Coverage Report

Created: 2025-07-07 10:01

/work/workdir/UnpackedTarball/cairo/src/cairo-bentley-ottmann-rectangular.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright © 2004 Carl Worth
3
 * Copyright © 2006 Red Hat, Inc.
4
 * Copyright © 2009 Chris Wilson
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it either under the terms of the GNU Lesser General Public
8
 * License version 2.1 as published by the Free Software Foundation
9
 * (the "LGPL") or, at your option, under the terms of the Mozilla
10
 * Public License Version 1.1 (the "MPL"). If you do not alter this
11
 * notice, a recipient may use your version of this file under either
12
 * the MPL or the LGPL.
13
 *
14
 * You should have received a copy of the LGPL along with this library
15
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
16
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
17
 * You should have received a copy of the MPL along with this library
18
 * in the file COPYING-MPL-1.1
19
 *
20
 * The contents of this file are subject to the Mozilla Public License
21
 * Version 1.1 (the "License"); you may not use this file except in
22
 * compliance with the License. You may obtain a copy of the License at
23
 * http://www.mozilla.org/MPL/
24
 *
25
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
26
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
27
 * the specific language governing rights and limitations.
28
 *
29
 * The Original Code is the cairo graphics library.
30
 *
31
 * The Initial Developer of the Original Code is Carl Worth
32
 *
33
 * Contributor(s):
34
 *  Carl D. Worth <cworth@cworth.org>
35
 *  Chris Wilson <chris@chris-wilson.co.uk>
36
 */
37
38
/* Provide definitions for standalone compilation */
39
#include "cairoint.h"
40
41
#include "cairo-boxes-private.h"
42
#include "cairo-error-private.h"
43
#include "cairo-combsort-inline.h"
44
#include "cairo-list-private.h"
45
#include "cairo-traps-private.h"
46
47
#include <setjmp.h>
48
49
typedef struct _rectangle rectangle_t;
50
typedef struct _edge edge_t;
51
52
struct _edge {
53
    edge_t *next, *prev;
54
    edge_t *right;
55
    cairo_fixed_t x, top;
56
    int dir;
57
};
58
59
struct _rectangle {
60
    edge_t left, right;
61
    int32_t top, bottom;
62
};
63
64
#define UNROLL3(x) x x x
65
66
/* the parent is always given by index/2 */
67
24.1k
#define PQ_PARENT_INDEX(i) ((i) >> 1)
68
177k
#define PQ_FIRST_ENTRY 1
69
70
/* left and right children are index * 2 and (index * 2) +1 respectively */
71
24.1k
#define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
72
73
typedef struct _sweep_line {
74
    rectangle_t **rectangles;
75
    rectangle_t **stop;
76
    edge_t head, tail, *insert, *cursor;
77
    int32_t current_y;
78
    int32_t last_y;
79
    int stop_size;
80
81
    int32_t insert_x;
82
    cairo_fill_rule_t fill_rule;
83
84
    cairo_bool_t do_traps;
85
    void *container;
86
87
    jmp_buf unwind;
88
} sweep_line_t;
89
90
#define DEBUG_TRAPS 0
91
92
#if DEBUG_TRAPS
93
static void
94
dump_traps (cairo_traps_t *traps, const char *filename)
95
{
96
    FILE *file;
97
    int n;
98
99
    if (getenv ("CAIRO_DEBUG_TRAPS") == NULL)
100
  return;
101
102
    file = fopen (filename, "a");
103
    if (file != NULL) {
104
  for (n = 0; n < traps->num_traps; n++) {
105
      fprintf (file, "%d %d L:(%d, %d), (%d, %d) R:(%d, %d), (%d, %d)\n",
106
         traps->traps[n].top,
107
         traps->traps[n].bottom,
108
         traps->traps[n].left.p1.x,
109
         traps->traps[n].left.p1.y,
110
         traps->traps[n].left.p2.x,
111
         traps->traps[n].left.p2.y,
112
         traps->traps[n].right.p1.x,
113
         traps->traps[n].right.p1.y,
114
         traps->traps[n].right.p2.x,
115
         traps->traps[n].right.p2.y);
116
  }
117
  fprintf (file, "\n");
118
  fclose (file);
119
    }
120
}
121
#else
122
#define dump_traps(traps, filename)
123
#endif
124
125
