Coverage Report

Created: 2025-07-07 10:01

/work/workdir/UnpackedTarball/cairo/src/cairo-bentley-ottmann.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright © 2004 Carl Worth
3
 * Copyright © 2006 Red Hat, Inc.
4
 * Copyright © 2008 Chris Wilson
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it either under the terms of the GNU Lesser General Public
8
 * License version 2.1 as published by the Free Software Foundation
9
 * (the "LGPL") or, at your option, under the terms of the Mozilla
10
 * Public License Version 1.1 (the "MPL"). If you do not alter this
11
 * notice, a recipient may use your version of this file under either
12
 * the MPL or the LGPL.
13
 *
14
 * You should have received a copy of the LGPL along with this library
15
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
16
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
17
 * You should have received a copy of the MPL along with this library
18
 * in the file COPYING-MPL-1.1
19
 *
20
 * The contents of this file are subject to the Mozilla Public License
21
 * Version 1.1 (the "License"); you may not use this file except in
22
 * compliance with the License. You may obtain a copy of the License at
23
 * http://www.mozilla.org/MPL/
24
 *
25
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
26
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
27
 * the specific language governing rights and limitations.
28
 *
29
 * The Original Code is the cairo graphics library.
30
 *
31
 * The Initial Developer of the Original Code is Carl Worth
32
 *
33
 * Contributor(s):
34
 *  Carl D. Worth <cworth@cworth.org>
35
 *  Chris Wilson <chris@chris-wilson.co.uk>
36
 */
37
38
/* Provide definitions for standalone compilation */
39
#include "cairoint.h"
40
41
#include "cairo-combsort-inline.h"
42
#include "cairo-error-private.h"
43
#include "cairo-freelist-private.h"
44
#include "cairo-line-inline.h"
45
#include "cairo-traps-private.h"
46
47
#define DEBUG_PRINT_STATE 0
48
#define DEBUG_EVENTS 0
49
#define DEBUG_TRAPS 0
50
51
typedef cairo_point_t cairo_bo_point32_t;
52
53
typedef struct _cairo_bo_intersect_ordinate {
54
    int32_t ordinate;
55
    enum { EXACT, INEXACT } exactness;
56
} cairo_bo_intersect_ordinate_t;
57
58
typedef struct _cairo_bo_intersect_point {
59
    cairo_bo_intersect_ordinate_t x;
60
    cairo_bo_intersect_ordinate_t y;
61
} cairo_bo_intersect_point_t;
62
63
typedef struct _cairo_bo_edge cairo_bo_edge_t;
64
typedef struct _cairo_bo_trap cairo_bo_trap_t;
65
66
/* A deferred trapezoid of an edge */
67
struct _cairo_bo_trap {
68
    cairo_bo_edge_t *right;
69
    int32_t top;
70
};
71
72
struct _cairo_bo_edge {
73
    cairo_edge_t edge;
74
    cairo_bo_edge_t *prev;
75
    cairo_bo_edge_t *next;
76
    cairo_bo_edge_t *colinear;
77
    cairo_bo_trap_t deferred_trap;
78
};
79
80
/* the parent is always given by index/2 */
81
0
#define PQ_PARENT_INDEX(i) ((i) >> 1)
82
0
#define PQ_FIRST_ENTRY 1
83
84
/* left and right children are index * 2 and (index * 2) +1 respectively */
85
0
#define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
86
87
typedef enum {
88
    CAIRO_BO_EVENT_TYPE_STOP,
89
    CAIRO_BO_EVENT_TYPE_INTERSECTION,
90
    CAIRO_BO_EVENT_TYPE_START
91
} cairo_bo_event_type_t;
92
93
typedef struct _cairo_bo_event {
94
    cairo_bo_event_type_t type;
95
    cairo_point_t point;
96
} cairo_bo_event_t;
97
98
typedef struct _cairo_bo_start_event {
99
    cairo_bo_event_type_t type;
100
    cairo_point_t point;
101
    cairo_bo_edge_t edge;
102
} cairo_bo_start_event_t;
103
104
typedef struct _cairo_bo_queue_event {
105
    cairo_bo_event_type_t type;
106
    cairo_point_t point;
107
    cairo_bo_edge_t *e1;
108
    cairo_bo_edge_t *e2;
109
} cairo_bo_queue_event_t;
110
111
typedef struct _pqueue {
112
    int size, max_size;
113
114
    cairo_bo_event_t **elements;
115
    cairo_bo_event_t *elements_embedded[1024];
116
} pqueue_t;
117
118
typedef struct _cairo_bo_event_queue {
119
    cairo_freepool_t pool;
120
    pqueue_t pqueue;
121
    cairo_bo_event_t **start_events;
122
} cairo_bo_event_queue_t;
123
124
typedef struct _cairo_bo_sweep_line {
125
    cairo_bo_edge_t *head;
126
    cairo_bo_edge_t *stopped;
127
    int32_t current_y;
128
    cairo_bo_edge_t *current_edge;
129
} cairo_bo_sweep_line_t;
130
131
#if DEBUG_TRAPS
132
static void
133
dump_traps (cairo_traps_t *traps, const char *filename)
134
{
135
    FILE *file;
136
    cairo_box_t extents;
137
    int n;
138
139
    if (getenv ("CAIRO_DEBUG_TRAPS") == NULL)
140
  return;
141
142
#if 0
143
    if (traps->has_limits) {
144
  printf ("%s: limits=(%d, %d, %d, %d)\n",
145
    filename,
146
    traps->limits.p1.x, traps->limits.p1.y,
147
    traps->limits.p2.x, traps->limits.p2.y);
148
    }
149
#endif
150
    _cairo_traps_extents (traps, &extents);
151
    printf ("%s: extents=(%d, %d, %d, %d)\n",
152
      filename,
153
      extents.p1.x, extents.p1.y,
154
      extents.p2.x, extents.p2.y);
155
156
    file = fopen (filename, "a");
157
    if (file != NULL) {
158
  for (n = 0; n < traps->num_traps; n++) {
159
      fprintf (file, "%d %d L:(%d, %d), (%d, %d) R:(%d, %d), (%d, %d)\n",
160
         traps->traps[n].top,
161
         traps->traps[n].bottom,
162
         traps->traps[n].left.p1.x,
163
         traps->traps[n].left.p1.y,
164
         traps->traps[n].left.p2.x,
165
         traps->traps[n].left.p2.y,
166
         traps->traps[n].right.p1.x,
167
