Coverage Report

Created: 2025-07-07 10:01

/work/workdir/UnpackedTarball/cairo/src/cairo-array.c
Line
Count
Source (jump to first uncovered line)
1
/* -*- Mode: c; c-basic-offset: 4; indent-tabs-mode: t; tab-width: 8; -*- */
2
/* cairo - a vector graphics library with display and print output
3
 *
4
 * Copyright © 2004 Red Hat, Inc
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it either under the terms of the GNU Lesser General Public
8
 * License version 2.1 as published by the Free Software Foundation
9
 * (the "LGPL") or, at your option, under the terms of the Mozilla
10
 * Public License Version 1.1 (the "MPL"). If you do not alter this
11
 * notice, a recipient may use your version of this file under either
12
 * the MPL or the LGPL.
13
 *
14
 * You should have received a copy of the LGPL along with this library
15
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
16
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
17
 * You should have received a copy of the MPL along with this library
18
 * in the file COPYING-MPL-1.1
19
 *
20
 * The contents of this file are subject to the Mozilla Public License
21
 * Version 1.1 (the "License"); you may not use this file except in
22
 * compliance with the License. You may obtain a copy of the License at
23
 * http://www.mozilla.org/MPL/
24
 *
25
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
26
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
27
 * the specific language governing rights and limitations.
28
 *
29
 * The Original Code is the cairo graphics library.
30
 *
31
 * The Initial Developer of the Original Code is University of Southern
32
 * California.
33
 *
34
 * Contributor(s):
35
 *  Kristian Høgsberg <krh@redhat.com>
36
 *  Carl Worth <cworth@cworth.org>
37
 */
38
39
#include "cairoint.h"
40
#include "cairo-array-private.h"
41
#include "cairo-error-private.h"
42
43
/**
44
 * _cairo_array_init:
45
 *
46
 * Initialize a new #cairo_array_t object to store objects each of size
47
 * @element_size.
48
 *
49
 * The #cairo_array_t object provides grow-by-doubling storage. It
50
 * never interprets the data passed to it, nor does it provide any
51
 * sort of callback mechanism for freeing resources held onto by
52
 * stored objects.
53
 *
54
 * When finished using the array, _cairo_array_fini() should be
55
 * called to free resources allocated during use of the array.
56
 **/
57
void
58
_cairo_array_init (cairo_array_t *array, unsigned int element_size)
59
33.4M
{
60
33.4M
    array->size = 0;
61
33.4M
    array->num_elements = 0;
62
33.4M
    array->element_size = element_size;
63
33.4M
    array->elements = NULL;
64
33.4M
}
65
66
/**
67
 * _cairo_array_fini:
68
 * @array: A #cairo_array_t
69
 *
70
 * Free all resources associated with @array. After this call, @array
71
 * should not be used again without a subsequent call to
72
 * _cairo_array_init() again first.
73
 **/
74
void
75
_cairo_array_fini (cairo_array_t *array)
76
16.3M
{
77
16.3M
    free (array->elements);
78
16.3M
}
79
80
/**
81
 * _cairo_array_grow_by:
82
 * @array: a #cairo_array_t
83
 *
84
 * Increase the size of @array (if needed) so that there are at least
85
 * @additional free spaces in the array. The actual size of the array
86
 * is always increased by doubling as many times as necessary.
