 0 | writeBlock(newTrie->data+repeatBlock, value); |
822 | 0 | } |
823 | 0 | } |
824 | | |
825 | 0 | start+=UTRIE2_DATA_BLOCK_LENGTH; |
826 | 0 | } |
827 | | |
828 | 0 | if(rest>0) { |
829 | | /* set partial block at [last block boundary..limit[ */ |
830 | 0 | block=getDataBlock(newTrie, start, TRUE); |
831 | 0 | if(block<0) { |
832 | 0 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
833 | 0 | return; |
834 | 0 | } |
835 | | |
836 | 0 | fillBlock(newTrie->data+block, 0, rest, value, newTrie->initialValue, overwrite); |
837 | 0 | } |
838 | | |
839 | 0 | return; |
840 | 0 | } |
841 | | |
842 | | /* compaction --------------------------------------------------------------- */ |
843 | | |
844 | | static inline UBool |
845 | 0 | equal_int32(const int32_t *s, const int32_t *t, int32_t length) { |
846 | 0 | while(length>0 && *s==*t) { |
847 | 0 | ++s; |
848 | 0 | ++t; |
849 | 0 | --length; |
850 | 0 | } |
851 | 0 | return (UBool)(length==0); |
852 | 0 | } |
853 | | |
854 | | static inline UBool |
855 | 0 | equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { |
856 | 0 | while(length>0 && *s==*t) { |
857 | 0 | ++s; |
858 | 0 | ++t; |
859 | 0 | --length; |
860 | 0 | } |
861 | 0 | return (UBool)(length==0); |
862 | 0 | } |
863 | | |
864 | | static int32_t |
865 | 0 | findSameIndex2Block(const int32_t *idx, int32_t index2Length, int32_t otherBlock) { |
866 | 0 | int32_t block; |
867 | | |
868 | | /* ensure that we do not even partially get past index2Length */ |
869 | 0 | index2Length-=UTRIE2_INDEX_2_BLOCK_LENGTH; |
870 | |
|
871 | 0 | for(block=0; block<=index2Length; ++block) { |
872 | 0 | if(equal_int32(idx+block, idx+otherBlock, UTRIE2_INDEX_2_BLOCK_LENGTH)) { |
873 | 0 | return block; |
874 | 0 | } |
875 | 0 | } |
876 | 0 | return -1; |
877 | 0 | } |
878 | | |
879 | | static int32_t |
880 | 0 | findSameDataBlock(const uint32_t *data, int32_t dataLength, int32_t otherBlock, int32_t blockLength) { |
881 | 0 | int32_t block; |
882 | | |
883 | | /* ensure that we do not even partially get past dataLength */ |
884 | 0 | dataLength-=blockLength; |
885 | |
|
886 | 0 | for(block=0; block<=dataLength; block+=UTRIE2_DATA_GRANULARITY) { |
887 | 0 | if(equal_uint32(data+block, data+otherBlock, blockLength)) { |
888 | 0 | return block; |
889 | 0 | } |
890 | 0 | } |
891 | 0 | return -1; |
892 | 0 | } |
893 | | |
894 | | /* |
895 | | * Find the start of the last range in the trie by enumerating backward. |
896 | | * Indexes for supplementary code points higher than this will be omitted. |
897 | | */ |
898 | | static UChar32 |
899 | 0 | findHighStart(UNewTrie2 *trie, uint32_t highValue) { |
900 | 0 | const uint32_t *data32; |
901 | |
|
902 | 0 | uint32_t value, initialValue; |
903 | 0 | UChar32 c, prev; |
904 | 0 | int32_t i1, i2, j, i2Block, prevI2Block, index2NullOffset, block, prevBlock, nullBlock; |
905 | |
|
906 | 0 | data32=trie->data; |
907 | 0 | initialValue=trie->initialValue; |
908 | |
|
909 | 0 | index2NullOffset=trie->index2NullOffset; |
910 | 0 | nullBlock=trie->dataNullOffset; |