         traps->traps[n].right.p1.y,
168
         traps->traps[n].right.p2.x,
169
         traps->traps[n].right.p2.y);
170
  }
171
  fprintf (file, "\n");
172
  fclose (file);
173
    }
174
}
175
176
static void
177
dump_edges (cairo_bo_start_event_t *events,
178
      int num_edges,
179
      const char *filename)
180
{
181
    FILE *file;
182
    int n;
183
184
    if (getenv ("CAIRO_DEBUG_TRAPS") == NULL)
185
  return;
186
187
    file = fopen (filename, "a");
188
    if (file != NULL) {
189
  for (n = 0; n < num_edges; n++) {
190
      fprintf (file, "(%d, %d), (%d, %d) %d %d %d\n",
191
         events[n].edge.edge.line.p1.x,
192
         events[n].edge.edge.line.p1.y,
193
         events[n].edge.edge.line.p2.x,
194
         events[n].edge.edge.line.p2.y,
195
         events[n].edge.edge.top,
196
         events[n].edge.edge.bottom,
197
         events[n].edge.edge.dir);
198
  }
199
  fprintf (file, "\n");
200
  fclose (file);
201
    }
202
}
203
#endif
204
205
static cairo_fixed_t
206
_line_compute_intersection_x_for_y (const cairo_line_t *line,
207
            cairo_fixed_t y)
208
0
{
209
0
    cairo_fixed_t x, dy;
210
211
0
    if (y == line->p1.y)
212
0
  return line->p1.x;
213
0
    if (y == line->p2.y)
214
0
  return line->p2.x;
215
216
0
    x = line->p1.x;
217
0
    dy = line->p2.y - line->p1.y;
218
0
    if (dy != 0) {
219
0
  x += _cairo_fixed_mul_div_floor (y - line->p1.y,
220
0
           line->p2.x - line->p1.x,
221
0
           dy);
222
0
    }
223
224
0
    return x;
225
0
}
226
227
static inline int
228
_cairo_bo_point32_compare (cairo_bo_point32_t const *a,
229
         cairo_bo_point32_t const *b)
230
0
{
231
0
    int cmp;
232
233
0
    cmp = a->y - b->y;
234
0
    if (cmp)
235
0
  return cmp;
236
237
0
    return a->x - b->x;
238
0
}
239
240
/* Compare the slope of a to the slope of b, returning 1, 0, -1 if the
241
 * slope a is respectively greater than, equal to, or less than the
242
 * slope of b.
243
 *
244
 * For each edge, consider the direction vector formed from:
245
 *
246
 *  top -> bottom
247
 *
248
 * which is:
249
 *
250
 *  (dx, dy) = (line.p2.x - line.p1.x, line.p2.y - line.p1.y)
251
 *
252
 * We then define the slope of each edge as dx/dy, (which is the
253
 * inverse of the slope typically used in math instruction). We never
254
 * compute a slope directly as the value approaches infinity, but we
255
 * can derive a slope comparison without division as follows, (where
256
 * the ? represents our compare operator).
257
 *
258
 * 1.    slope(a) ? slope(b)
259
 * 2.     adx/ady ? bdx/bdy
260
 * 3. (adx * bdy) ? (bdx * ady)
261
 *
262
 * Note that from step 2 to step 3 there is no change needed in the
263
 * sign of the result since both ady and bdy are guaranteed to be
264
 * greater than or equal to 0.
265
 *
266
 * When using this slope comparison to sort edges, some care is needed
267
 * when interpreting the results. Since the slope compare operates on
268
 * distance vectors from top to bottom it gives a correct left to
269
 * right sort for edges that have a common top point, (such as two
270
 * edges with start events at the same location). On the other hand,
271
 * the sense of the result will be exactly reversed for two edges that
272
 * have a common stop point.
273
 */
274
static inline int
275
_slope_compare (const cairo_bo_edge_t *a,
276
    const cairo_bo_edge_t *b)
277
0
{
278
    /* XXX: We're assuming here that dx and dy will still fit in 32
279
     * bits. That's not true in general as there could be overflow. We
280
     * should prevent that before the tessellation algorithm
281
     * begins.
282
     */
283
0
    int32_t adx = a->edge.line.p2.x - a->edge.line.p1.x;
284
0
    int32_t bdx = b->edge.line.p2.x - b->edge.line.p1.x;
285
286
    /* Since the dy's are all positive by construction we can fast
287
     * path several common cases.
288
     */
289
290
    /* First check for vertical lines. */
291
0
    if (adx == 0)
292
0
  return -bdx;
293
0
    if (bdx == 0)
294
0
  return adx;
295
296
    /* Then where the two edges point in different directions wrt x. */
297
0
    if ((adx ^ bdx) < 0)
298
0
  return adx;
299
300
    /* Finally we actually need to do the general comparison. */
301
0
    {
302
0
  int32_t ady = a->edge.line.p2.y - a->edge.line.p1.y;
303
0
  int32_t bdy = b->edge.line.p2.y - b->edge.line.p1.y;
304
0
  cairo_int64_t adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
305
0
  cairo_int64_t bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
306
307
0
  return _cairo_int64_cmp (adx_bdy, bdx_ady);
308
0
    }
309
0
}
310
311
312
/*
313
 * We need to compare the x-coordinate of a line for a particular y wrt to a
314
 * given x, without loss of precision.
315
 *
316
 * The x-coordinate along an edge for a given y is:
317
 *   X = A_x + (Y - A_y) * A_dx / A_dy
318
 *
319
 * So the inequality we wish to test is:
320
 *   A_x + (Y - A_y) * A_dx / A_dy ∘ X
321
 * where ∘ is our inequality operator.
322
 *
323
 * By construction, we know that A_dy (and (Y - A_y)) are
324
 * all positive, so we can rearrange it thus without causing a sign change:
325
 *   (Y - A_y) * A_dx ∘ (X - A_x) * A_dy
326
 *
327
 * Given the assumption that all the deltas fit within 32 bits, we can compute
328
 * this comparison directly using 64 bit arithmetic.
329
 *
330
 * See the similar discussion for _slope_compare() and
331
 * edges_compare_x_for_y_general().