static inline int
126
rectangle_compare_start (const rectangle_t *a,
127
       const rectangle_t *b)
128
138k
{
129
138k
    return a->top - b->top;
130
138k
}
131
132
static inline int
133
rectangle_compare_stop (const rectangle_t *a,
134
       const rectangle_t *b)
135
43.8k
{
136
43.8k
    return a->bottom - b->bottom;
137
43.8k
}
138
139
static inline void
140
pqueue_push (sweep_line_t *sweep, rectangle_t *rectangle)
141
37.4k
{
142
37.4k
    rectangle_t **elements;
143
37.4k
    int i, parent;
144
145
37.4k
    elements = sweep->stop;
146
37.4k
    for (i = ++sweep->stop_size;
147
37.4k
   i != PQ_FIRST_ENTRY &&
148
37.4k
   rectangle_compare_stop (rectangle,
149
24.1k
         elements[parent = PQ_PARENT_INDEX (i)]) < 0;
150
37.4k
   i = parent)
151
29
    {
152
29
  elements[i] = elements[parent];
153
29
    }
154
155
37.4k
    elements[i] = rectangle;
156
37.4k
}
157
158
static inline void
159
rectangle_pop_stop (sweep_line_t *sweep)
160
37.4k
{
161
37.4k
    rectangle_t **elements = sweep->stop;
162
37.4k
    rectangle_t *tail;
163
37.4k
    int child, i;
164
165
37.4k
    tail = elements[sweep->stop_size--];
166
37.4k
    if (sweep->stop_size == 0) {
167
13.2k
  elements[PQ_FIRST_ENTRY] = NULL;
168
13.2k
  return;
169
13.2k
    }
170
171
24.1k
    for (i = PQ_FIRST_ENTRY;
172
24.1k
   (child = PQ_LEFT_CHILD_INDEX (i)) <= sweep->stop_size;
173
24.1k
   i = child)
174
10.8k
    {
175
10.8k
  if (child != sweep->stop_size &&
176
10.8k
      rectangle_compare_stop (elements[child+1],
177
8.89k
            elements[child]) < 0)
178
0
  {
179
0
      child++;
180
0
  }
181
182
10.8k
  if (rectangle_compare_stop (elements[child], tail) >= 0)
183
10.8k
      break;
184
185
0
  elements[i] = elements[child];
186
0
    }
187
24.1k
    elements[i] = tail;
188
24.1k
}
189
190
static inline rectangle_t *
191
rectangle_pop_start (sweep_line_t *sweep_line)
192
50.7k
{
193
50.7k
    return *sweep_line->rectangles++;
194
50.7k
}
195
196
static inline rectangle_t *
197
rectangle_peek_stop (sweep_line_t *sweep_line)
198
65.3k
{
199
65.3k
    return sweep_line->stop[PQ_FIRST_ENTRY];
200
65.3k
}
201
202
CAIRO_COMBSORT_DECLARE (_rectangle_sort,
203
      rectangle_t *,
204
      rectangle_compare_start)
205
206
static void
207
sweep_line_init (sweep_line_t  *sweep_line,
208
     rectangle_t  **rectangles,
209
     int      num_rectangles,
210
     cairo_fill_rule_t fill_rule,
211
     cairo_bool_t  do_traps,
212
     void   *container)
213
13.2k
{
214
13.2k
    rectangles[-2] = NULL;
215
13.2k
    rectangles[-1] = NULL;
216
13.2k
    rectangles[num_rectangles] = NULL;
217
13.2k
    sweep_line->rectangles = rectangles;
218
13.2k
    sweep_line->stop = rectangles - 2;
219
13.2k
    sweep_line->stop_size = 0;
220
221
13.2k
    sweep_line->insert = NULL;
222
13.2k
    sweep_line->insert_x = INT_MAX;
223
13.2k
    sweep_line->cursor = &sweep_line->tail;
224
225
13.2k
    sweep_line->head.dir = 0;
226
13.2k
    sweep_line->head.x = INT32_MIN;
227
13.2k
    sweep_line->head.right = NULL;
228
13.2k
    sweep_line->head.prev = NULL;
229
13.2k
    sweep_line->head.next = &sweep_line->tail;
230
13.2k
    sweep_line->tail.prev = &sweep_line->head;
231
13.2k
    sweep_line->tail.next = NULL;
232
13.2k
    sweep_line->tail.right = NULL;
233
13.2k
    sweep_line->tail.x = INT32_MAX;
234
13.2k
    sweep_line->tail.dir = 0;
235
236
13.2k
    sweep_line->current_y = INT32_MIN;
237
13.2k
    sweep_line->last_y = INT32_MIN;
238
239
13.2k
    sweep_line->fill_rule = fill_rule;
240
13.2k
    sweep_line->container = container;
241
13.2k
    sweep_line->do_traps = do_traps;
242
13.2k
}
243
244
static void
245
edge_end_box (sweep_line_t *sweep_line, edge_t *left, int32_t bot)
246
14.5k
{
247
14.5k
    cairo_status_t status = CAIRO_STATUS_SUCCESS;
248
249
    /* Only emit (trivial) non-degenerate trapezoids with positive height. */
250
14.5k
    if (likely (left->top < bot)) {