911 | | |
912 | | /* set variables for previous range */ |
913 | 0 | if(highValue==initialValue) { |
914 | 0 | prevI2Block=index2NullOffset; |
915 | 0 | prevBlock=nullBlock; |
916 | 0 | } else { |
917 | 0 | prevI2Block=-1; |
918 | 0 | prevBlock=-1; |
919 | 0 | } |
920 | 0 | prev=0x110000; |
921 | | |
922 | | /* enumerate index-2 blocks */ |
923 | 0 | i1=UNEWTRIE2_INDEX_1_LENGTH; |
924 | 0 | c=prev; |
925 | 0 | while(c>0) { |
926 | 0 | i2Block=trie->index1[--i1]; |
927 | 0 | if(i2Block==prevI2Block) { |
928 | | /* the index-2 block is the same as the previous one, and filled with highValue */ |
929 | 0 | c-=UTRIE2_CP_PER_INDEX_1_ENTRY; |
930 | 0 | continue; |
931 | 0 | } |
932 | 0 | prevI2Block=i2Block; |
933 | 0 | if(i2Block==index2NullOffset) { |
934 | | /* this is the null index-2 block */ |
935 | 0 | if(highValue!=initialValue) { |
936 | 0 | return c; |
937 | 0 | } |
938 | 0 | c-=UTRIE2_CP_PER_INDEX_1_ENTRY; |
939 | 0 | } else { |
940 | | /* enumerate data blocks for one index-2 block */ |
941 | 0 | for(i2=UTRIE2_INDEX_2_BLOCK_LENGTH; i2>0;) { |
942 | 0 | block=trie->index2[i2Block+ --i2]; |
943 | 0 | if(block==prevBlock) { |
944 | | /* the block is the same as the previous one, and filled with highValue */ |
945 | 0 | c-=UTRIE2_DATA_BLOCK_LENGTH; |
946 | 0 | continue; |
947 | 0 | } |
948 | 0 | prevBlock=block; |
949 | 0 | if(block==nullBlock) { |
950 | | /* this is the null data block */ |
951 | 0 | if(highValue!=initialValue) { |
952 | 0 | return c; |
953 | 0 | } |
954 | 0 | c-=UTRIE2_DATA_BLOCK_LENGTH; |
955 | 0 | } else { |
956 | 0 | for(j=UTRIE2_DATA_BLOCK_LENGTH; j>0;) { |
957 | 0 | value=data32[block+ --j]; |
958 | 0 | if(value!=highValue) { |
959 | 0 | return c; |
960 | 0 | } |
961 | 0 | --c; |
962 | 0 | } |
963 | 0 | } |
964 | 0 | } |
965 | 0 | } |
966 | 0 | } |
967 | | |
968 | | /* deliver last range */ |
969 | 0 | return 0; |
970 | 0 | } |
971 | | |
972 | | /* |
973 | | * Compact a build-time trie. |
974 | | * |
975 | | * The compaction |
976 | | * - removes blocks that are identical with earlier ones |
977 | | * - overlaps adjacent blocks as much as possible (if overlap==TRUE) |
978 | | * - moves blocks in steps of the data granularity |
979 | | * - moves and overlaps blocks that overlap with multiple values in the overlap region |
980 | | * |
981 | | * It does not |
982 | | * - try to move and overlap blocks that are not already adjacent |
983 | | */ |
984 | | static void |
985 | 0 | compactData(UNewTrie2 *trie) { |
986 | 0 | int32_t start, newStart, movedStart; |
987 | 0 | int32_t blockLength, overlap; |
988 | 0 | int32_t i, mapIndex, blockCount; |
989 | | |
990 | | /* do not compact linear-ASCII data */ |
991 | 0 | newStart=UTRIE2_DATA_START_OFFSET; |
992 | 0 | for(start=0, i=0; start<newStart; start+=UTRIE2_DATA_BLOCK_LENGTH, ++i) { |
993 | 0 | trie->map[i]=start; |
994 | 0 | } |
995 | | |
996 | | /* |
997 | | * Start with a block length of 64 for 2-byte UTF-8, |
998 | | * then switch to UTRIE2_DATA_BLOCK_LENGTH. |
999 | | */ |
1000 | 0 | blockLength=64; |
