Coverage Report

Created: 2025-07-07 10:01

/work/workdir/UnpackedTarball/boost/boost/rational.hpp
Line
Count
Source (jump to first uncovered line)
1
//  Boost rational.hpp header file  ------------------------------------------//
2
3
//  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
4
//  distribute this software is granted provided this copyright notice appears
5
//  in all copies. This software is provided "as is" without express or
6
//  implied warranty, and with no claim as to its suitability for any purpose.
7
8
// boostinspect:nolicense (don't complain about the lack of a Boost license)
9
// (Paul Moore hasn't been in contact for years, so there's no way to change the
10
// license.)
11
12
//  See http://www.boost.org/libs/rational for documentation.
13
14
//  Credits:
15
//  Thanks to the boost mailing list in general for useful comments.
16
//  Particular contributions included:
17
//    Andrew D Jewell, for reminding me to take care to avoid overflow
18
//    Ed Brey, for many comments, including picking up on some dreadful typos
19
//    Stephen Silver contributed the test suite and comments on user-defined
20
//    IntType
21
//    Nickolay Mladenov, for the implementation of operator+=
22
23
//  Revision History
24
//  12 Nov 20  Fix operators to work with C++20 rules (Glen Joseph Fernandes)
25
//  02 Sep 13  Remove unneeded forward declarations; tweak private helper
26
//             function (Daryle Walker)
27
//  30 Aug 13  Improve exception safety of "assign"; start modernizing I/O code
28
//             (Daryle Walker)
29
//  27 Aug 13  Add cross-version constructor template, plus some private helper
30
//             functions; add constructor to exception class to take custom
31
//             messages (Daryle Walker)
32
//  25 Aug 13  Add constexpr qualification wherever possible (Daryle Walker)
33
//  05 May 12  Reduced use of implicit gcd (Mario Lang)
34
//  05 Nov 06  Change rational_cast to not depend on division between different
35
//             types (Daryle Walker)
36
//  04 Nov 06  Off-load GCD and LCM to Boost.Integer; add some invariant checks;
37
//             add std::numeric_limits<> requirement to help GCD (Daryle Walker)
38
//  31 Oct 06  Recoded both operator< to use round-to-negative-infinity
39
//             divisions; the rational-value version now uses continued fraction
40
//             expansion to avoid overflows, for bug #798357 (Daryle Walker)
41
//  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
42
//  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
43
//             (Joaquín M López Muñoz)
44
//  27 Dec 05  Add Boolean conversion operator (Daryle Walker)
45
//  28 Sep 02  Use _left versions of operators from operators.hpp
46
//  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel)
47
//  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams)
48
//  05 Feb 01  Update operator>> to tighten up input syntax
49
//  05 Feb 01  Final tidy up of gcd code prior to the new release
50
//  27 Jan 01  Recode abs() without relying on abs(IntType)
51
//  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm,
52
//             tidy up a number of areas, use newer features of operators.hpp
53
//             (reduces space overhead to zero), add operator!,
54
//             introduce explicit mixed-mode arithmetic operations
55
//  12 Jan 01  Include fixes to handle a user-defined IntType better
56
//  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David)
57
//  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++
58
//  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not
59
//             affected (Beman Dawes)
60
//   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer)
61
//  14 Dec 99  Modifications based on comments from the boost list
62
//  09 Dec 99  Initial Version (Paul Moore)
63
64
#ifndef BOOST_RATIONAL_HPP
65
#define BOOST_RATIONAL_HPP
66
67
#include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC, etc
68
#ifndef BOOST_NO_IOSTREAM
69
#include <iomanip>               // for std::setw
70
#include <ios>                   // for std::noskipws, streamsize
71
#include <istream>               // for std::istream
72
#include <ostream>               // for std::ostream
73
#include <sstream>               // for std::ostringstream
74
#endif
75
#include <cstddef>               // for NULL
76
#include <stdexcept>             // for std::domain_error
77
#include <string>                // for std::string implicit constructor
78
#include <cstdlib>               // for std::abs
79
#include <boost/call_traits.hpp> // for boost::call_traits
80
#include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
81
#include <boost/assert.hpp>      // for BOOST_ASSERT
82
#include <boost/integer/common_factor_rt.hpp> // for boost::integer::gcd, lcm
83
#include <limits>                // for std::numeric_limits
84
#include <boost/static_assert.hpp>  // for BOOST_STATIC_ASSERT
85
#include <boost/throw_exception.hpp>
86
#include <boost/utility/enable_if.hpp>
87
#include <boost/type_traits/is_convertible.hpp>
88
#include <boost/type_traits/is_class.hpp>
89
#include <boost/type_traits/is_same.hpp>
90
#include <boost/type_traits/is_array.hpp>
91
92
// Control whether depreciated GCD and LCM functions are included (default: yes)
93
#ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
94
#define BOOST_CONTROL_RATIONAL_HAS_GCD  1
95
#endif
96
97
namespace boost {
98
99