251
14.5k
  if (sweep_line->do_traps) {
252
0
      cairo_line_t _left = {
253
0
    { left->x, left->top },
254
0
    { left->x, bot },
255
0
      }, _right = {
256
0
    { left->right->x, left->top },
257
0
    { left->right->x, bot },
258
0
      };
259
0
      _cairo_traps_add_trap (sweep_line->container, left->top, bot, &_left, &_right);
260
0
      status = _cairo_traps_status ((cairo_traps_t *) sweep_line->container);
261
14.5k
  } else {
262
14.5k
      cairo_box_t box;
263
264
14.5k
      box.p1.x = left->x;
265
14.5k
      box.p1.y = left->top;
266
14.5k
      box.p2.x = left->right->x;
267
14.5k
      box.p2.y = bot;
268
269
14.5k
      status = _cairo_boxes_add (sweep_line->container,
270
14.5k
               CAIRO_ANTIALIAS_DEFAULT,
271
14.5k
               &box);
272
14.5k
  }
273
14.5k
    }
274
14.5k
    if (unlikely (status))
275
0
  longjmp (sweep_line->unwind, status);
276
277
14.5k
    left->right = NULL;
278
14.5k
}
279
280
/* Start a new trapezoid at the given top y coordinate, whose edges
281
 * are `edge' and `edge->next'. If `edge' already has a trapezoid,
282
 * then either add it to the traps in `traps', if the trapezoid's
283
 * right edge differs from `edge->next', or do nothing if the new
284
 * trapezoid would be a continuation of the existing one. */
285
static inline void
286
edge_start_or_continue_box (sweep_line_t *sweep_line,
287
          edge_t  *left,
288
          edge_t  *right,
289
          int    top)
290
14.6k
{
291
14.6k
    if (left->right == right)
292
0
  return;
293
294
14.6k
    if (left->right != NULL) {
295
58
  if (left->right->x == right->x) {
296
      /* continuation on right, so just swap edges */
297
58
      left->right = right;
298
58
      return;
299
58
  }
300
301
0
  edge_end_box (sweep_line, left, top);
302
0
    }
303
304
14.5k
    if (left->x != right->x) {
305
14.5k
  left->top = top;
306
14.5k
  left->right = right;
307
14.5k
    }
308
14.5k
}
309
/*
310
 * Merge two sorted edge lists.
311
 * Input:
312
 *  - head_a: The head of the first list.
313
 *  - head_b: The head of the second list; head_b cannot be NULL.
314
 * Output:
315
 * Returns the head of the merged list.
316
 *
317
 * Implementation notes:
318
 * To make it fast (in particular, to reduce to an insertion sort whenever
319
 * one of the two input lists only has a single element) we iterate through
320
 * a list until its head becomes greater than the head of the other list,
321
 * then we switch their roles. As soon as one of the two lists is empty, we
322
 * just attach the other one to the current list and exit.
323
 * Writes to memory are only needed to "switch" lists (as it also requires
324
 * attaching to the output list the list which we will be iterating next) and
325
 * to attach the last non-empty list.
326
 */
327
static edge_t *
328
merge_sorted_edges (edge_t *head_a, edge_t *head_b)
329
37.4k
{
330
37.4k
    edge_t *head, *prev;
331
37.4k
    int32_t x;
332
333
37.4k
    prev = head_a->prev;
334
37.4k
    if (head_a->x <= head_b->x) {
335
22.8k
  head = head_a;
336
22.8k
    } else {
337
14.5k
  head_b->prev = prev;
338
14.5k
  head = head_b;
339
14.5k
  goto start_with_b;
340
14.5k
    }
341
342
22.9k
    do {
343
22.9k
  x = head_b->x;
344
74.3k
  while (head_a != NULL && head_a->x <= x) {
345
51.4k
      prev = head_a;
346
51.4k
      head_a = head_a->next;
347
51.4k
  }
348
349
22.9k
  head_b->prev = prev;
350
22.9k
  prev->next = head_b;
351
22.9k
  if (head_a == NULL)
352
0
      return head;
353
354
37.4k
start_with_b:
355
37.4k
  x = head_a->x;
356
207k
  while (head_b != NULL && head_b->x <= x) {
357
169k
      prev = head_b;
358
169k
      head_b = head_b->next;
359
169k
  }
360
361
37.4k
  head_a->prev = prev;
362
37.4k
  prev->next = head_a;
363
37.4k
  if (head_b == NULL)
364
37.4k
      return head;
365
37.4k
    } while (1);
366
22.8k
}
367
368
/*
369
 * Sort (part of) a list.