332
 */
333
static int
334
edge_compare_for_y_against_x (const cairo_bo_edge_t *a,
335
            int32_t y,
336
            int32_t x)
337
0
{
338
0
    int32_t adx, ady;
339
0
    int32_t dx, dy;
340
0
    cairo_int64_t L, R;
341
342
0
    if (x < a->edge.line.p1.x && x < a->edge.line.p2.x)
343
0
  return 1;
344
0
    if (x > a->edge.line.p1.x && x > a->edge.line.p2.x)
345
0
  return -1;
346
347
0
    adx = a->edge.line.p2.x - a->edge.line.p1.x;
348
0
    dx = x - a->edge.line.p1.x;
349
350
0
    if (adx == 0)
351
0
  return -dx;
352
0
    if (dx == 0 || (adx ^ dx) < 0)
353
0
  return adx;
354
355
0
    dy = y - a->edge.line.p1.y;
356
0
    ady = a->edge.line.p2.y - a->edge.line.p1.y;
357
358
0
    L = _cairo_int32x32_64_mul (dy, adx);
359
0
    R = _cairo_int32x32_64_mul (dx, ady);
360
361
0
    return _cairo_int64_cmp (L, R);
362
0
}
363
364
static inline int
365
_cairo_bo_sweep_line_compare_edges (const cairo_bo_sweep_line_t *sweep_line,
366
            const cairo_bo_edge_t *a,
367
            const cairo_bo_edge_t *b)
368
0
{
369
0
    int cmp;
370
371
0
    cmp = _cairo_lines_compare_at_y (&a->edge.line,
372
0
            &b->edge.line,
373
0
            sweep_line->current_y);
374
0
    if (cmp)
375
0
      return cmp;
376
377
    /* We've got two collinear edges now. */
378
0
    return b->edge.bottom - a->edge.bottom;
379
0
}
380
381
static inline cairo_int64_t
382
det32_64 (int32_t a, int32_t b,
383
    int32_t c, int32_t d)
384
0
{
385
    /* det = a * d - b * c */
386
0
    return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),
387
0
           _cairo_int32x32_64_mul (b, c));
388
0
}
389
390
static inline cairo_int128_t
391
det64x32_128 (cairo_int64_t a, int32_t       b,
392
        cairo_int64_t c, int32_t       d)
393
0
{
394
    /* det = a * d - b * c */
395
0
    return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),
396
0
            _cairo_int64x32_128_mul (c, b));
397
0
}
398
399
/* Compute the intersection of two lines as defined by two edges. The
400
 * result is provided as a coordinate pair of 128-bit integers.
401
 *
402
 * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or
403
 * %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel.
404
 */
405
static cairo_bool_t
406
intersect_lines (cairo_bo_edge_t    *a,
407
     cairo_bo_edge_t    *b,
408
     cairo_bo_intersect_point_t *intersection)
409
0
{
410
0
    cairo_int64_t a_det, b_det;
411
412
    /* XXX: We're assuming here that dx and dy will still fit in 32
413
     * bits. That's not true in general as there could be overflow. We
414
     * should prevent that before the tessellation algorithm begins.
415
     * What we're doing to mitigate this is to perform clamping in
416
     * cairo_bo_tessellate_polygon().
417
     */
418
0
    int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x;
419
0
    int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y;
420
421
0
    int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x;
422
0
    int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y;
423
424
0
    cairo_int64_t den_det;
425
0
    cairo_int64_t R;
426
0
    cairo_quorem64_t qr;
427
428
0
    den_det = det32_64 (dx1, dy1, dx2, dy2);
429
430
     /* Q: Can we determine that the lines do not intersect (within range)
431
      * much more cheaply than computing the intersection point i.e. by
432
      * avoiding the division?
433
      *
434
      *   X = ax + t * adx = bx + s * bdx;
435
      *   Y = ay + t * ady = by + s * bdy;
436
      *   ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx)
437
      *   => t * L = R
438
      *
439
      * Therefore we can reject any intersection (under the criteria for
440
      * valid intersection events) if:
441
      *   L^R < 0 => t < 0, or
442
      *   L<R => t > 1
443
      *
444
      * (where top/bottom must at least extend to the line endpoints).
445
      *
446
      * A similar substitution can be performed for s, yielding:
447
      *   s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by)
448
      */
449
0
    R = det32_64 (dx2, dy2,
450
0
      b->edge.line.p1.x - a->edge.line.p1.x,
451
0
      b->edge.line.p1.y - a->edge.line.p1.y);
452
0
    if (_cairo_int64_negative (den_det)) {
453
0
  if (_cairo_int64_ge (den_det, R))
454
0
      return FALSE;
455
0
    } else {
456
0
  if (_cairo_int64_le (den_det, R))
457
0
      return FALSE;
458
0
    }
459
460
0
    R = det32_64 (dy1, dx1,
461
0
      a->edge.line.p1.y - b->edge.line.p1.y,
462
0
      a->edge.line.p1.x - b->edge.line.p1.x);
463
0
    if (_cairo_int64_negative (den_det)) {
464
0
  if (_cairo_int64_ge (den_det, R))
465
0
      return FALSE;
466
0
    } else {
467
0
  if (_cairo_int64_le (den_det, R))
468
0
      return FALSE;
469
0
    }
470
471
    /* We now know that the two lines should intersect within range. */
472
473
0
    a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y,
474
0
          a->edge.line.p2.x, a->edge.line.p2.y);
475
0
    b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y,
476
0
          b->edge.line.p2.x, b->edge.line.p2.y);
477
478
    /* x = det (a_det, dx1, b_det, dx2) / den_det */
479
0
    qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1,
480
0
                   b_det, dx2),
481
0
           den_det);
482
0
    if (_cairo_int64_eq (qr.rem, den_det))
483
0
  return FALSE;
484
#if 0
485
    intersection->x.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
486
#else
487
0
    intersection->x.exactness = EXACT;
488
0
    if (! _cairo_int64_is_zero (qr.rem)) {
489
0
  if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
490
0
      qr.rem = _cairo_int64_negate (qr.rem);
491
0
  qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
492
0
  if (_cairo_int64_ge (qr.rem, den_det)) {
493
0
      qr.quo = _cairo_int64_add (qr.quo,
494
0
               _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
495
0
  } else
496
0
      intersection->x.exactness = INEXACT;
497
0
    }
498
0
#endif
499
0
    intersection->x.ordinate = _cairo_int64_to_int32 (qr.quo);
500
501
    /* y = det (a_det, dy1, b_det, dy2) / den_det */
502
0
    qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1,
503
0
                   b_det, dy2),
504
0
           den_det);
505
0
    if (_cairo_int64_eq (qr.rem, den_det))
506
0
  return FALSE;
507
#if 0
508
    intersection->y.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
509
#else
510
0
    intersection->y.exactness = EXACT;
511
0
    if (! _cairo_int64_is_zero (qr.rem)) {
512
0
  if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
513
0
      qr.rem = _cairo_int64_negate (qr.rem);
514
0
  qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
515
0
  if (_cairo_int64_ge (qr.rem, den_det)) {
516
0
      qr.quo = _cairo_int64_add (qr.quo,
517
0
               _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
518
0
  } else
519
0
      intersection->y.exactness = INEXACT;
520
0
    }
521
0
#endif
522
0
    intersection->y.ordinate = _cairo_int64_to_int32 (qr.quo);
523
524
0
    return TRUE;
525
0
}
526
527
static int
528
_cairo_bo_intersect_ordinate_32_compare (cairo_bo_intersect_ordinate_t  a,
529
           int32_t      b)
530
0
{
531
    /* First compare the quotient */
532
0
    if (a.ordinate > b)
533
0
  return +1;
534
0
    if (a.ordinate < b)
535
0
  return -1;
536
    /* With quotient identical, if remainder is 0 then compare equal */
537
    /* Otherwise, the non-zero remainder makes a > b */
538
0
    return INEXACT == a.exactness;
539
0
}
540
541
/* Does the given edge contain the given point. The point must already
542
 * be known to be contained within the line determined by the edge,
543
 * (most likely the point results from an intersection of this edge
544
 * with another).