1001 | 0 | blockCount=blockLength>>UTRIE2_SHIFT_2; |
1002 | 0 | for(start=newStart; start<trie->dataLength;) { |
1003 | | /* |
1004 | | * start: index of first entry of current block |
1005 | | * newStart: index where the current block is to be moved |
1006 | | * (right after current end of already-compacted data) |
1007 | | */ |
1008 | 0 | if(start==UNEWTRIE2_DATA_0800_OFFSET) { |
1009 | 0 | blockLength=UTRIE2_DATA_BLOCK_LENGTH; |
1010 | 0 | blockCount=1; |
1011 | 0 | } |
1012 | | |
1013 | | /* skip blocks that are not used */ |
1014 | 0 | if(trie->map[start>>UTRIE2_SHIFT_2]<=0) { |
1015 | | /* advance start to the next block */ |
1016 | 0 | start+=blockLength; |
1017 | | |
1018 | | /* leave newStart with the previous block! */ |
1019 | 0 | continue; |
1020 | 0 | } |
1021 | | |
1022 | | /* search for an identical block */ |
1023 | 0 | if( (movedStart=findSameDataBlock(trie->data, newStart, start, blockLength)) |
1024 | 0 | >=0 |
1025 | 0 | ) { |
1026 | | /* found an identical block, set the other block's index value for the current block */ |
1027 | 0 | for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { |
1028 | 0 | trie->map[mapIndex++]=movedStart; |
1029 | 0 | movedStart+=UTRIE2_DATA_BLOCK_LENGTH; |
1030 | 0 | } |
1031 | | |
1032 | | /* advance start to the next block */ |
1033 | 0 | start+=blockLength; |
1034 | | |
1035 | | /* leave newStart with the previous block! */ |
1036 | 0 | continue; |
1037 | 0 | } |
1038 | | |
1039 | | /* see if the beginning of this block can be overlapped with the end of the previous block */ |
1040 | | /* look for maximum overlap (modulo granularity) with the previous, adjacent block */ |
1041 | 0 | for(overlap=blockLength-UTRIE2_DATA_GRANULARITY; |
1042 | 0 | overlap>0 && !equal_uint32(trie->data+(newStart-overlap), trie->data+start, overlap); |
1043 | 0 | overlap-=UTRIE2_DATA_GRANULARITY) {} |
1044 | |
|
1045 | 0 | if(overlap>0 || newStart<start) { |
1046 | | /* some overlap, or just move the whole block */ |
1047 | 0 | movedStart=newStart-overlap; |
1048 | 0 | for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { |
1049 | 0 | trie->map[mapIndex++]=movedStart; |
1050 | 0 | movedStart+=UTRIE2_DATA_BLOCK_LENGTH; |
1051 | 0 | } |
1052 | | |
1053 | | /* move the non-overlapping indexes to their new positions */ |
1054 | 0 | start+=overlap; |
1055 | 0 | for(i=blockLength-overlap; i>0; --i) { |
1056 | 0 | trie->data[newStart++]=trie->data[start++]; |
1057 | 0 | } |
1058 | 0 | } else /* no overlap && newStart==start */ { |
1059 | 0 | for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { |
1060 | 0 | trie->map[mapIndex++]=start; |
1061 | 0 | start+=UTRIE2_DATA_BLOCK_LENGTH; |
1062 | 0 | } |
1063 | 0 | newStart=start; |
1064 | 0 | } |
1065 | 0 | } |
1066 | | |
1067 | | /* now adjust the index-2 table */ |
1068 | 0 | for(i=0; i<trie->index2Length; ++i) { |
1069 | 0 | if(i==UNEWTRIE2_INDEX_GAP_OFFSET) { |
1070 | | /* Gap indexes are invalid (-1). Skip over the gap. */ |
1071 | 0 | i+=UNEWTRIE2_INDEX_GAP_LENGTH; |
1072 | 0 | } |