370
 * Input:
371
 *  - list: The list to be sorted; list cannot be NULL.
372
 *  - limit: Recursion limit.
373
 * Output:
374
 *  - head_out: The head of the sorted list containing the first 2^(level+1) elements of the
375
 *              input list; if the input list has fewer elements, head_out be a sorted list
376
 *              containing all the elements of the input list.
377
 * Returns the head of the list of unprocessed elements (NULL if the sorted list contains
378
 * all the elements of the input list).
379
 *
380
 * Implementation notes:
381
 * Special case single element list, unroll/inline the sorting of the first two elements.
382
 * Some tail recursion is used since we iterate on the bottom-up solution of the problem
383
 * (we start with a small sorted list and keep merging other lists of the same size to it).
384
 */
385
static edge_t *
386
sort_edges (edge_t  *list,
387
      unsigned int  level,
388
      edge_t **head_out)
389
37.4k
{
390
37.4k
    edge_t *head_other, *remaining;
391
37.4k
    unsigned int i;
392
393
37.4k
    head_other = list->next;
394
395
37.4k
    if (head_other == NULL) {
396
0
  *head_out = list;
397
0
  return NULL;
398
0
    }
399
400
37.4k
    remaining = head_other->next;
401
37.4k
    if (list->x <= head_other->x) {
402
37.4k
  *head_out = list;
403
37.4k
  head_other->next = NULL;
404
37.4k
    } else {
405
0
  *head_out = head_other;
406
0
  head_other->prev = list->prev;
407
0
  head_other->next = list;
408
0
  list->prev = head_other;
409
0
  list->next = NULL;
410
0
    }
411
412
60.2k
    for (i = 0; i < level && remaining; i++) {
413
22.8k
  remaining = sort_edges (remaining, i, &head_other);
414
22.8k
  *head_out = merge_sorted_edges (*head_out, head_other);
415
22.8k
    }
416
417
37.4k
    return remaining;
418
37.4k
}
419
420
static edge_t *
421
merge_unsorted_edges (edge_t *head, edge_t *unsorted)
422
14.5k
{
423
14.5k
    sort_edges (unsorted, UINT_MAX, &unsorted);
424
14.5k
    return merge_sorted_edges (head, unsorted);
425
14.5k
}
426
427
static void
428
active_edges_insert (sweep_line_t *sweep)
429
14.5k
{
430
14.5k
    edge_t *prev;
431
14.5k
    int x;
432
433
14.5k
    x = sweep->insert_x;
434
14.5k
    prev = sweep->cursor;
435
14.5k
    if (prev->x > x) {
436
13.2k
  do {
437
13.2k
      prev = prev->prev;
438
13.2k
  } while (prev->x > x);
439
13.2k
    } else {
440
1.29k
  while (prev->next->x < x)
441
0
      prev = prev->next;
442
1.29k
    }
443
444
14.5k
    prev->next = merge_unsorted_edges (prev->next, sweep->insert);
445
14.5k
    sweep->cursor = sweep->insert;
446
14.5k
    sweep->insert = NULL;
447
14.5k
    sweep->insert_x = INT_MAX;
448
14.5k
}
449
450
static inline void
451
active_edges_to_traps (sweep_line_t *sweep)
452
14.6k
{
453
14.6k
    int top = sweep->current_y;
454
14.6k
    edge_t *pos;
455
456
14.6k
    if (sweep->last_y == sweep->current_y)
457
0
  return;
458
459
14.6k
    if (sweep->insert)
460
14.5k
  active_edges_insert (sweep);
461
462
14.6k
    pos = sweep->head.next;
463
14.6k
    if (pos == &sweep->tail)
464
0
  return;
465
466
14.6k
    if (sweep->fill_rule == CAIRO_FILL_RULE_WINDING) {
467
12.0k
  do {
468
12.0k
      edge_t *left, *right;
469
12.0k
      int winding;
470
471
12.0k
      left = pos;
472
12.0k
      winding = left->dir;
473
474
12.0k
      right = left->next;
475
476
      /* Check if there is a co-linear edge with an existing trap */
477
30.4k
      while (right->x == left->x) {
478
18.3k
    if (right->right != NULL) {
479
0
        assert (left->right == NULL);
480
        /* continuation on left */
481
0
        left->top = right->top;
482
0
        left->right = right->right;
483
0
        right->right = NULL;
484
0
    }
485
18.3k
    winding += right->dir;
486
18.3k
    right = right->next;
487
18.3k
      }
488
489
12.0k
      if (winding == 0) {
490
0
    if (left->right != NULL)
491
0
        edge_end_box (sweep, left, top);
492
0
    pos = right;
493
0
    continue;
494
0
      }
495
496
30.5k
      do {
497
    /* End all subsumed traps */
498
30.5k
    if (unlikely (right->right != NULL))
499
0
        edge_end_box (sweep, right, top);
500
501
    /* Greedily search for the closing edge, so that we generate
502
     * the * maximal span width with the minimal number of
503
     * boxes.