#if BOOST_CONTROL_RATIONAL_HAS_GCD
100
template <typename IntType>
101
IntType gcd(IntType n, IntType m)
102
{
103
    // Defer to the version in Boost.Integer
104
    return integer::gcd( n, m );
105
}
106
107
template <typename IntType>
108
IntType lcm(IntType n, IntType m)
109
{
110
    // Defer to the version in Boost.Integer
111
    return integer::lcm( n, m );
112
}
113
#endif  // BOOST_CONTROL_RATIONAL_HAS_GCD
114
115
namespace rational_detail{
116
117
   template <class FromInt, class ToInt, typename Enable = void>
118
   struct is_compatible_integer;
119
120
   template <class FromInt, class ToInt>
121
   struct is_compatible_integer<FromInt, ToInt, typename enable_if_c<!is_array<FromInt>::value>::type>
122
   {
123
      BOOST_STATIC_CONSTANT(bool, value = ((std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer
124
         && (std::numeric_limits<FromInt>::digits <= std::numeric_limits<ToInt>::digits)
125
         && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)
126
         && ((std::numeric_limits<FromInt>::is_signed == false) || (std::numeric_limits<ToInt>::is_signed == true))
127
         && is_convertible<FromInt, ToInt>::value)
128
         || is_same<FromInt, ToInt>::value)
129
         || (is_class<ToInt>::value && is_class<FromInt>::value && is_convertible<FromInt, ToInt>::value));
130
   };
131
132
   template <class FromInt, class ToInt>
133
   struct is_compatible_integer<FromInt, ToInt, typename enable_if_c<is_array<FromInt>::value>::type>
134
   {
135
      BOOST_STATIC_CONSTANT(bool, value = false);
136
   };
137
138
   template <class FromInt, class ToInt, typename Enable = void>
139
   struct is_backward_compatible_integer;
140
141
   template <class FromInt, class ToInt>
142
   struct is_backward_compatible_integer<FromInt, ToInt, typename enable_if_c<!is_array<FromInt>::value>::type>
143
   {
144
      BOOST_STATIC_CONSTANT(bool, value = (std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer
145
         && !is_compatible_integer<FromInt, ToInt>::value
146
         && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)
147
         && is_convertible<FromInt, ToInt>::value));
148
   };
149
150
   template <class FromInt, class ToInt>
151
   struct is_backward_compatible_integer<FromInt, ToInt, typename enable_if_c<is_array<FromInt>::value>::type>
152
   {
153
      BOOST_STATIC_CONSTANT(bool, value = false);
154
   };
155
}
156
157
class bad_rational : public std::domain_error
158
{
159
public:
160
4.70k
    explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
161
0
    explicit bad_rational( char const *what ) : std::domain_error( what ) {}
162
};
163
164
template <typename IntType>
165
class rational
166
{
167
    // Class-wide pre-conditions
168
    BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );
169
170
    // Helper types
171
    typedef typename boost::call_traits<IntType>::param_type param_type;
172
173
    struct helper { IntType parts[2]; };
174
    typedef IntType (helper::* bool_type)[2];
175
176
public:
177
    // Component type
178
    typedef IntType int_type;
179
180
    BOOST_CONSTEXPR
181
    rational() : num(0), den(1) {}
182
183
    template <class T>//, typename enable_if_c<!is_array<T>::value>::type>
184
    BOOST_CONSTEXPR rational(const T& n, typename enable_if_c<
185
       rational_detail::is_compatible_integer<T, IntType>::value
186
146M
    >::type const* = 0) : num(n), den(1) {}
187
188
    template <class T, class U>
189
    BOOST_CXX14_CONSTEXPR rational(const T& n, const U& d, typename enable_if_c<
190
       rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value
191
621M
    >::type const* = 0) : num(n), den(d) {
192
621M
       normalize();
193
621M
    }
194
195
    template < typename NewType >
196
    BOOST_CONSTEXPR explicit
197
       rational(rational<NewType> const &r, typename enable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
198
       : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
199
       int_type(r.denominator())) ? r.denominator() :
200
       (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
201
202
    template < typename NewType >
203
    BOOST_CONSTEXPR explicit
204
       rational(rational<NewType> const &r, typename disable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
205
       : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
206
       int_type(r.denominator())) && is_safe_narrowing_conversion(r.denominator()) && is_safe_narrowing_conversion(r.numerator()) ? r.denominator() :
207
       (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
208
    // Default copy constructor and assignment are fine
209
210
    // Add assignment from IntType
211
    template <class T>
212
    BOOST_CXX14_CONSTEXPR typename enable_if_c<
213
       rational_detail::is_compatible_integer<T, IntType>::value, rational &
214
    >::type operator=(const T& n) { return assign(static_cast<IntType>(n), static_cast<IntType>(1)); }
215
216
    // Assign in place
217
    template <class T, class U>
218
    BOOST_CXX14_CONSTEXPR typename enable_if_c<
219
       rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value, rational &
220
    >::type assign(const T& n, const U& d)
221
31.5k
    {
222
31.5k
       return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
223
31.5k
    }
224
    //
225
    // The following overloads should probably *not* be provided - 
226
    // but are provided for backwards compatibity reasons only.