545
 *
546
 * If we had exact arithmetic, then this function would simply be a
547
 * matter of examining whether the y value of the point lies within
548
 * the range of y values of the edge. But since intersection points
549
 * are not exact due to being rounded to the nearest integer within
550
 * the available precision, we must also examine the x value of the
551
 * point.
552
 *
553
 * The definition of "contains" here is that the given intersection
554
 * point will be seen by the sweep line after the start event for the
555
 * given edge and before the stop event for the edge. See the comments
556
 * in the implementation for more details.
557
 */
558
static cairo_bool_t
559
_cairo_bo_edge_contains_intersect_point (cairo_bo_edge_t    *edge,
560
           cairo_bo_intersect_point_t *point)
561
0
{
562
0
    int cmp_top, cmp_bottom;
563
564
    /* XXX: When running the actual algorithm, we don't actually need to
565
     * compare against edge->top at all here, since any intersection above
566
     * top is eliminated early via a slope comparison. We're leaving these
567
     * here for now only for the sake of the quadratic-time intersection
568
     * finder which needs them.
569
     */
570
571
0
    cmp_top = _cairo_bo_intersect_ordinate_32_compare (point->y,
572
0
                   edge->edge.top);
573
0
    cmp_bottom = _cairo_bo_intersect_ordinate_32_compare (point->y,
574
0
                edge->edge.bottom);
575
576
0
    if (cmp_top < 0 || cmp_bottom > 0)
577
0
    {
578
0
  return FALSE;
579
0
    }
580
581
0
    if (cmp_top > 0 && cmp_bottom < 0)
582
0
    {
583
0
  return TRUE;
584
0
    }
585
586
    /* At this stage, the point lies on the same y value as either
587
     * edge->top or edge->bottom, so we have to examine the x value in
588
     * order to properly determine containment. */
589
590
    /* If the y value of the point is the same as the y value of the
591
     * top of the edge, then the x value of the point must be greater
592
     * to be considered as inside the edge. Similarly, if the y value
593
     * of the point is the same as the y value of the bottom of the
594
     * edge, then the x value of the point must be less to be
595
     * considered as inside. */
596
597
0
    if (cmp_top == 0) {
598
0
  cairo_fixed_t top_x;
599
600
0
  top_x = _line_compute_intersection_x_for_y (&edge->edge.line,
601
0
                edge->edge.top);
602
0
  return _cairo_bo_intersect_ordinate_32_compare (point->x, top_x) > 0;
603
0
    } else { /* cmp_bottom == 0 */
604
0
  cairo_fixed_t bot_x;
605
606
0
  bot_x = _line_compute_intersection_x_for_y (&edge->edge.line,
607
0
                edge->edge.bottom);
608
0
  return _cairo_bo_intersect_ordinate_32_compare (point->x, bot_x) < 0;
609
0
    }
610
0
}
611
612
/* Compute the intersection of two edges. The result is provided as a
613
 * coordinate pair of 128-bit integers.
614
 *
615
 * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection
616
 * that is within both edges, %CAIRO_BO_STATUS_NO_INTERSECTION if the
617
 * intersection of the lines defined by the edges occurs outside of
618
 * one or both edges, and %CAIRO_BO_STATUS_PARALLEL if the two edges
619
 * are exactly parallel.
620
 *
621
 * Note that when determining if a candidate intersection is "inside"
622
 * an edge, we consider both the infinitesimal shortening and the
623
 * infinitesimal tilt rules described by John Hobby. Specifically, if
624
 * the intersection is exactly the same as an edge point, it is
625
 * effectively outside (no intersection is returned). Also, if the
626
 * intersection point has the same
627
 */
628
static cairo_bool_t
629
_cairo_bo_edge_intersect (cairo_bo_edge_t *a,
630
        cairo_bo_edge_t *b,
631
        cairo_bo_point32_t  *intersection)
632
0
{
633
0
    cairo_bo_intersect_point_t quorem;
634
635
0
    if (! intersect_lines (a, b, &quorem))
636
0
  return FALSE;
637
638
0
    if (! _cairo_bo_edge_contains_intersect_point (a, &quorem))
639
0
  return FALSE;
640
641
0
    if (! _cairo_bo_edge_contains_intersect_point (b, &quorem))
642
0
  return FALSE;
643
644
    /* Now that we've correctly compared the intersection point and
645
     * determined that it lies within the edge, then we know that we
646
     * no longer need any more bits of storage for the intersection
647
     * than we do for our edge coordinates. We also no longer need the
648
     * remainder from the division. */
649
0
    intersection->x = quorem.x.ordinate;
650
0
    intersection->y = quorem.y.ordinate;
651
652
0
    return TRUE;
653
0
}
654
655
static inline int
656
cairo_bo_event_compare (const cairo_bo_event_t *a,
657
      const cairo_bo_event_t *b)
658
0
{
659
0
    int cmp;
660
661
0
    cmp = _cairo_bo_point32_compare (&a->point, &b->point);
662
0
    if (cmp)
663
0
  return cmp;
664
665
0
    cmp = a->type - b->type;
666
0
    if (cmp)
667
0
  return cmp;
668
669
0
    return a - b;
670
0
}
671
672
static inline void
673
_pqueue_init (pqueue_t *pq)
674
0
{
675
0
    pq->max_size = ARRAY_LENGTH (pq->elements_embedded);
676
0
    pq->size = 0;
677
678
0
    pq->elements = pq->elements_embedded;
679
0
}
680
681
static inline void
682
_pqueue_fini (pqueue_t *pq)
683
0
{
684
0
    if (pq->elements != pq->elements_embedded)
685
0
  free (pq->elements);
686
0
}
687
688
static cairo_status_t
689
_pqueue_grow (pqueue_t *pq)
690
0
{
691
0
    cairo_bo_event_t **new_elements;
692
0
    pq->max_size *= 2;
693
694
0
    if (pq->elements == pq->elements_embedded) {
695
0
  new_elements = _cairo_malloc_ab (pq->max_size,
696
0
           sizeof (cairo_bo_event_t *));
697
0