504
     */
505
30.5k
    winding += right->dir;
506
30.5k
    if (winding == 0 && right->x != right->next->x)
507
12.0k
        break;
508
509
18.5k
    right = right->next;
510
18.5k
      } while (TRUE);
511
512
0
      edge_start_or_continue_box (sweep, left, right, top);
513
514
12.0k
      pos = right->next;
515
12.0k
  } while (pos != &sweep->tail);
516
12.0k
    } else {
517
2.58k
  do {
518
2.58k
      edge_t *right = pos->next;
519
2.58k
      int count = 0;
520
521
11.5k
      do {
522
    /* End all subsumed traps */
523
11.5k
    if (unlikely (right->right != NULL))
524
0
        edge_end_box (sweep, right, top);
525
526
        /* skip co-linear edges */
527
11.5k
    if (++count & 1 && right->x != right->next->x)
528
2.58k
        break;
529
530
8.94k
    right = right->next;
531
8.94k
      } while (TRUE);
532
533
0
      edge_start_or_continue_box (sweep, pos, right, top);
534
535
2.58k
      pos = right->next;
536
2.58k
  } while (pos != &sweep->tail);
537
2.56k
    }
538
539
14.6k
    sweep->last_y = sweep->current_y;
540
14.6k
}
541
542
static inline void
543
sweep_line_delete_edge (sweep_line_t *sweep, edge_t *edge)
544
74.8k
{
545
74.8k
    if (edge->right != NULL) {
546
24.1k
  edge_t *next = edge->next;
547
24.1k
  if (next->x == edge->x) {
548
9.57k
      next->top = edge->top;
549
9.57k
      next->right = edge->right;
550
9.57k
  } else
551
14.5k
      edge_end_box (sweep, edge, sweep->current_y);
552
24.1k
    }
553
554
74.8k
    if (sweep->cursor == edge)
555
14.5k
  sweep->cursor = edge->prev;
556
557
74.8k
    edge->prev->next = edge->next;
558
74.8k
    edge->next->prev = edge->prev;
559
74.8k
}
560
561
static inline cairo_bool_t
562
sweep_line_delete (sweep_line_t *sweep, rectangle_t *rectangle)
563
37.4k
{
564
37.4k
    cairo_bool_t update;
565
566
37.4k
    update = TRUE;
567
37.4k
    if (sweep->fill_rule == CAIRO_FILL_RULE_WINDING &&
568
37.4k
  rectangle->left.prev->dir == rectangle->left.dir)
569
11.9k
    {
570
11.9k
  update = rectangle->left.next != &rectangle->right;
571
11.9k
    }
572
573
37.4k
    sweep_line_delete_edge (sweep, &rectangle->left);
574
37.4k
    sweep_line_delete_edge (sweep, &rectangle->right);
575
576
37.4k
    rectangle_pop_stop (sweep);
577
37.4k
    return update;
578
37.4k
}
579
580
static inline void
581
sweep_line_insert (sweep_line_t *sweep, rectangle_t *rectangle)
582
37.4k
{
583
37.4k
    if (sweep->insert)
584
22.8k
  sweep->insert->prev = &rectangle->right;
585
37.4k
    rectangle->right.next = sweep->insert;
586
37.4k
    rectangle->right.prev = &rectangle->left;
587
37.4k
    rectangle->left.next = &rectangle->right;
588
37.4k
    rectangle->left.prev = NULL;
589
37.4k
    sweep->insert = &rectangle->left;
590
37.4k
    if (rectangle->left.x < sweep->insert_x)
591
14.5k
  sweep->insert_x = rectangle->left.x;
592
593
37.4k
    pqueue_push (sweep, rectangle);
594
37.4k
}
595
596
static cairo_status_t
597
_cairo_bentley_ottmann_tessellate_rectangular (rectangle_t  **rectangles,
598
                 int        num_rectangles,
599
                 cairo_fill_rule_t    fill_rule,
600
                 cairo_bool_t    do_traps,
601
                 void     *container)
602
13.2k
{
603
13.2k
    sweep_line_t sweep_line;
604
13.2k
    rectangle_t *rectangle;
605
13.2k
    cairo_status_t status;
606
13.2k
    cairo_bool_t update;
607
608
13.2k
    sweep_line_init (&sweep_line,
609
13.2k
         rectangles, num_rectangles,