227
    // These allow for construction/assignment from types that
228
    // are wider than IntType only if there is an implicit
229
    // conversion from T to IntType, they will throw a bad_rational
230
    // if the conversion results in loss of precision or undefined behaviour.
231
    //
232
    template <class T>//, typename enable_if_c<!is_array<T>::value>::type>
233
    BOOST_CXX14_CONSTEXPR rational(const T& n, typename enable_if_c<
234
       rational_detail::is_backward_compatible_integer<T, IntType>::value
235
    >::type const* = 0)
236
    {
237
       assign(n, static_cast<T>(1));
238
    }
239
    template <class T, class U>
240
    BOOST_CXX14_CONSTEXPR rational(const T& n, const U& d, typename enable_if_c<
241
       (!rational_detail::is_compatible_integer<T, IntType>::value
242
       || !rational_detail::is_compatible_integer<U, IntType>::value)
243
       && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
244
       && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
245
       && is_convertible<T, IntType>::value &&
246
       std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
247
       && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
248
       && is_convertible<U, IntType>::value
249
    >::type const* = 0)
250
    {
251
       assign(n, d);
252
    }
253
    template <class T>
254
    BOOST_CXX14_CONSTEXPR typename enable_if_c<
255
       std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
256
       && !rational_detail::is_compatible_integer<T, IntType>::value
257
       && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
258
       && is_convertible<T, IntType>::value,
259
       rational &
260
    >::type operator=(const T& n) { return assign(n, static_cast<T>(1)); }
261
262
    template <class T, class U>
263
    BOOST_CXX14_CONSTEXPR typename enable_if_c<
264
       (!rational_detail::is_compatible_integer<T, IntType>::value
265
          || !rational_detail::is_compatible_integer<U, IntType>::value)
266
       && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
267
       && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
268
       && is_convertible<T, IntType>::value &&
269
       std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
270
       && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
271
       && is_convertible<U, IntType>::value,
272
       rational &
273
    >::type assign(const T& n, const U& d)
274
    {
275
       if(!is_safe_narrowing_conversion(n) || !is_safe_narrowing_conversion(d))
276
          BOOST_THROW_EXCEPTION(bad_rational());
277
       return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
278
    }
279
280
    // Access to representation
281
    BOOST_CONSTEXPR
282
1.16G
    const IntType& numerator() const { return num; }
283
    BOOST_CONSTEXPR
284
1.16G
    const IntType& denominator() const { return den; }
285
286
    // Arithmetic assignment operators
287
    BOOST_CXX14_CONSTEXPR rational& operator+= (const rational& r);
288
    BOOST_CXX14_CONSTEXPR rational& operator-= (const rational& r);
289
    BOOST_CXX14_CONSTEXPR rational& operator*= (const rational& r);
290
    BOOST_CXX14_CONSTEXPR rational& operator/= (const rational& r);
291
292
    template <class T>
293
    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator+= (const T& i)
294
    {
295
       num += i * den;
296
       return *this;
297
    }
298
    template <class T>
299
    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator-= (const T& i)
300
    {
301
       num -= i * den;
302
       return *this;
303
    }
304
    template <class T>
305
    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator*= (const T& i)
306
    {
307
       // Avoid overflow and preserve normalization
308
       IntType gcd = integer::gcd(static_cast<IntType>(i), den);
309
       num *= i / gcd;
310
       den /= gcd;
311
       return *this;
312
    }
313
    template <class T>
314
    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator/= (const T& i)
315
    {
316
       // Avoid repeated construction
317
       IntType const zero(0);
318
319
       if(i == zero) BOOST_THROW_EXCEPTION(bad_rational());
320
       if(num == zero) return *this;
321
322
       // Avoid overflow and preserve normalization
323
       IntType const gcd = integer::gcd(num, static_cast<IntType>(i));
324
       num /= gcd;
325
       den *= i / gcd;
326
327
       if(den < zero) {
328
          num = -num;
329
          den = -den;
330
       }
331
332
       return *this;
333
    }
334
335
    // Increment and decrement
336
    BOOST_CXX14_CONSTEXPR const rational& operator++() { num += den; return *this; }
337
    BOOST_CXX14_CONSTEXPR const rational& operator--() { num -= den; return *this; }
338
339
    BOOST_CXX14_CONSTEXPR rational operator++(int)
340
    {
341
       rational t(*this);
342
       ++(*this);
343
       return t;
344
    }
345
    BOOST_CXX14_CONSTEXPR rational operator--(int)
346
    {
347
       rational t(*this);
348
       --(*this);
349
       return t;
350
    }
351
352
    // Operator not
353
    BOOST_CONSTEXPR
354
195
    bool operator!() const { return !num; }
355
356
    // Boolean conversion
357
    
358
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
359
    // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
360
    // following, hence we selectively disable that option for the
361
    // offending memfun.