  if (unlikely (new_elements == NULL))
698
0
      return _cairo_error (CAIRO_STATUS_NO_MEMORY);
699
700
0
  memcpy (new_elements, pq->elements_embedded,
701
0
    sizeof (pq->elements_embedded));
702
0
    } else {
703
0
  new_elements = _cairo_realloc_ab (pq->elements,
704
0
            pq->max_size,
705
0
            sizeof (cairo_bo_event_t *));
706
0
  if (unlikely (new_elements == NULL))
707
0
      return _cairo_error (CAIRO_STATUS_NO_MEMORY);
708
0
    }
709
710
0
    pq->elements = new_elements;
711
0
    return CAIRO_STATUS_SUCCESS;
712
0
}
713
714
static inline cairo_status_t
715
_pqueue_push (pqueue_t *pq, cairo_bo_event_t *event)
716
0
{
717
0
    cairo_bo_event_t **elements;
718
0
    int i, parent;
719
720
0
    if (unlikely (pq->size + 1 == pq->max_size)) {
721
0
  cairo_status_t status;
722
723
0
  status = _pqueue_grow (pq);
724
0
  if (unlikely (status))
725
0
      return status;
726
0
    }
727
728
0
    elements = pq->elements;
729
730
0
    for (i = ++pq->size;
731
0
   i != PQ_FIRST_ENTRY &&
732
0
   cairo_bo_event_compare (event,
733
0
         elements[parent = PQ_PARENT_INDEX (i)]) < 0;
734
0
   i = parent)
735
0
    {
736
0
  elements[i] = elements[parent];
737
0
    }
738
739
0
    elements[i] = event;
740
741
0
    return CAIRO_STATUS_SUCCESS;
742
0
}
743
744
static inline void
745
_pqueue_pop (pqueue_t *pq)
746
0
{
747
0
    cairo_bo_event_t **elements = pq->elements;
748
0
    cairo_bo_event_t *tail;
749
0
    int child, i;
750
751
0
    tail = elements[pq->size--];
752
0
    if (pq->size == 0) {
753
0
  elements[PQ_FIRST_ENTRY] = NULL;
754
0
  return;
755
0
    }
756
757
0
    for (i = PQ_FIRST_ENTRY;
758
0
   (child = PQ_LEFT_CHILD_INDEX (i)) <= pq->size;
759
0
   i = child)
760
0
    {
761
0
  if (child != pq->size &&
762
0
      cairo_bo_event_compare (elements[child+1],
763
0
            elements[child]) < 0)
764
0
  {
765
0
      child++;
766
0
  }
767
768
0
  if (cairo_bo_event_compare (elements[child], tail) >= 0)
769
0
      break;
770
771
0
  elements[i] = elements[child];
772
0
    }
773
0
    elements[i] = tail;
774
0
}
775
776
static inline cairo_status_t
777
_cairo_bo_event_queue_insert (cairo_bo_event_queue_t  *queue,
778
            cairo_bo_event_type_t  type,
779
            cairo_bo_edge_t   *e1,
780
            cairo_bo_edge_t   *e2,
781
            const cairo_point_t  *point)
782
0
{
783
0
    cairo_bo_queue_event_t *event;
784
785
0
    event = _cairo_freepool_alloc (&queue->pool);
786
0
    if (unlikely (event == NULL))
787
0
  return _cairo_error (CAIRO_STATUS_NO_MEMORY);
788
789
0
    event->type = type;
790
0
    event->e1 = e1;
791
0
    event->e2 = e2;
792
0
    event->point = *point;
793
794
0
    return _pqueue_push (&queue->pqueue, (cairo_bo_event_t *) event);
795
0
}
796
797
static void
798
_cairo_bo_event_queue_delete (cairo_bo_event_queue_t *queue,
799
            cairo_bo_event_t       *event)
800
0
{
801
0
    _cairo_freepool_free (&queue->pool, event);
802
0
}
803
804
static cairo_bo_event_t *
805
_cairo_bo_event_dequeue (cairo_bo_event_queue_t *event_queue)
806
0
{
807
0
    cairo_bo_event_t *event, *cmp;
808
809
0
    event = event_queue->pqueue.elements[PQ_FIRST_ENTRY];
810
0
    cmp = *event_queue->start_events;
811
0
    if (event == NULL ||
812
0
  (cmp != NULL && cairo_bo_event_compare (cmp, event) < 0))
813
0
    {
814
0
  event = cmp;
815
0
  event_queue->start_events++;
816
0
    }
817
0
    else
818
0
    {
819
0
  _pqueue_pop (&event_queue->pqueue);
820
0
    }
821
822
0
    return event;
823
0
}
824
825
CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort,
826
      cairo_bo_event_t *,
827
      cairo_bo_event_compare)
828
829
static void
830
_cairo_bo_event_queue_init (cairo_bo_event_queue_t   *event_queue,
831
          cairo_bo_event_t    **start_events,
832
          int         num_events)
833
0
{
834
0
    event_queue->start_events = start_events;
835
836
0
    _cairo_freepool_init (&event_queue->pool,
837
0
        sizeof (cairo_bo_queue_event_t));
838
0
    _pqueue_init (&event_queue->pqueue);
839
0
    event_queue->pqueue.elements[PQ_FIRST_ENTRY] = NULL;
840
0
}
841
842
static cairo_status_t
843
_cairo_bo_event_queue_insert_stop (cairo_bo_event_queue_t *event_queue,
844
           cairo_bo_edge_t    *edge)
845
0
{
846
0
    cairo_bo_point32_t point;
847
848
0
    point.y = edge->edge.bottom;
849
0
    point.x = _line_compute_intersection_x_for_y (&edge->edge.line,
850
0
              point.y);
851
0
    return _cairo_bo_event_queue_insert (event_queue,
852
0
           CAIRO_BO_EVENT_TYPE_STOP,
853
0
           edge, NULL,
854
0
           &point);
855
0
}
856
857
static void
858
_cairo_bo_event_queue_fini (cairo_bo_event_queue_t *event_queue)
859
0
{
860
0
    _pqueue_fini (&event_queue->pqueue);
861
0
    _cairo_freepool_fini (&event_queue->pool);
862
0
}
863
864
static inline cairo_status_t
865
_cairo_bo_event_queue_insert_if_intersect_below_current_y (cairo_bo_event_queue_t *event_queue,
866
                 cairo_bo_edge_t  *left,
867
                 cairo_bo_edge_t *right)
868
0
{
869
0
    cairo_bo_point32_t intersection;
870
871
0
    if (MAX (left->edge.line.p1.x, left->edge.line.p2.x) <=
872
0
  MIN (right->edge.line.p1.x, right->edge.line.p2.x))
873
0
  return CAIRO_STATUS_SUCCESS;
874
875
0
    if (cairo_lines_equal (&left->edge.line, &right->edge.line))
876
0
  return CAIRO_STATUS_SUCCESS;
877
878
    /* The names "left" and "right" here are correct descriptions of
879
     * the order of the two edges within the active edge list. So if a
880
     * slope comparison also puts left less than right, then we know
881