610
13.2k
         fill_rule,
611
13.2k
         do_traps, container);
612
13.2k
    if ((status = setjmp (sweep_line.unwind)))
613
0
  return status;
614
615
13.2k
    update = FALSE;
616
617
13.2k
    rectangle = rectangle_pop_start (&sweep_line);
618
14.5k
    do {
619
14.5k
  if (rectangle->top != sweep_line.current_y) {
620
14.5k
      rectangle_t *stop;
621
622
14.5k
      stop = rectangle_peek_stop (&sweep_line);
623
14.6k
      while (stop != NULL && stop->bottom < rectangle->top) {
624
29
    if (stop->bottom != sweep_line.current_y) {
625
29
        if (update) {
626
29
      active_edges_to_traps (&sweep_line);
627
29
      update = FALSE;
628
29
        }
629
630
29
        sweep_line.current_y = stop->bottom;
631
29
    }
632
633
29
    update |= sweep_line_delete (&sweep_line, stop);
634
29
    stop = rectangle_peek_stop (&sweep_line);
635
29
      }
636
637
14.5k
      if (update) {
638
1.29k
    active_edges_to_traps (&sweep_line);
639
1.29k
    update = FALSE;
640
1.29k
      }
641
642
14.5k
      sweep_line.current_y = rectangle->top;
643
14.5k
  }
644
645
37.4k
  do {
646
37.4k
      sweep_line_insert (&sweep_line, rectangle);
647
37.4k
  } while ((rectangle = rectangle_pop_start (&sweep_line)) != NULL &&
648
37.4k
     sweep_line.current_y == rectangle->top);
649
14.5k
  update = TRUE;
650
14.5k
    } while (rectangle);
651
652
50.6k
    while ((rectangle = rectangle_peek_stop (&sweep_line)) != NULL) {
653
37.4k
  if (rectangle->bottom != sweep_line.current_y) {
654
13.2k
      if (update) {
655
13.2k
    active_edges_to_traps (&sweep_line);
656
13.2k
    update = FALSE;
657
13.2k
      }
658
13.2k
      sweep_line.current_y = rectangle->bottom;
659
13.2k
  }
660
661
37.4k
  update |= sweep_line_delete (&sweep_line, rectangle);
662
37.4k
    }
663
664
13.2k
    return CAIRO_STATUS_SUCCESS;
665
13.2k
}
666
667
cairo_status_t
668
_cairo_bentley_ottmann_tessellate_rectangular_traps (cairo_traps_t *traps,
669
                 cairo_fill_rule_t fill_rule)
670
0
{
671
0
    rectangle_t stack_rectangles[CAIRO_STACK_ARRAY_LENGTH (rectangle_t)];
672
0
    rectangle_t *stack_rectangles_ptrs[ARRAY_LENGTH (stack_rectangles) + 3];
673
0
    rectangle_t *rectangles, **rectangles_ptrs;
674
0
    cairo_status_t status;
675
0
    int i;
676
677
0
   assert (traps->is_rectangular);
678
679
0
    if (unlikely (traps->num_traps <= 1)) {
680
0
        if (traps->num_traps == 1) {
681
0
            cairo_trapezoid_t *trap = traps->traps;
682
0
            if (trap->left.p1.x > trap->right.p1.x) {
683
0
                cairo_line_t tmp = trap->left;
684
0
                trap->left = trap->right;
685
0
                trap->right = tmp;
686
0
            }
687
0
        }
688
0
  return CAIRO_STATUS_SUCCESS;
689
0
    }
690
691
0
    dump_traps (traps, "bo-rects-traps-in.txt");
692
693
0
    rectangles = stack_rectangles;
694
0
    rectangles_ptrs = stack_rectangles_ptrs;
695
0
    if (traps->num_traps > ARRAY_LENGTH (stack_rectangles)) {
696
0
  rectangles = _cairo_malloc_ab_plus_c (traps->num_traps,
697
0
                sizeof (rectangle_t) +
698
0
                sizeof (rectangle_t *),
699
0
                3*sizeof (rectangle_t *));
700
0
  if (unlikely (rectangles == NULL))
701
0
      return _cairo_error (CAIRO_STATUS_NO_MEMORY);
702
703
0
  rectangles_ptrs = (rectangle_t **) (rectangles + traps->num_traps);
704
0
    }
705
706
0
    for (i = 0; i < traps->num_traps; i++) {