362
#pragma parse_mfunc_templ off
363
#endif
364
365
    BOOST_CONSTEXPR
366
    operator bool_type() const { return operator !() ? 0 : &helper::parts; }
367
368
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
369
#pragma parse_mfunc_templ reset
370
#endif
371
372
    // Comparison operators
373
    BOOST_CXX14_CONSTEXPR bool operator< (const rational& r) const;
374
0
    BOOST_CXX14_CONSTEXPR bool operator> (const rational& r) const { return r < *this; }
375
    BOOST_CONSTEXPR
376
    bool operator== (const rational& r) const;
377
378
    template <class T>
379
    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator< (const T& i) const
380
    {
381
       // Avoid repeated construction
382
       int_type const  zero(0);
383
384
       // Break value into mixed-fraction form, w/ always-nonnegative remainder
385
       BOOST_ASSERT(this->den > zero);
386
       int_type  q = this->num / this->den, r = this->num % this->den;
387
       while(r < zero)  { r += this->den; --q; }
388
389
       // Compare with just the quotient, since the remainder always bumps the
390
       // value up.  [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
391
       // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
392
       // q >= i + 1 > i; therefore n/d < i iff q < i.]
393
       return q < i;
394
    }
395
    template <class T>
396
    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator>(const T& i) const
397
    {
398
       return operator==(i) ? false : !operator<(i);
399
    }
400
    template <class T>
401
    BOOST_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator== (const T& i) const
402
    {
403
       return ((den == IntType(1)) && (num == i));
404
    }
405
406
private:
407
    // Implementation - numerator and denominator (normalized).
408
    // Other possibilities - separate whole-part, or sign, fields?
409
    IntType num;
410
    IntType den;
411
412
    // Helper functions
413
    static BOOST_CONSTEXPR
414
    int_type inner_gcd( param_type a, param_type b, int_type const &zero =
415
     int_type(0) )
416
    { return b == zero ? a : inner_gcd(b, a % b, zero); }
417
418
    static BOOST_CONSTEXPR
419
    int_type inner_abs( param_type x, int_type const &zero = int_type(0) )
420
    { return x < zero ? -x : +x; }
421
422
    // Representation note: Fractions are kept in normalized form at all
423
    // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
424
    // In particular, note that the implementation of abs() below relies
425
    // on den always being positive.
426
    BOOST_CXX14_CONSTEXPR bool test_invariant() const;
427
    BOOST_CXX14_CONSTEXPR void normalize();
428
429
    static BOOST_CONSTEXPR
430
    bool is_normalized( param_type n, param_type d, int_type const &zero =
431
     int_type(0), int_type const &one = int_type(1) )
432
    {
433
        return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n,
434
         d, zero), zero ) == one;
435
    }
436
    //
437
    // Conversion checks:
438
    //
439
    // (1) From an unsigned type with more digits than IntType:
440
    //
441
    template <class T>
442
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
443
    {
444
       return val < (T(1) << std::numeric_limits<IntType>::digits);
445
    }
446
    //
447
    // (2) From a signed type with more digits than IntType, and IntType also signed:
448
    //
449
    template <class T>
450
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T& val)
451
    {
452
       // Note that this check assumes IntType has a 2's complement representation,
453
       // we don't want to try to convert a std::numeric_limits<IntType>::min() to
454
       // a T because that conversion may not be allowed (this happens when IntType
455
       // is from Boost.Multiprecision).
456
       return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= -(T(1) << std::numeric_limits<IntType>::digits));
457
    }
458
    //
459
    // (3) From a signed type with more digits than IntType, and IntType unsigned:
460
    //
461
    template <class T>
462
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
463
    {
464
       return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= 0);
465
    }
466
    //
467
    // (4) From a signed type with fewer digits than IntType, and IntType unsigned:
468
    //
469
    template <class T>
470
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
471
    {
472
       return val >= 0;
473
    }
474
    //
475
    // (5) From an unsigned type with fewer digits than IntType, and IntType signed:
476
    //
477
    template <class T>
478
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
479
    {
480
       return true;
481
    }
482
    //
483
    // (6) From an unsigned type with fewer digits than IntType, and IntType unsigned:
484
    //
485
    template <class T>
486
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T&)
487
    {
488
       return true;
489
    }
490
    //
491
    // (7) From an signed type with fewer digits than IntType, and IntType signed:
492
    //
493
    template <class T>
494
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
495
    {
496
       return true;
497
    }
498
};
499
500
// Unary plus and minus
501
template <typename IntType>
502
BOOST_CONSTEXPR
503
inline rational<IntType> operator+ (const rational<IntType>& r)
504
{
505
    return r;
506
}
507
508
template <typename IntType>
509
BOOST_CXX14_CONSTEXPR
510
inline rational<IntType> operator- (const rational<IntType>& r)
511
{
512
    return rational<IntType>(static_cast<IntType>(-r.numerator()), r.denominator());
513
}
514
515
// Arithmetic assignment operators
516
template <typename IntType>
517
BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
518
0
{
519
    // This calculation avoids overflow, and minimises the number of expensive
520
    // calculations. Thanks to Nickolay Mladenov for this algorithm.