     * that the intersection of these two segments has already
882
     * occurred before the current sweep line position. */
883
0
    if (_slope_compare (left, right) <= 0)
884
0
  return CAIRO_STATUS_SUCCESS;
885
886
0
    if (! _cairo_bo_edge_intersect (left, right, &intersection))
887
0
  return CAIRO_STATUS_SUCCESS;
888
889
0
    return _cairo_bo_event_queue_insert (event_queue,
890
0
           CAIRO_BO_EVENT_TYPE_INTERSECTION,
891
0
           left, right,
892
0
           &intersection);
893
0
}
894
895
static void
896
_cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line)
897
0
{
898
0
    sweep_line->head = NULL;
899
0
    sweep_line->stopped = NULL;
900
0
    sweep_line->current_y = INT32_MIN;
901
0
    sweep_line->current_edge = NULL;
902
0
}
903
904
static void
905
_cairo_bo_sweep_line_insert (cairo_bo_sweep_line_t  *sweep_line,
906
           cairo_bo_edge_t    *edge)
907
0
{
908
0
    if (sweep_line->current_edge != NULL) {
909
0
  cairo_bo_edge_t *prev, *next;
910
0
  int cmp;
911
912
0
  cmp = _cairo_bo_sweep_line_compare_edges (sweep_line,
913
0
              sweep_line->current_edge,
914
0
              edge);
915
0
  if (cmp < 0) {
916
0
      prev = sweep_line->current_edge;
917
0
      next = prev->next;
918
0
      while (next != NULL &&
919
0
       _cairo_bo_sweep_line_compare_edges (sweep_line,
920
0
                   next, edge) < 0)
921
0
      {
922
0
    prev = next, next = prev->next;
923
0
      }
924
925
0
      prev->next = edge;
926
0
      edge->prev = prev;
927
0
      edge->next = next;
928
0
      if (next != NULL)
929
0
    next->prev = edge;
930
0
  } else if (cmp > 0) {
931
0
      next = sweep_line->current_edge;
932
0
      prev = next->prev;
933
0
      while (prev != NULL &&
934
0
       _cairo_bo_sweep_line_compare_edges (sweep_line,
935
0
                   prev, edge) > 0)
936
0
      {
937
0
    next = prev, prev = next->prev;
938
0
      }
939
940
0
      next->prev = edge;
941
0
      edge->next = next;
942
0
      edge->prev = prev;
943
0
      if (prev != NULL)
944
0
    prev->next = edge;
945
0
      else
946
0
    sweep_line->head = edge;
947
0
  } else {
948
0
      prev = sweep_line->current_edge;
949
0
      edge->prev = prev;
950
0
      edge->next = prev->next;
951
0
      if (prev->next != NULL)
952
0
    prev->next->prev = edge;
953
0
      prev->next = edge;
954
0
  }
955
0
    } else {
956
0
  sweep_line->head = edge;
957
0
  edge->next = NULL;
958
0
    }
959
960
0
    sweep_line->current_edge = edge;
961
0
}
962
963
static void
964
_cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t  *sweep_line,
965
           cairo_bo_edge_t  *edge)
966
0
{
967
0
    if (edge->prev != NULL)
968
0
  edge->prev->next = edge->next;
969
0
    else
970
0
  sweep_line->head = edge->next;
971
972
0
    if (edge->next != NULL)
973
0
  edge->next->prev = edge->prev;
974
975
0
    if (sweep_line->current_edge == edge)
976
0
  sweep_line->current_edge = edge->prev ? edge->prev : edge->next;
977
0
}
978
979
static void
980
_cairo_bo_sweep_line_swap (cairo_bo_sweep_line_t  *sweep_line,
981
         cairo_bo_edge_t    *left,
982
         cairo_bo_edge_t    *right)
983
0
{
984
0
    if (left->prev != NULL)
985
0
  left->prev->next = right;
986
0
    else
987
0
  sweep_line->head = right;
988
989
0
    if (right->next != NULL)
990
0
  right->next->prev = left;
991
992
0
    left->next = right->next;
993
0
    right->next = left;
994
995
0
    right->prev = left->prev;
996
0
    left->prev = right;
997
0
}
998
999
#if DEBUG_PRINT_STATE
1000
static void
1001
_cairo_bo_edge_print (cairo_bo_edge_t *edge)
1002
{
1003
    printf ("(0x%x, 0x%x)-(0x%x, 0x%x)",
1004
      edge->edge.line.p1.x, edge->edge.line.p1.y,
1005
      edge->edge.line.p2.x, edge->edge.line.p2.y);
1006
}
1007
1008
static void
1009
_cairo_bo_event_print (cairo_bo_event_t *event)
1010
{
1011
    switch (event->type) {
1012
    case CAIRO_BO_EVENT_TYPE_START:
1013
  printf ("Start: ");
1014
  break;
1015
    case CAIRO_BO_EVENT_TYPE_STOP:
1016
  printf ("Stop: ");
1017
  break;
1018
    case CAIRO_BO_EVENT_TYPE_INTERSECTION:
1019
  printf ("Intersection: ");
1020
  break;
1021
    }
1022
    printf ("(%d, %d)\t", event->point.x, event->point.y);
1023
    _cairo_bo_edge_print (event->e1);
1024
    if (event->type == CAIRO_BO_EVENT_TYPE_INTERSECTION) {
1025
  printf (" X ");
1026
  _cairo_bo_edge_print (event->e2);
1027
    }
1028
    printf ("\n");
1029
}
1030
1031
static void
1032
_cairo_bo_event_queue_print (cairo_bo_event_queue_t *event_queue)
1033
{
1034
    /* XXX: fixme to print the start/stop array too. */
1035
    printf ("Event queue:\n");
1036
}
1037
1038
static void
1039
_cairo_bo_sweep_line_print (cairo_bo_sweep_line_t *sweep_line)
1040
{
1041
    cairo_bool_t first = TRUE;
1042
    cairo_bo_edge_t *edge;
1043
1044
    printf ("Sweep line from edge list: ");
1045
    first = TRUE;
1046
    for (edge = sweep_line->head;
1047
   edge;
1048
   edge = edge->next)
1049
    {
1050
  if (!first)
1051
      printf (", ");
1052
  _cairo_bo_edge_print (edge);
1053
  first = FALSE;
1054
    }
1055
    printf ("\n");
1056
}
1057
1058
static void
1059
print_state (const char     *msg,
1060
       cairo_bo_event_t   *event,
1061
       cairo_bo_event_queue_t *event_queue,
1062
       cairo_bo_sweep_line_t  *sweep_line)
1063
{
1064
    printf ("%s ", msg);
1065
    _cairo_bo_event_print (event);
1066
    _cairo_bo_event_queue_print (event_queue);
1067
    _cairo_bo_sweep_line_print (sweep_line);
1068
    printf ("\n");
1069
}
1070
#endif
1071
1072
#if DEBUG_EVENTS
1073
static void CAIRO_PRINTF_FORMAT (1, 2)
1074
event_log (const char *fmt, ...)