87
 **/
88
cairo_status_t
89
_cairo_array_grow_by (cairo_array_t *array, unsigned int additional)
90
108
{
91
108
    char *new_elements;
92
108
    unsigned int old_size = array->size;
93
108
    unsigned int required_size = array->num_elements + additional;
94
108
    unsigned int new_size;
95
96
    /* check for integer overflow */
97
108
    if (required_size > INT_MAX || required_size < array->num_elements)
98
0
  return _cairo_error (CAIRO_STATUS_NO_MEMORY);
99
100
108
    if (CAIRO_INJECT_FAULT ())
101
0
  return _cairo_error (CAIRO_STATUS_NO_MEMORY);
102
103
108
    if (required_size <= old_size)
104
52
  return CAIRO_STATUS_SUCCESS;
105
106
56
    if (old_size == 0)
107
22
  new_size = 1;
108
34
    else
109
34
  new_size = old_size * 2;
110
111
90
    while (new_size < required_size)
112
34
  new_size = new_size * 2;
113
114
56
    array->size = new_size;
115
56
    new_elements = _cairo_realloc_ab (array->elements,
116
56
                    array->size, array->element_size);
117
118
56
    if (unlikely (new_elements == NULL)) {
119
0
  array->size = old_size;
120
0
  return _cairo_error (CAIRO_STATUS_NO_MEMORY);
121
0
    }
122
123
56
    array->elements = new_elements;
124
125
56
    return CAIRO_STATUS_SUCCESS;
126
56
}
127
128
/**
129
 * _cairo_array_truncate:
130
 * @array: a #cairo_array_t
131
 *
132
 * Truncate size of the array to @num_elements if less than the
133
 * current size. No memory is actually freed. The stored objects
134
 * beyond @num_elements are simply "forgotten".
135
 **/
136
void
137
_cairo_array_truncate (cairo_array_t *array, unsigned int num_elements)
138
56
{
139
56
    if (num_elements < array->num_elements)
140
2
  array->num_elements = num_elements;
141
56
}
142
143
/**
144
 * _cairo_array_index:
145
 * @array: a #cairo_array_t
146
 * Returns: A pointer to the object stored at @index.
147
 *
148
 * If the resulting value is assigned to a pointer to an object of the same
149
 * element_size as initially passed to _cairo_array_init() then that
150
 * pointer may be used for further direct indexing with []. For
151
 * example:
152
 *
153
 * <informalexample><programlisting>
154
 *  cairo_array_t array;
155
 *  double *values;
156
 *
157
 *  _cairo_array_init (&array, sizeof(double));
158
 *  ... calls to _cairo_array_append() here ...
159
 *
160
 *  values = _cairo_array_index (&array, 0);
161
 *      for (i = 0; i < _cairo_array_num_elements (&array); i++)
162
 *      ... use values[i] here ...
163
 * </programlisting></informalexample>
164
 **/
165
void *
166
_cairo_array_index (cairo_array_t *array, unsigned int index)
167
1.01M
{
168
    /* We allow an index of 0 for the no-elements case.
169
     * This makes for cleaner calling code which will often look like:
170
     *
171
     *    elements = _cairo_array_index (array, 0);
172
     *    for (i=0; i < num_elements; i++) {
173
     *        ... use elements[i] here ...
174
     *    }
175
     *
176
     * which in the num_elements==0 case gets the NULL pointer here,
177
     * but never dereferences it.
178
     */
179
1.01M
    if (index == 0 && array->num_elements == 0)
180
1.01M
  return NULL;
181
182
66
    assert (index < array->num_elements);
183
184
66
    return array->elements + (size_t)index * array->element_size;
185
66
}
186
187
/**
188
 * _cairo_array_index_const:
189
 * @array: a #cairo_array_t
190
 * Returns: A pointer to the object stored at @index.
191
 *
192
 * If the resulting value is assigned to a pointer to an object of the same
193
 * element_size as initially passed to _cairo_array_init() then that
194
 * pointer may be used for further direct indexing with []. For
195
 * example:
196
 *
197
 * <informalexample><programlisting>
198
 *  cairo_array_t array;
199
 *  const double *values;
200
 *
201
 *  _cairo_array_init (&array, sizeof(double));
202
 *  ... calls to _cairo_array_append() here ...
203
 *
204
 *  values = _cairo_array_index_const (&array, 0);
205
 *      for (i = 0; i < _cairo_array_num_elements (&array); i++)
206
 *      ... read values[i] here ...
207
 * </programlisting></informalexample>
208
 **/
209
const void *
210
_cairo_array_index_const (const cairo_array_t *array, unsigned int index)
211
8
{
212
    /* We allow an index of 0 for the no-elements case.