521
    //
522
    // Proof:
523
    // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
524
    // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
525
    //
526
    // The result is (a*d1 + c*b1) / (b1*d1*g).
527
    // Now we have to normalize this ratio.
528
    // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
529
    // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
530
    // But since gcd(a,b1)=1 we have h=1.
531
    // Similarly h|d1 leads to h=1.
532
    // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
533
    // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
534
    // Which proves that instead of normalizing the result, it is better to
535
    // divide num and den by gcd((a*d1 + c*b1), g)
536
537
    // Protect against self-modification
538
0
    IntType r_num = r.num;
539
0
    IntType r_den = r.den;
540
541
0
    IntType g = integer::gcd(den, r_den);
542
0
    den /= g;  // = b1 from the calculations above
543
0
    num = num * (r_den / g) + r_num * den;
544
0
    g = integer::gcd(num, g);
545
0
    num /= g;
546
0
    den *= r_den/g;
547
548
0
    return *this;
549
0
}
550
551
template <typename IntType>
552
BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
553
1.06k
{
554
    // Protect against self-modification
555
1.06k
    IntType r_num = r.num;
556
1.06k
    IntType r_den = r.den;
557
558
    // This calculation avoids overflow, and minimises the number of expensive
559
    // calculations. It corresponds exactly to the += case above
560
1.06k
    IntType g = integer::gcd(den, r_den);
561
1.06k
    den /= g;
562
1.06k
    num = num * (r_den / g) - r_num * den;
563
1.06k
    g = integer::gcd(num, g);
564
1.06k
    num /= g;
565
1.06k
    den *= r_den/g;
566
567
1.06k
    return *this;
568
1.06k
}
569
570
template <typename IntType>
571
BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
572
202M
{
573
    // Protect against self-modification
574
202M
    IntType r_num = r.num;
575
202M
    IntType r_den = r.den;
576
577
    // Avoid overflow and preserve normalization
578
202M
    IntType gcd1 = integer::gcd(num, r_den);
579
202M
    IntType gcd2 = integer::gcd(r_num, den);
580
202M
    num = (num/gcd1) * (r_num/gcd2);
581
202M
    den = (den/gcd2) * (r_den/gcd1);
582
202M
    return *this;
583
202M
}
584
585
template <typename IntType>
586
BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
587
47.6k
{
588
    // Protect against self-modification
589
47.6k
    IntType r_num = r.num;
590
47.6k
    IntType r_den = r.den;
591
592
    // Avoid repeated construction
593
47.6k
    IntType zero(0);
594
595
    // Trap division by zero
596
47.6k
    if (r_num == zero)
597
0
        BOOST_THROW_EXCEPTION(bad_rational());
598
47.6k
    if (num == zero)
599
147
        return *this;
600
601
    // Avoid overflow and preserve normalization
602
47.4k
    IntType gcd1 = integer::gcd(num, r_num);
603
47.4k
    IntType gcd2 = integer::gcd(r_den, den);
604
47.4k
    num = (num/gcd1) * (r_den/gcd2);
605
47.4k
    den = (den/gcd2) * (r_num/gcd1);
606
607
47.4k
    if (den < zero) {
608
0
        num = -num;
609
0
        den = -den;
610
0
    }
611
47.4k
    return *this;
612
47.6k
}
613
614
615
//
616
// Non-member operators: previously these were provided by Boost.Operator, but these had a number of
617
// drawbacks, most notably, that in order to allow inter-operability with IntType code such as this:
618
//
619
// rational<int> r(3);
620
// assert(r == 3.5); // compiles and passes!!
621
//
622
// Happens to be allowed as well :-(
623
//
624
// There are three possible cases for each operator:
625
// 1) rational op rational.
626
// 2) rational op integer
627
// 3) integer op rational
628
// Cases (1) and (2) are folded into the one function.
