Coverage Report

Created: 2025-07-07 10:01

/work/workdir/UnpackedTarball/argon2/src/opt.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Argon2 reference source code package - reference C implementations
3
 *
4
 * Copyright 2015
5
 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
6
 *
7
 * You may use this work under the terms of a Creative Commons CC0 1.0
8
 * License/Waiver or the Apache Public License 2.0, at your option. The terms of
9
 * these licenses can be found at:
10
 *
11
 * - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
12
 * - Apache 2.0        : http://www.apache.org/licenses/LICENSE-2.0
13
 *
14
 * You should have received a copy of both of these licenses along with this
15
 * software. If not, they may be obtained at the above URLs.
16
 */
17
18
#include <stdint.h>
19
#include <string.h>
20
#include <stdlib.h>
21
22
#include "argon2.h"
23
#include "core.h"
24
25
#include "blake2/blake2.h"
26
#include "blake2/blamka-round-opt.h"
27
28
/*
29
 * Function fills a new memory block and optionally XORs the old block over the new one.
30
 * Memory must be initialized.
31
 * @param state Pointer to the just produced block. Content will be updated(!)
32
 * @param ref_block Pointer to the reference block
33
 * @param next_block Pointer to the block to be XORed over. May coincide with @ref_block
34
 * @param with_xor Whether to XOR into the new block (1) or just overwrite (0)
35
 * @pre all block pointers must be valid
36
 */
37
#if defined(__AVX512F__)
38
static void fill_block(__m512i *state, const block *ref_block,
39
                       block *next_block, int with_xor) {
40
    __m512i block_XY[ARGON2_512BIT_WORDS_IN_BLOCK];
41
    unsigned int i;
42
43
    if (with_xor) {
44
        for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) {
45
            state[i] = _mm512_xor_si512(
46
                state[i], _mm512_loadu_si512((const __m512i *)ref_block->v + i));
47
            block_XY[i] = _mm512_xor_si512(
48
                state[i], _mm512_loadu_si512((const __m512i *)next_block->v + i));
49
        }
50
    } else {
51
        for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) {
52
            block_XY[i] = state[i] = _mm512_xor_si512(
53
                state[i], _mm512_loadu_si512((const __m512i *)ref_block->v + i));
54
        }
55
    }
56
57
    for (i = 0; i < 2; ++i) {
58
        BLAKE2_ROUND_1(
59
            state[8 * i + 0], state[8 * i + 1], state[8 * i + 2], state[8 * i + 3],
60
            state[8 * i + 4], state[8 * i + 5], state[8 * i + 6], state[8 * i + 7]);
61
    }
62
63
    for (i = 0; i < 2; ++i) {
64
        BLAKE2_ROUND_2(
65
            state[2 * 0 + i], state[2 * 1 + i], state[2 * 2 + i], state[2 * 3 + i],
66
            state[2 * 4 + i], state[2 * 5 + i], state[2 * 6 + i], state[2 * 7 + i]);
67
    }
68
69
    for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) {
70
        state[i] = _mm512_xor_si512(state[i], block_XY[i]);
71
        _mm512_storeu_si512((__m512i *)next_block->v + i, state[i]);
72
    }
73
}
74
#elif defined(__AVX2__)
75
static void fill_block(__m256i *state, const block *ref_block,
76
                       block *next_block, int with_xor) {
77
    __m256i block_XY[ARGON2_HWORDS_IN_BLOCK];
78
    unsigned int i;
79
80
    if (with_xor) {
81
        for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
82
            state[i] = _mm256_xor_si256(
83
                state[i], _mm256_loadu_si256((const __m256i *)ref_block->v + i));
84
            block_XY[i] = _mm256_xor_si256(
85
                state[i], _mm256_loadu_si256((const __m256i *)next_block->v + i));
86
        }
87
    } else {
88
        for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
89
            block_XY[i] = state[i] = _mm256_xor_si256(
90
                state[i], _mm256_loadu_si256((const __m256i *)ref_block->v + i));