1073 | 0 | trie->index2[i]=trie->map[trie->index2[i]>>UTRIE2_SHIFT_2]; |
1074 | 0 | } |
1075 | 0 | trie->dataNullOffset=trie->map[trie->dataNullOffset>>UTRIE2_SHIFT_2]; |
1076 | | |
1077 | | /* ensure dataLength alignment */ |
1078 | 0 | while((newStart&(UTRIE2_DATA_GRANULARITY-1))!=0) { |
1079 | 0 | trie->data[newStart++]=trie->initialValue; |
1080 | 0 | } |
1081 | |
|
1082 | | #ifdef UTRIE2_DEBUG |
1083 | | /* we saved some space */ |
1084 | | printf("compacting UTrie2: count of 32-bit data words %lu->%lu\n", |
1085 | | (long)trie->dataLength, (long)newStart); |
1086 | | #endif |
1087 | |
|
1088 | 0 | trie->dataLength=newStart; |
1089 | 0 | } |
1090 | | |
1091 | | static void |
1092 | 0 | compactIndex2(UNewTrie2 *trie) { |
1093 | 0 | int32_t i, start, newStart, movedStart, overlap; |
1094 | | |
1095 | | /* do not compact linear-BMP index-2 blocks */ |
1096 | 0 | newStart=UTRIE2_INDEX_2_BMP_LENGTH; |
1097 | 0 | for(start=0, i=0; start<newStart; start+=UTRIE2_INDEX_2_BLOCK_LENGTH, ++i) { |
1098 | 0 | trie->map[i]=start; |
1099 | 0 | } |
1100 | | |
1101 | | /* Reduce the index table gap to what will be needed at runtime. */ |
1102 | 0 | newStart+=UTRIE2_UTF8_2B_INDEX_2_LENGTH+((trie->highStart-0x10000)>>UTRIE2_SHIFT_1); |
1103 | |
|
1104 | 0 | for(start=UNEWTRIE2_INDEX_2_NULL_OFFSET; start<trie->index2Length;) { |
1105 | | /* |
1106 | | * start: index of first entry of current block |
1107 | | * newStart: index where the current block is to be moved |
1108 | | * (right after current end of already-compacted data) |
1109 | | */ |
1110 | | |
1111 | | /* search for an identical block */ |
1112 | 0 | if( (movedStart=findSameIndex2Block(trie->index2, newStart, start)) |
1113 | 0 | >=0 |
1114 | 0 | ) { |
1115 | | /* found an identical block, set the other block's index value for the current block */ |
1116 | 0 | trie->map[start>>UTRIE2_SHIFT_1_2]=movedStart; |
1117 | | |
1118 | | /* advance start to the next block */ |
1119 | 0 | start+=UTRIE2_INDEX_2_BLOCK_LENGTH; |
1120 | | |
1121 | | /* leave newStart with the previous block! */ |
1122 | 0 | continue; |
1123 | 0 | } |
1124 | | |
1125 | | /* see if the beginning of this block can be overlapped with the end of the previous block */ |
1126 | | /* look for maximum overlap with the previous, adjacent block */ |
1127 | 0 | for(overlap=UTRIE2_INDEX_2_BLOCK_LENGTH-1; |
1128 | 0 | overlap>0 && !equal_int32(trie->index2+(newStart-overlap), trie->index2+start, overlap); |
1129 | 0 | --overlap) {} |
1130 | |
|
1131 | 0 | if(overlap>0 || newStart<start) { |
1132 | | /* some overlap, or just move the whole block */ |
1133 | 0 | trie->map[start>>UTRIE2_SHIFT_1_2]=newStart-overlap; |
1134 | | |
1135 | | /* move the non-overlapping indexes to their new positions */ |
1136 | 0 | start+=overlap; |
1137 | 0 | for(i=UTRIE2_INDEX_2_BLOCK_LENGTH-overlap; i>0; --i) { |
1138 | 0 | trie->index2[newStart++]=trie->index2[start++]; |
1139 | 0 | } |
1140 | 0 | } else /* no overlap && newStart==start */ { |
1141 | 0 | trie->map[start>>UTRIE2_SHIFT_1_2]=start; |