707
0
  if (traps->traps[i].left.p1.x < traps->traps[i].right.p1.x) {
708
0
      rectangles[i].left.x = traps->traps[i].left.p1.x;
709
0
      rectangles[i].left.dir = 1;
710
711
0
      rectangles[i].right.x = traps->traps[i].right.p1.x;
712
0
      rectangles[i].right.dir = -1;
713
0
  } else {
714
0
      rectangles[i].right.x = traps->traps[i].left.p1.x;
715
0
      rectangles[i].right.dir = 1;
716
717
0
      rectangles[i].left.x = traps->traps[i].right.p1.x;
718
0
      rectangles[i].left.dir = -1;
719
0
  }
720
721
0
  rectangles[i].left.right = NULL;
722
0
  rectangles[i].right.right = NULL;
723
724
0
  rectangles[i].top = traps->traps[i].top;
725
0
  rectangles[i].bottom = traps->traps[i].bottom;
726
727
0
  rectangles_ptrs[i+2] = &rectangles[i];
728
0
    }
729
    /* XXX incremental sort */
730
0
    _rectangle_sort (rectangles_ptrs+2, i);
731
732
0
    _cairo_traps_clear (traps);
733
0
    status = _cairo_bentley_ottmann_tessellate_rectangular (rectangles_ptrs+2, i,
734
0
                  fill_rule,
735
0
                  TRUE, traps);
736
0
    traps->is_rectilinear = TRUE;
737
0
    traps->is_rectangular = TRUE;
738
739
0
    if (rectangles != stack_rectangles)
740
0
  free (rectangles);
741
742
0
    dump_traps (traps, "bo-rects-traps-out.txt");
743
744
0
    return status;
745
0
}
746
747
cairo_status_t
748
_cairo_bentley_ottmann_tessellate_boxes (const cairo_boxes_t *in,
749
           cairo_fill_rule_t fill_rule,
750
           cairo_boxes_t *out)
751
21.4k
{
752
21.4k
    rectangle_t stack_rectangles[CAIRO_STACK_ARRAY_LENGTH (rectangle_t)];
753
21.4k
    rectangle_t *stack_rectangles_ptrs[ARRAY_LENGTH (stack_rectangles) + 3];
754
21.4k
    rectangle_t *rectangles, **rectangles_ptrs;
755
21.4k
    rectangle_t *stack_rectangles_chain[CAIRO_STACK_ARRAY_LENGTH (rectangle_t *) ];
756
21.4k
    rectangle_t **rectangles_chain = NULL;
757
21.4k
    const struct _cairo_boxes_chunk *chunk;
758
21.4k
    cairo_status_t status;
759
21.4k
    int i, j, y_min, y_max;
760
761
21.4k
    if (unlikely (in->num_boxes == 0)) {
762
7.20k
  _cairo_boxes_clear (out);
763
7.20k
  return CAIRO_STATUS_SUCCESS;
764
7.20k
    }
765
766
14.2k
    if (in->num_boxes == 1) {
767
993
  if (in == out) {
768
993
      cairo_box_t *box = &in->chunks.base[0];
769
770
993
      if (box->p1.x > box->p2.x) {
771
0
    cairo_fixed_t tmp = box->p1.x;
772
0
    box->p1.x = box->p2.x;
773
0
    box->p2.x = tmp;
774
0
      }
775
993
  } else {
776
0
      cairo_box_t box = in->chunks.base[0];
777
778
0
      if (box.p1.x > box.p2.x) {
779
0
    cairo_fixed_t tmp = box.p1.x;
780
0
    box.p1.x = box.p2.x;
781
0
    box.p2.x = tmp;
782
0
      }
783
784
0
      _cairo_boxes_clear (out);
785
0
      status = _cairo_boxes_add (out, CAIRO_ANTIALIAS_DEFAULT, &box);
786
0
      assert (status == CAIRO_STATUS_SUCCESS);
787
0
  }
788
993
  return CAIRO_STATUS_SUCCESS;
789
993
    }
790
791
13.2k
    y_min = INT_MAX; y_max = INT_MIN;
792
26.6k
    for (chunk = &in->chunks; chunk != NULL; chunk = chunk->next) {
793
13.3k
  const cairo_box_t *box = chunk->base;
794
50.7k
  for (i = 0; i < chunk->count; i++) {
795
37.4k
      if (box[i].p1.y < y_min)
796
13.2k
    y_min = box[i].p1.y;
797
37.4k
      if (box[i].p1.y > y_max)
798
14.5k
    y_max = box[i].p1.y;
799
37.4k
  }
800
13.3k
    }
801
13.2k
    y_min = _cairo_fixed_integer_floor (y_min);
802
13.2k
    y_max = _cairo_fixed_integer_floor (y_max) + 1;