213
     * This makes for cleaner calling code which will often look like:
214
     *
215
     *    elements = _cairo_array_index_const (array, 0);
216
     *    for (i=0; i < num_elements; i++) {
217
     *        ... read elements[i] here ...
218
     *    }
219
     *
220
     * which in the num_elements==0 case gets the NULL pointer here,
221
     * but never dereferences it.
222
     */
223
8
    if (index == 0 && array->num_elements == 0)
224
0
  return NULL;
225
226
8
    assert (index < array->num_elements);
227
228
8
    return array->elements + (size_t)index * array->element_size;
229
8
}
230
231
/**
232
 * _cairo_array_copy_element:
233
 * @array: a #cairo_array_t
234
 *
235
 * Copy a single element out of the array from index @index into the
236
 * location pointed to by @dst.
237
 **/
238
void
239
_cairo_array_copy_element (const cairo_array_t *array,
240
         unsigned int         index,
241
         void                *dst)
242
8
{
243
8
    memcpy (dst, _cairo_array_index_const (array, index), array->element_size);
244
8
}
245
246
/**
247
 * _cairo_array_append:
248
 * @array: a #cairo_array_t
249
 *
250
 * Append a single item onto the array by growing the array by at
251
 * least one element, then copying element_size bytes from @element
252
 * into the array. The address of the resulting object within the
253
 * array can be determined with:
254
 *
255
 * _cairo_array_index (array, _cairo_array_num_elements (array) - 1);
256
 *
257
 * Return value: %CAIRO_STATUS_SUCCESS if successful or
258
 * %CAIRO_STATUS_NO_MEMORY if insufficient memory is available for the
259
 * operation.
260
 **/
261
cairo_status_t
262
_cairo_array_append (cairo_array_t  *array,
263
         const void   *element)
264
40
{
265
40
    return _cairo_array_append_multiple (array, element, 1);
266
40
}
267
268
/**
269
 * _cairo_array_append_multiple:
270
 * @array: a #cairo_array_t
271
 *
272
 * Append one or more items onto the array by growing the array by
273
 * @num_elements, then copying @num_elements * element_size bytes from
274
 * @elements into the array.
275
 *
276
 * Return value: %CAIRO_STATUS_SUCCESS if successful or
277
 * %CAIRO_STATUS_NO_MEMORY if insufficient memory is available for the
278
 * operation.
279
 **/
280
cairo_status_t
281
_cairo_array_append_multiple (cairo_array_t *array,
282
            const void  *elements,
283
            unsigned int   num_elements)
284
108
{
285
108
    cairo_status_t status;
286
108
    void *dest;
287
288
108
    status = _cairo_array_allocate (array, num_elements, &dest);
289
108
    if (unlikely (status))
290
0
  return status;
291
292
108
    memcpy (dest, elements, (size_t)num_elements * array->element_size);
293
294
108
    return CAIRO_STATUS_SUCCESS;
295
108
}
296
297
/**
298
 * _cairo_array_allocate:
299
 * @array: a #cairo_array_t
300
 *
301
 * Allocate space at the end of the array for @num_elements additional
302
 * elements, providing the address of the new memory chunk in
303
 * @elements. This memory will be uninitialized, but will be accounted
304
 * for in the return value of _cairo_array_num_elements().
305
 *
306
 * Return value: %CAIRO_STATUS_SUCCESS if successful or
307
 * %CAIRO_STATUS_NO_MEMORY if insufficient memory is available for the
308
 * operation.
309
 **/
310
cairo_status_t
311
_cairo_array_allocate (cairo_array_t   *array,
312
           unsigned int   num_elements,
313
           void   **elements)
314
108
{
315
108
    cairo_status_t status;
316
317
108
    status = _cairo_array_grow_by (array, num_elements);
318
108
    if (unlikely (status))
319
0
  return status;
320
321
108
    assert (array->num_elements + num_elements <= array->size);
322
323
108
    *elements = array->elements + (size_t)array->num_elements * array->element_size;
324
325
108
    array->num_elements += num_elements;
326
327
108
    return CAIRO_STATUS_SUCCESS;
328
108
}
329
330
/**
331
 * _cairo_array_num_elements:
332
 * @array: a #cairo_array_t
333
 * Returns: The number of elements stored in @array.