1142 | 0 | start+=UTRIE2_INDEX_2_BLOCK_LENGTH; |
1143 | 0 | newStart=start; |
1144 | 0 | } |
1145 | 0 | } |
1146 | | |
1147 | | /* now adjust the index-1 table */ |
1148 | 0 | for(i=0; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) { |
1149 | 0 | trie->index1[i]=trie->map[trie->index1[i]>>UTRIE2_SHIFT_1_2]; |
1150 | 0 | } |
1151 | 0 | trie->index2NullOffset=trie->map[trie->index2NullOffset>>UTRIE2_SHIFT_1_2]; |
1152 | | |
1153 | | /* |
1154 | | * Ensure data table alignment: |
1155 | | * Needs to be granularity-aligned for 16-bit trie |
1156 | | * (so that dataMove will be down-shiftable), |
1157 | | * and 2-aligned for uint32_t data. |
1158 | | */ |
1159 | 0 | while((newStart&((UTRIE2_DATA_GRANULARITY-1)|1))!=0) { |
1160 | | /* Arbitrary value: 0x3fffc not possible for real data. */ |
1161 | 0 | trie->index2[newStart++]=(int32_t)0xffff<<UTRIE2_INDEX_SHIFT; |
1162 | 0 | } |
1163 | |
|
1164 | | #ifdef UTRIE2_DEBUG |
1165 | | /* we saved some space */ |
1166 | | printf("compacting UTrie2: count of 16-bit index-2 words %lu->%lu\n", |
1167 | | (long)trie->index2Length, (long)newStart); |
1168 | | #endif |
1169 | |
|
1170 | 0 | trie->index2Length=newStart; |
1171 | 0 | } |
1172 | | |
1173 | | static void |
1174 | 0 | compactTrie(UTrie2 *trie, UErrorCode *pErrorCode) { |
1175 | 0 | UNewTrie2 *newTrie; |
1176 | 0 | UChar32 highStart, suppHighStart; |
1177 | 0 | uint32_t highValue; |
1178 | |
|
1179 | 0 | newTrie=trie->newTrie; |
1180 | | |
1181 | | /* find highStart and round it up */ |
1182 | 0 | highValue=utrie2_get32(trie, 0x10ffff); |
1183 | 0 | highStart=findHighStart(newTrie, highValue); |
1184 | 0 | highStart=(highStart+(UTRIE2_CP_PER_INDEX_1_ENTRY-1))&~(UTRIE2_CP_PER_INDEX_1_ENTRY-1); |
1185 | 0 | if(highStart==0x110000) { |
1186 | 0 | highValue=trie->errorValue; |
1187 | 0 | } |
1188 | | |
1189 | | /* |
1190 | | * Set trie->highStart only after utrie2_get32(trie, highStart). |
1191 | | * Otherwise utrie2_get32(trie, highStart) would try to read the highValue. |
1192 | | */ |
1193 | 0 | trie->highStart=newTrie->highStart=highStart; |
1194 | |
|
1195 | | #ifdef UTRIE2_DEBUG |
1196 | | printf("UTrie2: highStart U+%04lx highValue 0x%lx initialValue 0x%lx\n", |
1197 | | (long)highStart, (long)highValue, (long)trie->initialValue); |
1198 | | #endif |
1199 | |
|
1200 | 0 | if(highStart<0x110000) { |
1201 | | /* Blank out [highStart..10ffff] to release associated data blocks. */ |
1202 | 0 | suppHighStart= highStart<=0x10000 ? 0x10000 : highStart; |
1203 | 0 | utrie2_setRange32(trie, suppHighStart, 0x10ffff, trie->initialValue, TRUE, pErrorCode); |
1204 | 0 | if(U_FAILURE(*pErrorCode)) { |
1205 | 0 | return; |
1206 | 0 | } |
1207 | 0 | } |
1208 | | |
1209 | 0 | compactData(newTrie); |
1210 | 0 | if(highStart>0x10000) { |
1211 | 0 | compactIndex2(newTrie); |
1212 | | #ifdef UTRIE2_DEBUG |
1213 | | } else { |
1214 | | printf("UTrie2: highStart U+%04lx count of 16-bit index-2 words %lu->%lu\n", |
1215 | | (long)highStart, (long)trie->newTrie->index2Length, (long)UTRIE2_INDEX_1_OFFSET); |