803
13.2k
    y_max -= y_min;
804
805
13.2k
    if (y_max < in->num_boxes) {
806
12.0k
  rectangles_chain = stack_rectangles_chain;
807
12.0k
  if (y_max > ARRAY_LENGTH (stack_rectangles_chain)) {
808
0
      rectangles_chain = _cairo_malloc_ab (y_max, sizeof (rectangle_t *));
809
0
      if (unlikely (rectangles_chain == NULL))
810
0
    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
811
0
  }
812
12.0k
  memset (rectangles_chain, 0, y_max * sizeof (rectangle_t*));
813
12.0k
    }
814
815
13.2k
    rectangles = stack_rectangles;
816
13.2k
    rectangles_ptrs = stack_rectangles_ptrs;
817
13.2k
    if (in->num_boxes > ARRAY_LENGTH (stack_rectangles)) {
818
19
  rectangles = _cairo_malloc_ab_plus_c (in->num_boxes,
819
19
                sizeof (rectangle_t) +
820
19
                sizeof (rectangle_t *),
821
19
                3*sizeof (rectangle_t *));
822
19
  if (unlikely (rectangles == NULL)) {
823
0
      if (rectangles_chain != stack_rectangles_chain)
824
0
    free (rectangles_chain);
825
0
      return _cairo_error (CAIRO_STATUS_NO_MEMORY);
826
0
  }
827
828
19
  rectangles_ptrs = (rectangle_t **) (rectangles + in->num_boxes);
829
19
    }
830
831
13.2k
    j = 0;
832
26.6k
    for (chunk = &in->chunks; chunk != NULL; chunk = chunk->next) {
833
13.3k
  const cairo_box_t *box = chunk->base;
834
50.7k
  for (i = 0; i < chunk->count; i++) {
835
37.4k
      int h;
836
837
37.4k
      if (box[i].p1.x < box[i].p2.x) {
838
35.2k
    rectangles[j].left.x = box[i].p1.x;
839
35.2k
    rectangles[j].left.dir = 1;
840
841
35.2k
    rectangles[j].right.x = box[i].p2.x;
842
35.2k
    rectangles[j].right.dir = -1;
843
35.2k
      } else {
844
2.19k
    rectangles[j].right.x = box[i].p1.x;
845
2.19k
    rectangles[j].right.dir = 1;
846
847
2.19k
    rectangles[j].left.x = box[i].p2.x;
848
2.19k
    rectangles[j].left.dir = -1;
849
2.19k
      }
850
851
37.4k
      rectangles[j].left.right = NULL;
852
37.4k
      rectangles[j].right.right = NULL;
853
854
37.4k
      rectangles[j].top = box[i].p1.y;
855
37.4k
      rectangles[j].bottom = box[i].p2.y;
856
857
37.4k
      if (rectangles_chain) {
858
34.8k
    h = _cairo_fixed_integer_floor (box[i].p1.y) - y_min;
859
34.8k
    rectangles[j].left.next = (edge_t *)rectangles_chain[h];
860
34.8k
    rectangles_chain[h] = &rectangles[j];
861
34.8k
      } else {
862
2.53k
    rectangles_ptrs[j+2] = &rectangles[j];
863
2.53k
      }
864
37.4k
      j++;
865
37.4k
  }
866
13.3k
    }
867
868
13.2k
    if (rectangles_chain) {
869
12.0k
  j = 2;
870
24.1k
  for (y_min = 0; y_min < y_max; y_min++) {
871
12.0k
      rectangle_t *r;
872
12.0k
      int start = j;
873
46.9k
      for (r = rectangles_chain[y_min]; r; r = (rectangle_t *)r->left.next)
874
34.8k
    rectangles_ptrs[j++] = r;
875
12.0k
      if (j > start + 1)
876
12.0k
    _rectangle_sort (rectangles_ptrs + start, j - start);
877
12.0k
  }
878
879
12.0k
  if (rectangles_chain != stack_rectangles_chain)
880
0
      free (rectangles_chain);
881
882
12.0k
  j -= 2;
883
12.0k
    } else {
884
1.26k
  _rectangle_sort (rectangles_ptrs + 2, j);
885
1.26k
    }
886
887
13.2k
    _cairo_boxes_clear (out);
888
13.2k
    status = _cairo_bentley_ottmann_tessellate_rectangular (rectangles_ptrs+2, j,
889
13.2k
                  fill_rule,
890
13.2k
                  FALSE, out);
891
13.2k
    if (rectangles != stack_rectangles)
892
19
  free (rectangles);
893
894
13.2k
    return status;
895
13.2k
}