334
 *
335
 * This space was left intentionally blank, but gtk-doc filled it.
336
 **/
337
unsigned int
338
_cairo_array_num_elements (const cairo_array_t *array)
339
100
{
340
100
    return array->num_elements;
341
100
}
342
343
/**
344
 * _cairo_array_size:
345
 * @array: a #cairo_array_t
346
 * Returns: The number of elements for which there is currently space
347
 * allocated in @array.
348
 *
349
 * This space was left intentionally blank, but gtk-doc filled it.
350
 **/
351
unsigned int
352
_cairo_array_size (const cairo_array_t *array)
353
0
{
354
0
    return array->size;
355
0
}
356
357
/**
358
 * _cairo_user_data_array_init:
359
 * @array: a #cairo_user_data_array_t
360
 *
361
 * Initializes a #cairo_user_data_array_t structure for future
362
 * use. After initialization, the array has no keys. Call
363
 * _cairo_user_data_array_fini() to free any allocated memory
364
 * when done using the array.
365
 **/
366
void
367
_cairo_user_data_array_init (cairo_user_data_array_t *array)
368
33.4M
{
369
33.4M
    _cairo_array_init (array, sizeof (cairo_user_data_slot_t));
370
33.4M
}
371
372
/**
373
 * _cairo_user_data_array_fini:
374
 * @array: a #cairo_user_data_array_t
375
 *
376
 * Destroys all current keys in the user data array and deallocates
377
 * any memory allocated for the array itself.
378
 **/
379
void
380
_cairo_user_data_array_fini (cairo_user_data_array_t *array)
381
16.3M
{
382
16.3M
    unsigned int num_slots;
383
384
16.3M
    num_slots = array->num_elements;
385
16.3M
    if (num_slots) {
386
0
  cairo_user_data_slot_t *slots;
387
388
0
  slots = _cairo_array_index (array, 0);
389
0
  while (num_slots--) {
390
0
      cairo_user_data_slot_t *s = &slots[num_slots];
391
0
      if (s->user_data != NULL && s->destroy != NULL)
392
0
    s->destroy (s->user_data);
393
0
  }
394
0
    }
395
396
16.3M
    _cairo_array_fini (array);
397
16.3M
}
398
399
/**
400
 * _cairo_user_data_array_get_data:
401
 * @array: a #cairo_user_data_array_t
402
 * @key: the address of the #cairo_user_data_key_t the user data was
403
 * attached to
404
 *
405
 * Returns user data previously attached using the specified
406
 * key.  If no user data has been attached with the given key this
407
 * function returns %NULL.
408
 *
409
 * Return value: the user data previously attached or %NULL.
410
 **/
411
void *
412
_cairo_user_data_array_get_data (cairo_user_data_array_t     *array,
413
         const cairo_user_data_key_t *key)
414
1.01M
{
415
1.01M
    unsigned int i, num_slots;
416
1.01M
    cairo_user_data_slot_t *slots;
417
418
    /* We allow this to support degenerate objects such as cairo_surface_nil. */
419
1.01M
    if (array == NULL)
420
0
  return NULL;
421
422
1.01M
    num_slots = array->num_elements;
423
1.01M
    slots = _cairo_array_index (array, 0);
424
1.01M
    for (i = 0; i < num_slots; i++) {
425
0
  if (slots[i].key == key)
426
0
      return slots[i].user_data;
427
0
    }
428
429
1.01M
    return NULL;
430
1.01M
}
431
432
/**
433
 * _cairo_user_data_array_set_data:
434
 * @array: a #cairo_user_data_array_t
435
 * @key: the address of a #cairo_user_data_key_t to attach the user data to
436
 * @user_data: the user data to attach
437
 * @destroy: a #cairo_destroy_func_t which will be called when the
438
 * user data array is destroyed or when new user data is attached using the
439
 * same key.