91
        }
92
    }
93
94
    for (i = 0; i < 4; ++i) {
95
        BLAKE2_ROUND_1(state[8 * i + 0], state[8 * i + 4], state[8 * i + 1], state[8 * i + 5],
96
                       state[8 * i + 2], state[8 * i + 6], state[8 * i + 3], state[8 * i + 7]);
97
    }
98
99
    for (i = 0; i < 4; ++i) {
100
        BLAKE2_ROUND_2(state[ 0 + i], state[ 4 + i], state[ 8 + i], state[12 + i],
101
                       state[16 + i], state[20 + i], state[24 + i], state[28 + i]);
102
    }
103
104
    for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
105
        state[i] = _mm256_xor_si256(state[i], block_XY[i]);
106
        _mm256_storeu_si256((__m256i *)next_block->v + i, state[i]);
107
    }
108
}
109
#else
110
static void fill_block(__m128i *state, const block *ref_block,
111
0
                       block *next_block, int with_xor) {
112
0
    __m128i block_XY[ARGON2_OWORDS_IN_BLOCK];
113
0
    unsigned int i;
114
115
0
    if (with_xor) {
116
0
        for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
117
0
            state[i] = _mm_xor_si128(
118
0
                state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i));
119
0
            block_XY[i] = _mm_xor_si128(
120
0
                state[i], _mm_loadu_si128((const __m128i *)next_block->v + i));
121
0
        }
122
0
    } else {
123
0
        for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
124
0
            block_XY[i] = state[i] = _mm_xor_si128(
125
0
                state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i));
126
0
        }
127
0
    }
128
129
0
    for (i = 0; i < 8; ++i) {
130
0
        BLAKE2_ROUND(state[8 * i + 0], state[8 * i + 1], state[8 * i + 2],
131
0
            state[8 * i + 3], state[8 * i + 4], state[8 * i + 5],
132
0
            state[8 * i + 6], state[8 * i + 7]);
133
0
    }
134
135
0
    for (i = 0; i < 8; ++i) {
136
0
        BLAKE2_ROUND(state[8 * 0 + i], state[8 * 1 + i], state[8 * 2 + i],
137
0
            state[8 * 3 + i], state[8 * 4 + i], state[8 * 5 + i],
138
0
            state[8 * 6 + i], state[8 * 7 + i]);
139
0
    }
140
141
0
    for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
142
0
        state[i] = _mm_xor_si128(state[i], block_XY[i]);
143
0
        _mm_storeu_si128((__m128i *)next_block->v + i, state[i]);
144
0
    }
145
0
}
146
#endif
147
148
0
static void next_addresses(block *address_block, block *input_block) {
149
    /*Temporary zero-initialized blocks*/
150
#if defined(__AVX512F__)
151
    __m512i zero_block[ARGON2_512BIT_WORDS_IN_BLOCK];
152
    __m512i zero2_block[ARGON2_512BIT_WORDS_IN_BLOCK];
153
#elif defined(__AVX2__)
154
    __m256i zero_block[ARGON2_HWORDS_IN_BLOCK];
155
    __m256i zero2_block[ARGON2_HWORDS_IN_BLOCK];
156
#else
157
0
    __m128i zero_block[ARGON2_OWORDS_IN_BLOCK];
158
0
    __m128i zero2_block[ARGON2_OWORDS_IN_BLOCK];
159
0
#endif
160
161
0
    memset(zero_block, 0, sizeof(zero_block));
162
0
    memset(zero2_block, 0, sizeof(zero2_block));
163
164
    /*Increasing index counter*/
165
0
    input_block->v[6]++;
166
167
    /*First iteration of G*/
168
0
    fill_block(zero_block, input_block, address_block, 0);
169
170
    /*Second iteration of G*/
171
0
    fill_block(zero2_block, address_block, address_block, 0);
172
0
}
173
174
void fill_segment(const argon2_instance_t *instance,
175
0
                  argon2_position_t position) {
176
0
    block *ref_block = NULL, *curr_block = NULL;
177
0
    block address_block, input_block;
178
0
    uint64_t pseudo_rand, ref_index, ref_lane;
179
0
    uint32_t prev_offset, curr_offset;
180
0
    uint32_t starting_index, i;
181
#if defined(__AVX512F__)
182
    __m512i state[ARGON2_512BIT_WORDS_IN_BLOCK];
183
#elif defined(__AVX2__)
184
    __m256i state[ARGON2_HWORDS_IN_BLOCK];
185
#else
186
0
    __m128i state[ARGON2_OWORDS_IN_BLOCK];
187
0
#endif
188
0