629
//
630
template <class IntType, class Arg>
631
BOOST_CXX14_CONSTEXPR
632
inline typename boost::enable_if_c <
633
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
634
   operator + (const rational<IntType>& a, const Arg& b)
635
{
636
      rational<IntType> t(a);
637
      return t += b;
638
}
639
template <class Arg, class IntType>
640
BOOST_CXX14_CONSTEXPR
641
inline typename boost::enable_if_c <
642
   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
643
   operator + (const Arg& b, const rational<IntType>& a)
644
{
645
      rational<IntType> t(a);
646
      return t += b;
647
}
648
649
template <class IntType, class Arg>
650
BOOST_CXX14_CONSTEXPR
651
inline typename boost::enable_if_c <
652
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
653
   operator - (const rational<IntType>& a, const Arg& b)
654
{
655
      rational<IntType> t(a);
656
      return t -= b;
657
}
658
template <class Arg, class IntType>
659
BOOST_CXX14_CONSTEXPR
660
inline typename boost::enable_if_c <
661
   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
662
   operator - (const Arg& b, const rational<IntType>& a)
663
{
664
      rational<IntType> t(a);
665
      return -(t -= b);
666
}
667
668
template <class IntType, class Arg>
669
BOOST_CXX14_CONSTEXPR
670
inline typename boost::enable_if_c <
671
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
672
   operator * (const rational<IntType>& a, const Arg& b)
673
{
674
      rational<IntType> t(a);
675
      return t *= b;
676
}
677
template <class Arg, class IntType>
678
BOOST_CXX14_CONSTEXPR
679
inline typename boost::enable_if_c <
680
   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
681
   operator * (const Arg& b, const rational<IntType>& a)
682
{
683
      rational<IntType> t(a);
684
      return t *= b;
685
}
686
687
template <class IntType, class Arg>
688
BOOST_CXX14_CONSTEXPR
689
inline typename boost::enable_if_c <
690
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
691
   operator / (const rational<IntType>& a, const Arg& b)
692
{
693
      rational<IntType> t(a);
694
      return t /= b;
695
}
696
template <class Arg, class IntType>
697
BOOST_CXX14_CONSTEXPR
698
inline typename boost::enable_if_c <
699
   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
700
   operator / (const Arg& b, const rational<IntType>& a)
701
{
702
      rational<IntType> t(b);
703
      return t /= a;
704
}
705
706
template <class IntType, class Arg>
707
BOOST_CXX14_CONSTEXPR
708
inline typename boost::enable_if_c <
709
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
710
   operator <= (const rational<IntType>& a, const Arg& b)
711
{
712
      return !a.operator>(b);
713
}
714
template <class Arg, class IntType>
715
BOOST_CXX14_CONSTEXPR
716
inline typename boost::enable_if_c <
717
   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
718
   operator <= (const Arg& b, const rational<IntType>& a)
719
{
720
      return a >= b;
721
}
722
723
template <class IntType, class Arg>
724
BOOST_CXX14_CONSTEXPR
725
inline typename boost::enable_if_c <
726
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
727
   operator >= (const rational<IntType>& a, const Arg& b)
728
{
729
      return !a.operator<(b);
730
}
731
template <class Arg, class IntType>
732
BOOST_CXX14_CONSTEXPR
733
inline typename boost::enable_if_c <
734
   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
735
   operator >= (const Arg& b, const rational<IntType>& a)
736
{
737
      return a <= b;
738
}
739
740
template <class IntType, class Arg>
741
BOOST_CONSTEXPR
742
inline typename boost::enable_if_c <
743
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
744
   operator != (const rational<IntType>& a, const Arg& b)
745
{
746
      return !a.operator==(b);
747
}
748
template <class Arg, class IntType>
749
BOOST_CONSTEXPR
750
inline typename boost::enable_if_c <
751
   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
752
   operator != (const Arg& b, const rational<IntType>& a)
753
{
754
      return !(b == a);
755
}
756
757
template <class Arg, class IntType>
758
BOOST_CXX14_CONSTEXPR
759
inline typename boost::enable_if_c <
760
   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
761
   operator < (const Arg& b, const rational<IntType>& a)
762
{
763
      return a.operator>(b);
764
}
765
template <class Arg, class IntType>
766
BOOST_CXX14_CONSTEXPR
767
inline typename boost::enable_if_c <
768
   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
769
   operator > (const Arg& b, const rational<IntType>& a)
770
{
771
      return a.operator<(b);
772
}
773
template <class Arg, class IntType>
774
BOOST_CONSTEXPR
775
inline typename boost::enable_if_c <
776
   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
777
   operator == (const Arg& b, const rational<IntType>& a)
778
{
779
      return a.operator==(b);
780
}
781
782
// Comparison operators
783
template <typename IntType>
784
BOOST_CXX14_CONSTEXPR
785
bool rational<IntType>::operator< (const rational<IntType>& r) const
786
0
{
787
    // Avoid repeated construction
788
0
    int_type const  zero( 0 );
789
790
    // This should really be a class-wide invariant.  The reason for these
791
    // checks is that for 2's complement systems, INT_MIN has no corresponding
792
    // positive, so negating it during normalization keeps it INT_MIN, which
793
    // is bad for later calculations that assume a positive denominator.