440
 *
441
 * Attaches user data to a user data array.  To remove user data,
442
 * call this function with the key that was used to set it and %NULL
443
 * for @data.
444
 *
445
 * Return value: %CAIRO_STATUS_SUCCESS or %CAIRO_STATUS_NO_MEMORY if a
446
 * slot could not be allocated for the user data.
447
 **/
448
cairo_status_t
449
_cairo_user_data_array_set_data (cairo_user_data_array_t     *array,
450
         const cairo_user_data_key_t *key,
451
         void          *user_data,
452
         cairo_destroy_func_t       destroy)
453
0
{
454
0
    cairo_status_t status;
455
0
    unsigned int i, num_slots;
456
0
    cairo_user_data_slot_t *slots, *slot, new_slot;
457
458
0
    if (user_data) {
459
0
  new_slot.key = key;
460
0
  new_slot.user_data = user_data;
461
0
  new_slot.destroy = destroy;
462
0
    } else {
463
0
  new_slot.key = NULL;
464
0
  new_slot.user_data = NULL;
465
0
  new_slot.destroy = NULL;
466
0
    }
467
468
0
    slot = NULL;
469
0
    num_slots = array->num_elements;
470
0
    slots = _cairo_array_index (array, 0);
471
0
    for (i = 0; i < num_slots; i++) {
472
0
  if (slots[i].key == key) {
473
0
      slot = &slots[i];
474
0
      if (slot->destroy && slot->user_data)
475
0
    slot->destroy (slot->user_data);
476
0
      break;
477
0
  }
478
0
  if (user_data && slots[i].user_data == NULL) {
479
0
      slot = &slots[i]; /* Have to keep searching for an exact match */
480
0
  }
481
0
    }
482
483
0
    if (slot) {
484
0
  *slot = new_slot;
485
0
  return CAIRO_STATUS_SUCCESS;
486
0
    }
487
488
0
    if (user_data == NULL)
489
0
  return CAIRO_STATUS_SUCCESS;
490
491
0
    status = _cairo_array_append (array, &new_slot);
492
0
    if (unlikely (status))
493
0
  return status;
494
495
0
    return CAIRO_STATUS_SUCCESS;
496
0
}
497
498
cairo_status_t
499
_cairo_user_data_array_copy (cairo_user_data_array_t  *dst,
500
           const cairo_user_data_array_t  *src)
501
0
{
502
    /* discard any existing user-data */
503
0
    if (dst->num_elements != 0) {
504
0
  _cairo_user_data_array_fini (dst);
505
0
  _cairo_user_data_array_init (dst);
506
0
    }
507
508
    /* don't call _cairo_array_append_multiple if there's nothing to do,
509
     * as it assumes at least 1 element is to be appended */
510
0
    if (src->num_elements == 0)
511
0
        return CAIRO_STATUS_SUCCESS;
512
513
0
    return _cairo_array_append_multiple (dst,
514
0
           _cairo_array_index_const (src, 0),
515
0
           src->num_elements);
516
0
}
517
518
void
519
_cairo_user_data_array_foreach (cairo_user_data_array_t     *array,
520
        void (*func) (const void *key,
521
                void *elt,
522
                void *closure),
523
        void *closure)
524
0
{
525
0
    cairo_user_data_slot_t *slots;
526
0
    unsigned int i, num_slots;
527
528
0
    num_slots = array->num_elements;
529
0
    slots = _cairo_array_index (array, 0);
530
0
    for (i = 0; i < num_slots; i++) {
531
0
  if (slots[i].user_data != NULL)
532
0
      func (slots[i].key, slots[i].user_data, closure);
533
0
    }
534
0
}
535
536
void
537
_cairo_array_sort (const cairo_array_t *array, int (*compar)(const void *, const void *))
538
4
{
539
4
    qsort (array->elements, array->num_elements, array->element_size, compar);
540
4
}