    int data_independent_addressing;
189
190
0
    if (instance == NULL) {
191
0
        return;
192
0
    }
193
194
0
    data_independent_addressing =
195
0
        (instance->type == Argon2_i) ||
196
0
        (instance->type == Argon2_id && (position.pass == 0) &&
197
0
         (position.slice < ARGON2_SYNC_POINTS / 2));
198
199
0
    if (data_independent_addressing) {
200
0
        init_block_value(&input_block, 0);
201
202
0
        input_block.v[0] = position.pass;
203
0
        input_block.v[1] = position.lane;
204
0
        input_block.v[2] = position.slice;
205
0
        input_block.v[3] = instance->memory_blocks;
206
0
        input_block.v[4] = instance->passes;
207
0
        input_block.v[5] = instance->type;
208
0
    }
209
210
0
    starting_index = 0;
211
212
0
    if ((0 == position.pass) && (0 == position.slice)) {
213
0
        starting_index = 2; /* we have already generated the first two blocks */
214
215
        /* Don't forget to generate the first block of addresses: */
216
0
        if (data_independent_addressing) {
217
0
            next_addresses(&address_block, &input_block);
218
0
        }
219
0
    }
220
221
    /* Offset of the current block */
222
0
    curr_offset = position.lane * instance->lane_length +
223
0
                  position.slice * instance->segment_length + starting_index;
224
225
0
    if (0 == curr_offset % instance->lane_length) {
226
        /* Last block in this lane */
227
0
        prev_offset = curr_offset + instance->lane_length - 1;
228
0
    } else {
229
        /* Previous block */
230
0
        prev_offset = curr_offset - 1;
231
0
    }
232
233
0
    memcpy(state, ((instance->memory + prev_offset)->v), ARGON2_BLOCK_SIZE);
234
235
0
    for (i = starting_index; i < instance->segment_length;
236
0
         ++i, ++curr_offset, ++prev_offset) {
237
        /*1.1 Rotating prev_offset if needed */
238
0
        if (curr_offset % instance->lane_length == 1) {
239
0
            prev_offset = curr_offset - 1;
240
0
        }
241
242
        /* 1.2 Computing the index of the reference block */
243
        /* 1.2.1 Taking pseudo-random value from the previous block */
244
0
        if (data_independent_addressing) {
245
0
            if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
246
0
                next_addresses(&address_block, &input_block);
247
0
            }
248
0
            pseudo_rand = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
249
0
        } else {
250
0
            pseudo_rand = instance->memory[prev_offset].v[0];
251
0
        }
252
253
        /* 1.2.2 Computing the lane of the reference block */
254
0
        ref_lane = ((pseudo_rand >> 32)) % instance->lanes;
255
256
0
        if ((position.pass == 0) && (position.slice == 0)) {
257
            /* Can not reference other lanes yet */
258
0
            ref_lane = position.lane;
259
0
        }
260
261
        /* 1.2.3 Computing the number of possible reference block within the
262
         * lane.
263
         */
264
0
        position.index = i;
265
0
        ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
266
0
                                ref_lane == position.lane);
267
268
        /* 2 Creating a new block */
269
0
        ref_block =
270
0
            instance->memory + instance->lane_length * ref_lane + ref_index;
271
0
        curr_block = instance->memory + curr_offset;
272
0
        if (ARGON2_VERSION_10 == instance->version) {
273
            /* version 1.2.1 and earlier: overwrite, not XOR */
274
0
            fill_block(state, ref_block, curr_block, 0);
275
0
        } else {
276
0
            if(0 == position.pass) {
277
0
                fill_block(state, ref_block, curr_block, 0);
278
0
            } else {
279
0
                fill_block(state, ref_block, curr_block, 1);
280
0
            }
281
0
        }
282
0
    }
283
0
}