794
0
    BOOST_ASSERT( this->den > zero );
795
0
    BOOST_ASSERT( r.den > zero );
796
797
    // Determine relative order by expanding each value to its simple continued
798
    // fraction representation using the Euclidian GCD algorithm.
799
0
    struct { int_type  n, d, q, r; }
800
0
     ts = { this->num, this->den, static_cast<int_type>(this->num / this->den),
801
0
     static_cast<int_type>(this->num % this->den) },
802
0
     rs = { r.num, r.den, static_cast<int_type>(r.num / r.den),
803
0
     static_cast<int_type>(r.num % r.den) };
804
0
    unsigned  reverse = 0u;
805
806
    // Normalize negative moduli by repeatedly adding the (positive) denominator
807
    // and decrementing the quotient.  Later cycles should have all positive
808
    // values, so this only has to be done for the first cycle.  (The rules of
809
    // C++ require a nonnegative quotient & remainder for a nonnegative dividend
810
    // & positive divisor.)
811
0
    while ( ts.r < zero )  { ts.r += ts.d; --ts.q; }
812
0
    while ( rs.r < zero )  { rs.r += rs.d; --rs.q; }
813
814
    // Loop through and compare each variable's continued-fraction components
815
0
    for ( ;; )
816
0
    {
817
        // The quotients of the current cycle are the continued-fraction
818
        // components.  Comparing two c.f. is comparing their sequences,
819
        // stopping at the first difference.
820
0
        if ( ts.q != rs.q )
821
0
        {
822
            // Since reciprocation changes the relative order of two variables,
823
            // and c.f. use reciprocals, the less/greater-than test reverses
824
            // after each index.  (Start w/ non-reversed @ whole-number place.)
825
0
            return reverse ? ts.q > rs.q : ts.q < rs.q;
826
0
        }
827
828
        // Prepare the next cycle
829
0
        reverse ^= 1u;
830
831
0
        if ( (ts.r == zero) || (rs.r == zero) )
832
0
        {
833
            // At least one variable's c.f. expansion has ended
834
0
            break;
835
0
        }
836
837
0
        ts.n = ts.d;         ts.d = ts.r;
838
0
        ts.q = ts.n / ts.d;  ts.r = ts.n % ts.d;
839
0
        rs.n = rs.d;         rs.d = rs.r;
840
0
        rs.q = rs.n / rs.d;  rs.r = rs.n % rs.d;
841
0
    }
842
843
    // Compare infinity-valued components for otherwise equal sequences
844
0
    if ( ts.r == rs.r )
845
0
    {
846
        // Both remainders are zero, so the next (and subsequent) c.f.
847
        // components for both sequences are infinity.  Therefore, the sequences
848
        // and their corresponding values are equal.
849
0
        return false;
850
0
    }
851
0
    else
852
0
    {
853
#ifdef BOOST_MSVC
854
#pragma warning(push)
855
#pragma warning(disable:4800)
856
#endif
857
        // Exactly one of the remainders is zero, so all following c.f.
858
        // components of that variable are infinity, while the other variable
859
        // has a finite next c.f. component.  So that other variable has the
860
        // lesser value (modulo the reversal flag!).
861
0
        return ( ts.r != zero ) != static_cast<bool>( reverse );
862
#ifdef BOOST_MSVC
863
#pragma warning(pop)
864
#endif
865
0
    }
866
0
}
867
868
template <typename IntType>
869
BOOST_CONSTEXPR
870
inline bool rational<IntType>::operator== (const rational<IntType>& r) const
871
5.67M
{
872
5.67M
    return ((num == r.num) && (den == r.den));
873
5.67M
}
874
875
// Invariant check
876
template <typename IntType>
877
BOOST_CXX14_CONSTEXPR
878
inline bool rational<IntType>::test_invariant() const
879
{
880
    return ( this->den > int_type(0) ) && ( integer::gcd(this->num, this->den) ==
881
     int_type(1) );
882
}
883
884
// Normalisation
885
template <typename IntType>
886
BOOST_CXX14_CONSTEXPR void rational<IntType>::normalize()
887
621M
{
888
    // Avoid repeated construction
889
621M
    IntType zero(0);
890
891
621M
    if (den == zero)
892
0
       BOOST_THROW_EXCEPTION(bad_rational());
893
894
    // Handle the case of zero separately, to avoid division by zero
895
621M
    if (num == zero) {
896
252M
        den = IntType(1);
897
252M
        return;
898
252M
    }
899
900
368M
    IntType g = integer::gcd(num, den);
901
902
368M
    num /= g;
903
368M
    den /= g;
904
905
368M
    if (den < -(std::numeric_limits<IntType>::max)()) {
906
0
        BOOST_THROW_EXCEPTION(bad_rational("bad rational: non-zero singular denominator"));
907
0
    }
908
909
    // Ensure that the denominator is positive
910
368M
    if (den < zero) {
911
1.78k
        num = -num;
912
1.78k
        den = -den;
913
1.78k
    }
914
915
368M
    BOOST_ASSERT( this->test_invariant() );
916
368M
}
917
918
#ifndef BOOST_NO_IOSTREAM
919
namespace detail {
920
921
    // A utility class to reset the format flags for an istream at end
922
    // of scope, even in case of exceptions
923
    struct resetter {
924
0
        resetter(std::istream& is) : is_(is), f_(is.flags()) {}
925
0
        ~resetter() { is_.flags(f_); }
926
        std::istream& is_;
927
        std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base
928
    };
929
930
}
931
932
// Input and output
933
template <typename IntType>
934
std::istream& operator>> (std::istream& is, rational<IntType>& r)
935
{
936
    using std::ios;
937
938
    IntType n = IntType(0), d = IntType(1);
939
    char c = 0;
940
    detail::resetter sentry(is);
941
942
    if ( is >> n )
943
    {
944
        if ( is.get(c) )
945
        {
946
            if ( c == '/' )
947
            {
948
                if ( is >> std::noskipws >> d )
949
                    try {
950
                        r.assign( n, d );
951
                    } catch ( bad_rational & ) {        // normalization fail
952
                        try { is.setstate(ios::failbit); }
953
                        catch ( ... ) {}  // don't throw ios_base::failure...