1216 | | #endif |
1217 | 0 | } |
1218 | | |
1219 | | /* |
1220 | | * Store the highValue in the data array and round up the dataLength. |
1221 | | * Must be done after compactData() because that assumes that dataLength |
1222 | | * is a multiple of UTRIE2_DATA_BLOCK_LENGTH. |
1223 | | */ |
1224 | 0 | newTrie->data[newTrie->dataLength++]=highValue; |
1225 | 0 | while((newTrie->dataLength&(UTRIE2_DATA_GRANULARITY-1))!=0) { |
1226 | 0 | newTrie->data[newTrie->dataLength++]=trie->initialValue; |
1227 | 0 | } |
1228 | |
|
1229 | 0 | newTrie->isCompacted=TRUE; |
1230 | 0 | } |
1231 | | |
1232 | | /* serialization ------------------------------------------------------------ */ |
1233 | | |
1234 | | /** |
1235 | | * Maximum length of the runtime index array. |
1236 | | * Limited by its own 16-bit index values, and by uint16_t UTrie2Header.indexLength. |
1237 | | * (The actual maximum length is lower, |
1238 | | * (0x110000>>UTRIE2_SHIFT_2)+UTRIE2_UTF8_2B_INDEX_2_LENGTH+UTRIE2_MAX_INDEX_1_LENGTH.) |
1239 | | */ |
1240 | 0 | #define UTRIE2_MAX_INDEX_LENGTH 0xffff |
1241 | | |
1242 | | /** |
1243 | | * Maximum length of the runtime data array. |
1244 | | * Limited by 16-bit index values that are left-shifted by UTRIE2_INDEX_SHIFT, |
1245 | | * and by uint16_t UTrie2Header.shiftedDataLength. |
1246 | | */ |
1247 | 0 | #define UTRIE2_MAX_DATA_LENGTH (0xffff<<UTRIE2_INDEX_SHIFT) |
1248 | | |
1249 | | /* Compact and internally serialize the trie. */ |
1250 | | U_CAPI void U_EXPORT2 |
1251 | 0 | utrie2_freeze(UTrie2 *trie, UTrie2ValueBits valueBits, UErrorCode *pErrorCode) { |
1252 | 0 | UNewTrie2 *newTrie; |
1253 | 0 | UTrie2Header *header; |
1254 | 0 | uint32_t *p; |
1255 | 0 | uint16_t *dest16; |
1256 | 0 | int32_t i, length; |
1257 | 0 | int32_t allIndexesLength; |
1258 | 0 | int32_t dataMove; /* >0 if the data is moved to the end of the index array */ |
1259 | 0 | UChar32 highStart; |
1260 | | |
1261 | | /* argument check */ |
1262 | 0 | if(U_FAILURE(*pErrorCode)) { |
1263 | 0 | return; |
1264 | 0 | } |
1265 | 0 | if( trie==NULL || |
1266 | 0 | valueBits<0 || UTRIE2_COUNT_VALUE_BITS<=valueBits |
1267 | 0 | ) { |
1268 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
1269 | 0 | return; |
1270 | 0 | } |
1271 | 0 | newTrie=trie->newTrie; |
1272 | 0 | if(newTrie==NULL) { |
1273 | | /* already frozen */ |
1274 | 0 | UTrie2ValueBits frozenValueBits= |
1275 | 0 | trie->data16!=NULL ? UTRIE2_16_VALUE_BITS : UTRIE2_32_VALUE_BITS; |
1276 | 0 | if(valueBits!=frozenValueBits) { |
1277 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
1278 | 0 | } |
1279 | 0 | return; |
1280 | 0 | } |
1281 | | |
1282 | | /* compact if necessary */ |
1283 | 0 | if(!newTrie->isCompacted) { |
1284 | 0 | compactTrie(trie, pErrorCode); |
1285 | 0 | if(U_FAILURE(*pErrorCode)) { |
1286 | 0 | return; |
1287 | 0 | } |
1288 | 0 | } |
1289 | 0 | highStart=trie->highStart; |
1290 | |
|
1291 | 0 | if(highStart<=0x10000) { |
1292 | 0 | allIndexesLength=UTRIE2_INDEX_1_OFFSET; |
1293 | 0 | } else { |