1075
{
1076
    FILE *file;
1077
1078
    if (getenv ("CAIRO_DEBUG_EVENTS") == NULL)
1079
  return;
1080
1081
    file = fopen ("bo-events.txt", "a");
1082
    if (file != NULL) {
1083
  va_list ap;
1084
1085
  va_start (ap, fmt);
1086
  vfprintf (file, fmt, ap);
1087
  va_end (ap);
1088
1089
  fclose (file);
1090
    }
1091
}
1092
#endif
1093
1094
0
#define HAS_COLINEAR(a, b) ((cairo_bo_edge_t *)(((uintptr_t)(a))&~1) == (b))
1095
0
#define IS_COLINEAR(e) (((uintptr_t)(e))&1)
1096
0
#define MARK_COLINEAR(e, v) ((cairo_bo_edge_t *)(((uintptr_t)(e))|(v)))
1097
1098
static inline cairo_bool_t
1099
edges_colinear (cairo_bo_edge_t *a, const cairo_bo_edge_t *b)
1100
0
{
1101
0
    unsigned p;
1102
1103
0
    if (HAS_COLINEAR(a->colinear, b))
1104
0
  return IS_COLINEAR(a->colinear);
1105
1106
0
    if (HAS_COLINEAR(b->colinear, a)) {
1107
0
  p = IS_COLINEAR(b->colinear);
1108
0
  a->colinear = MARK_COLINEAR(b, p);
1109
0
  return p;
1110
0
    }
1111
1112
0
    p = 0;
1113
0
    p |= (a->edge.line.p1.x == b->edge.line.p1.x) << 0;
1114
0
    p |= (a->edge.line.p1.y == b->edge.line.p1.y) << 1;
1115
0
    p |= (a->edge.line.p2.x == b->edge.line.p2.x) << 3;
1116
0
    p |= (a->edge.line.p2.y == b->edge.line.p2.y) << 4;
1117
0
    if (p == ((1 << 0) | (1 << 1) | (1 << 3) | (1 << 4))) {
1118
0
  a->colinear = MARK_COLINEAR(b, 1);
1119
0
  return TRUE;
1120
0
    }
1121
1122
0
    if (_slope_compare (a, b)) {
1123
0
  a->colinear = MARK_COLINEAR(b, 0);
1124
0
  return FALSE;
1125
0
    }
1126
1127
    /* The choice of y is not truly arbitrary since we must guarantee that it
1128
     * is greater than the start of either line.
1129
     */
1130
0
    if (p != 0) {
1131
  /* colinear if either end-point are coincident */
1132
0
  p = (((p >> 1) & p) & 5) != 0;
1133
0
    } else if (a->edge.line.p1.y < b->edge.line.p1.y) {
1134
0
  p = edge_compare_for_y_against_x (b,
1135
0
            a->edge.line.p1.y,
1136
0
            a->edge.line.p1.x) == 0;
1137
0
    } else {
1138
0
  p = edge_compare_for_y_against_x (a,
1139
0
            b->edge.line.p1.y,
1140
0
            b->edge.line.p1.x) == 0;
1141
0
    }
1142
1143
0
    a->colinear = MARK_COLINEAR(b, p);
1144
0
    return p;
1145
0
}
1146
1147
/* Adds the trapezoid, if any, of the left edge to the #cairo_traps_t */
1148
static void
1149
_cairo_bo_edge_end_trap (cairo_bo_edge_t  *left,
1150
       int32_t     bot,
1151
       cairo_traps_t          *traps)
1152
0
{
1153
0
    cairo_bo_trap_t *trap = &left->deferred_trap;
1154
1155
    /* Only emit (trivial) non-degenerate trapezoids with positive height. */
1156
0
    if (likely (trap->top < bot)) {
1157
0
  _cairo_traps_add_trap (traps,
1158
0
             trap->top, bot,
1159
0
             &left->edge.line, &trap->right->edge.line);
1160
1161
#if DEBUG_PRINT_STATE
1162
  printf ("Deferred trap: left=(%x, %x)-(%x,%x) "
1163
    "right=(%x,%x)-(%x,%x) top=%x, bot=%x\n",
1164
    left->edge.line.p1.x, left->edge.line.p1.y,
1165
    left->edge.line.p2.x, left->edge.line.p2.y,
1166
    trap->right->edge.line.p1.x, trap->right->edge.line.p1.y,
1167
    trap->right->edge.line.p2.x, trap->right->edge.line.p2.y,
1168
    trap->top, bot);
1169
#endif
1170
#if DEBUG_EVENTS
1171
  event_log ("end trap: %lu %lu %d %d\n",
1172
       (long) left,
1173
       (long) trap->right,
1174
       trap->top,
1175
       bot);
1176
#endif
1177
0
    }
1178
1179
0
    trap->right = NULL;
1180
0
}
1181
1182
1183
/* Start a new trapezoid at the given top y coordinate, whose edges
1184
 * are `edge' and `edge->next'. If `edge' already has a trapezoid,
1185
 * then either add it to the traps in `traps', if the trapezoid's
1186
 * right edge differs from `edge->next', or do nothing if the new
1187
 * trapezoid would be a continuation of the existing one. */
1188
static inline void
1189
_cairo_bo_edge_start_or_continue_trap (cairo_bo_edge_t  *left,
1190
               cairo_bo_edge_t  *right,
1191
               int               top,
1192
               cairo_traps_t  *traps)
1193
0
{
1194
0
    if (left->deferred_trap.right == right)
1195
0
  return;
1196
1197
0
    assert (right);
1198
0
    if (left->deferred_trap.right != NULL) {
1199
0
  if (edges_colinear (left->deferred_trap.right, right))
1200
0
  {
1201
      /* continuation on right, so just swap edges */
1202
0
      left->deferred_trap.right = right;
1203
0
      return;
1204
0
  }
1205
1206
0
  _cairo_bo_edge_end_trap (left, top, traps);
1207
0
    }
1208
1209
0
    if (! edges_colinear (left, right)) {
1210
0
  left->deferred_trap.top = top;
1211
0
  left->deferred_trap.right = right;
1212
1213
#if DEBUG_EVENTS
1214
  event_log ("begin trap: %lu %lu %d\n",
1215
       (long) left,
1216
       (long) right,
1217
       top);
1218
#endif
1219
0
    }
1220
0
}
1221
1222
static inline void
1223
_active_edges_to_traps (cairo_bo_edge_t *pos,
1224
      int32_t    top,
1225
      unsigned   mask,
1226
      cairo_traps_t        *traps)
1227
0
{
1228
0
    cairo_bo_edge_t *left;
1229
0
    int in_out;
1230
1231
1232
#if DEBUG_PRINT_STATE
1233
    printf ("Processing active edges for %x\n", top);
1234
#endif
1235
1236
0
    in_out = 0;
1237
0
    left = pos;
1238
0
    while (pos != NULL) {
1239
0
  if (pos != left && pos->deferred_trap.right) {
1240
      /* XXX It shouldn't be possible to here with 2 deferred traps
1241
       * on colinear edges... See bug-bo-rictoz.