954
                        if ( is.exceptions() & ios::failbit )
955
                            throw;   // ...but the original exception instead
956
                        // ELSE: suppress the exception, use just error flags
957
                    }
958
            }
959
            else
960
                is.setstate( ios::failbit );
961
        }
962
    }
963
964
    return is;
965
}
966
967
// Add manipulators for output format?
968
template <typename IntType>
969
std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
970
{
971
    // The slash directly precedes the denominator, which has no prefixes.
972
    std::ostringstream  ss;
973
974
    ss.copyfmt( os );
975
    ss.tie( NULL );
976
    ss.exceptions( std::ios::goodbit );
977
    ss.width( 0 );
978
    ss << std::noshowpos << std::noshowbase << '/' << r.denominator();
979
980
    // The numerator holds the showpos, internal, and showbase flags.
981
    std::string const   tail = ss.str();
982
    std::streamsize const  w =
983
        os.width() - static_cast<std::streamsize>( tail.size() );
984
985
    ss.clear();
986
    ss.str( "" );
987
    ss.flags( os.flags() );
988
    ss << std::setw( w < 0 || (os.flags() & std::ios::adjustfield) !=
989
                     std::ios::internal ? 0 : w ) << r.numerator();
990
    return os << ss.str() + tail;
991
}
992
#endif  // BOOST_NO_IOSTREAM
993
994
// Type conversion
995
template <typename T, typename IntType>
996
BOOST_CONSTEXPR
997
inline T rational_cast(const rational<IntType>& src)
998
181M
{
999
181M
    return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
1000
181M
}
double boost::rational_cast<double, int>(boost::rational<int> const&)
Line
Count
Source
998
3.40M
{
999
3.40M
    return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
1000
3.40M
}
int boost::rational_cast<int, int>(boost::rational<int> const&)
Line
Count
Source
998
177M
{
999
177M
    return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
1000
177M
}
1001
1002
// Do not use any abs() defined on IntType - it isn't worth it, given the
1003
// difficulties involved (Koenig lookup required, there may not *be* an abs()
1004
// defined, etc etc).
1005
template <typename IntType>
1006
BOOST_CXX14_CONSTEXPR
1007
inline rational<IntType> abs(const rational<IntType>& r)
1008
{
1009
    return r.numerator() >= IntType(0)? r: -r;
1010
}
1011
1012
namespace integer {
1013
1014
template <typename IntType>
1015
struct gcd_evaluator< rational<IntType> >
1016
{
1017
    typedef rational<IntType> result_type,
1018
                              first_argument_type, second_argument_type;
1019
    result_type operator() (  first_argument_type const &a
1020
                           , second_argument_type const &b
1021
                           ) const
1022
    {
1023
        return result_type(integer::gcd(a.numerator(), b.numerator()),
1024
                           integer::lcm(a.denominator(), b.denominator()));
1025
    }
1026
};
1027
1028
template <typename IntType>
1029
struct lcm_evaluator< rational<IntType> >
1030
{
1031
    typedef rational<IntType> result_type,
1032
                              first_argument_type, second_argument_type;
1033
    result_type operator() (  first_argument_type const &a
1034
                           , second_argument_type const &b
1035
                           ) const
1036
    {
1037
        return result_type(integer::lcm(a.numerator(), b.numerator()),
1038
                           integer::gcd(a.denominator(), b.denominator()));
1039
    }
1040
};
1041
1042
} // namespace integer
1043
1044
} // namespace boost
1045
1046
#endif  // BOOST_RATIONAL_HPP