1294 | 0 | allIndexesLength=newTrie->index2Length; |
1295 | 0 | } |
1296 | 0 | if(valueBits==UTRIE2_16_VALUE_BITS) { |
1297 | 0 | dataMove=allIndexesLength; |
1298 | 0 | } else { |
1299 | 0 | dataMove=0; |
1300 | 0 | } |
1301 | | |
1302 | | /* are indexLength and dataLength within limits? */ |
1303 | 0 | if( /* for unshifted indexLength */ |
1304 | 0 | allIndexesLength>UTRIE2_MAX_INDEX_LENGTH || |
1305 | | /* for unshifted dataNullOffset */ |
1306 | 0 | (dataMove+newTrie->dataNullOffset)>0xffff || |
1307 | | /* for unshifted 2-byte UTF-8 index-2 values */ |
1308 | 0 | (dataMove+UNEWTRIE2_DATA_0800_OFFSET)>0xffff || |
1309 | | /* for shiftedDataLength */ |
1310 | 0 | (dataMove+newTrie->dataLength)>UTRIE2_MAX_DATA_LENGTH |
1311 | 0 | ) { |
1312 | 0 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
1313 | 0 | return; |
1314 | 0 | } |
1315 | | |
1316 | | /* calculate the total serialized length */ |
1317 | 0 | length=sizeof(UTrie2Header)+allIndexesLength*2; |
1318 | 0 | if(valueBits==UTRIE2_16_VALUE_BITS) { |
1319 | 0 | length+=newTrie->dataLength*2; |
1320 | 0 | } else { |
1321 | 0 | length+=newTrie->dataLength*4; |
1322 | 0 | } |
1323 | |
|
1324 | 0 | trie->memory=uprv_malloc(length); |
1325 | 0 | if(trie->memory==NULL) { |
1326 | 0 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
1327 | 0 | return; |
1328 | 0 | } |
1329 | 0 | trie->length=length; |
1330 | 0 | trie->isMemoryOwned=TRUE; |
1331 | |
|
1332 | 0 | trie->indexLength=allIndexesLength; |
1333 | 0 | trie->dataLength=newTrie->dataLength; |
1334 | 0 | if(highStart<=0x10000) { |
1335 | 0 | trie->index2NullOffset=0xffff; |
1336 | 0 | } else { |
1337 | 0 | trie->index2NullOffset=UTRIE2_INDEX_2_OFFSET+newTrie->index2NullOffset; |
1338 | 0 | } |
1339 | 0 | trie->dataNullOffset=(uint16_t)(dataMove+newTrie->dataNullOffset); |
1340 | 0 | trie->highValueIndex=dataMove+trie->dataLength-UTRIE2_DATA_GRANULARITY; |
1341 | | |
1342 | | /* set the header fields */ |
1343 | 0 | header=(UTrie2Header *)trie->memory; |
1344 | |
|
1345 | 0 | header->signature=UTRIE2_SIG; /* "Tri2" */ |
1346 | 0 | header->options=(uint16_t)valueBits; |
1347 | |
|
1348 | 0 | header->indexLength=(uint16_t)trie->indexLength; |
1349 | 0 | header->shiftedDataLength=(uint16_t)(trie->dataLength>>UTRIE2_INDEX_SHIFT); |
1350 | 0 | header->index2NullOffset=trie->index2NullOffset; |
1351 | 0 | header->dataNullOffset=trie->dataNullOffset; |
1352 | 0 | header->shiftedHighStart=(uint16_t)(highStart>>UTRIE2_SHIFT_1); |
1353 | | |
1354 | | /* fill the index and data arrays */ |
1355 | 0 | dest16=(uint16_t *)(header+1); |
1356 | 0 | trie->index=dest16; |
1357 | | |
1358 | | /* write the index-2 array values shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove */ |
1359 | 0 | p=(uint32_t *)newTrie->index2; |
1360 | 0 | for(i=UTRIE2_INDEX_2_BMP_LENGTH; i>0; --i) { |
1361 | 0 | *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT); |
1362 | 0 | } |
1363 | | |
1364 | | /* write UTF-8 2-byte index-2 values, not right-shifted */ |
1365 | 0 | for(i=0; i<(0xc2-0xc0); ++i) { /* C0..C1 */ |
1366 | 0 | *dest16++=(uint16_t)(dataMove+UTRIE2_BAD_UTF8_DATA_OFFSET); |
1367 | 0 | } |
1368 | 0 | for(; i<(0xe0-0xc0); ++i) { /* C2..DF */ |
1369 | 0 | *dest16++=(uint16_t)(dataMove+newTrie->index2[i<<(6-UTRIE2_SHIFT_2)]); |
1370 | 0 | } |
1371 | |
|
1372 | 0 | if(highStart>0x10000) { |
1373 | 0 | int32_t index1Length=(highStart-0x10000)>>UTRIE2_SHIFT_1; |
1374 | 0 | int32_t index2Offset=UTRIE2_INDEX_2_BMP_LENGTH+UTRIE2_UTF8_2B_INDEX_2_LENGTH+index1Length; |
1375 | | |
1376 | | /* write 16-bit index-1 values for supplementary code points */ |
1377 | 0 | p=(uint32_t *)newTrie->index1+UTRIE2_OMITTED_BMP_INDEX_1_LENGTH; |
1378 | 0 | for(i=index1Length; i>0; --i) { |
1379 | 0 | *dest16++=(uint16_t)(UTRIE2_INDEX_2_OFFSET + *p++); |
1380 | 0 | } |
1381 | | |
1382 | | /* |
1383 | | * write the index-2 array values for supplementary code points, |
1384 | | * shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove |
1385 | | */ |
1386 | 0 | p=(uint32_t *)newTrie->index2+index2Offset; |
1387 | 0 | for(i=newTrie->index2Length-index2Offset; i>0; --i) { |
1388 | 0 | *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT); |
1389 | 0 | } |
1390 | 0 | } |
1391 | | |
1392 | | /* write the 16/32-bit data array */ |
1393 | 0 | switch(valueBits) { |
1394 | 0 | case UTRIE2_16_VALUE_BITS: |
1395 | | /* write 16-bit data values */ |
1396 | 0 | trie->data16=dest16; |
1397 | 0 | trie->data32=NULL; |
1398 | 0 | p=newTrie->data; |
1399 | 0 | for(i=newTrie->dataLength; i>0; --i) { |
1400 | 0 | *dest16++=(uint16_t)*p++; |
1401 | 0 | } |
1402 | 0 | break; |
1403 | 0 | case UTRIE2_32_VALUE_BITS: |
1404 | | /* write 32-bit data values */ |
1405 | 0 | trie->data16=NULL; |
1406 | 0 | trie->data32=(uint32_t *)dest16; |
1407 | 0 | uprv_memcpy(dest16, newTrie->data, (size_t)newTrie->dataLength*4); |
1408 | 0 | break; |
1409 | 0 | default: |
1410 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
1411 | 0 | return; |
1412 | 0 | } |
1413 | | |
1414 | | /* Delete the UNewTrie2. */ |
1415 | 0 | uprv_free(newTrie->data); |
1416 | 0 | uprv_free(newTrie); |
1417 | 0 | trie->newTrie=NULL; |
1418 | 0 | } |
1419 | | |
1420 | | /* |
1421 | | * This is here to avoid a dependency from utrie2.cpp on utrie.c. |
1422 | | * This file already depends on utrie.c. |
1423 | | * Otherwise, this should be in utrie2.cpp right after utrie2_swap(). |
1424 | | */ |
1425 | | U_CAPI int32_t U_EXPORT2 |
1426 | | utrie2_swapAnyVersion(const UDataSwapper *ds, |
1427 | | const void *inData, int32_t length, void *outData, |
1428 | 0 | UErrorCode *pErrorCode) { |
1429 | 0 | if(U_SUCCESS(*pErrorCode)) { |
1430 | 0 | switch(utrie2_getVersion(inData, length, TRUE)) { |
1431 | 0 | case 1: |
1432 | 0 | return utrie_swap(ds, inData, length, outData, pErrorCode); |
1433 | 0 | case 2: |
1434 | 0 | return utrie2_swap(ds, inData, length, outData, pErrorCode); |
1435 | 0 | default: |
1436 | 0 | *pErrorCode=U_INVALID_FORMAT_ERROR; |
1437 | 0 | return 0; |
1438 | 0 | } |
1439 | 0 | } |
1440 | 0 | return 0; |
1441 | 0 | } |