1242
       */
1243
0
      if (left->deferred_trap.right == NULL &&
1244
0
    edges_colinear (left, pos))
1245
0
      {
1246
    /* continuation on left */
1247
0
    left->deferred_trap = pos->deferred_trap;
1248
0
    pos->deferred_trap.right = NULL;
1249
0
      }
1250
0
      else
1251
0
      {
1252
0
    _cairo_bo_edge_end_trap (pos, top, traps);
1253
0
      }
1254
0
  }
1255
1256
0
  in_out += pos->edge.dir;
1257
0
  if ((in_out & mask) == 0) {
1258
      /* skip co-linear edges */
1259
0
      if (pos->next == NULL || ! edges_colinear (pos, pos->next)) {
1260
0
    _cairo_bo_edge_start_or_continue_trap (left, pos, top, traps);
1261
0
    left = pos->next;
1262
0
      }
1263
0
  }
1264
1265
0
  pos = pos->next;
1266
0
    }
1267
0
}
1268
1269
/* Execute a single pass of the Bentley-Ottmann algorithm on edges,
1270
 * generating trapezoids according to the fill_rule and appending them
1271
 * to traps. */
1272
static cairo_status_t
1273
_cairo_bentley_ottmann_tessellate_bo_edges (cairo_bo_event_t   **start_events,
1274
              int      num_events,
1275
              unsigned     fill_rule,
1276
              cairo_traps_t *traps,
1277
              int     *num_intersections)
1278
0
{
1279
0
    cairo_status_t status;
1280
0
    int intersection_count = 0;
1281
0
    cairo_bo_event_queue_t event_queue;
1282
0
    cairo_bo_sweep_line_t sweep_line;
1283
0
    cairo_bo_event_t *event;
1284
0
    cairo_bo_edge_t *left, *right;
1285
0
    cairo_bo_edge_t *e1, *e2;
1286
1287
    /* convert the fill_rule into a winding mask */
1288
0
    if (fill_rule == CAIRO_FILL_RULE_WINDING)
1289
0
  fill_rule = (unsigned) -1;
1290
0
    else
1291
0
  fill_rule = 1;
1292
1293
#if DEBUG_EVENTS
1294
    {
1295
  int i;
1296
1297
  for (i = 0; i < num_events; i++) {
1298
      cairo_bo_start_event_t *event =
1299
    ((cairo_bo_start_event_t **) start_events)[i];
1300
      event_log ("edge: %lu (%d, %d) (%d, %d) (%d, %d) %d\n",
1301
           (long) &events[i].edge,
1302
           event->edge.edge.line.p1.x,
1303
           event->edge.edge.line.p1.y,
1304
           event->edge.edge.line.p2.x,
1305
           event->edge.edge.line.p2.y,
1306
           event->edge.top,
1307
           event->edge.bottom,
1308
           event->edge.edge.dir);
1309
  }
1310
    }
1311
#endif
1312
1313
0
    _cairo_bo_event_queue_init (&event_queue, start_events, num_events);
1314
0
    _cairo_bo_sweep_line_init (&sweep_line);
1315
1316
0
    while ((event = _cairo_bo_event_dequeue (&event_queue))) {
1317
0
  if (event->point.y != sweep_line.current_y) {
1318
0
      for (e1 = sweep_line.stopped; e1; e1 = e1->next) {
1319
0
    if (e1->deferred_trap.right != NULL) {
1320
0
        _cairo_bo_edge_end_trap (e1,
1321
0
               e1->edge.bottom,
1322
0
               traps);
1323
0
    }
1324
0
      }
1325
0
      sweep_line.stopped = NULL;
1326
1327
0
      _active_edges_to_traps (sweep_line.head,
1328
0
            sweep_line.current_y,
1329
0
            fill_rule, traps);
1330
1331
0
      sweep_line.current_y = event->point.y;
1332
0
  }
1333
1334
#if DEBUG_EVENTS
1335
  event_log ("event: %d (%ld, %ld) %lu, %lu\n",
1336
       event->type,
1337
       (long) event->point.x,
1338
       (long) event->point.y,
1339
       (long) event->e1,
1340
       (long) event->e2);
1341
#endif
1342
1343
0
  switch (event->type) {
1344
0
  case CAIRO_BO_EVENT_TYPE_START:
1345
0
      e1 = &((cairo_bo_start_event_t *) event)->edge;
1346
1347
0
      _cairo_bo_sweep_line_insert (&sweep_line, e1);
1348
1349
0
      status = _cairo_bo_event_queue_insert_stop (&event_queue, e1);
1350
0
      if (unlikely (status))
1351
0
    goto unwind;
1352
1353
      /* check to see if this is a continuation of a stopped edge */
1354
      /* XXX change to an infinitesimal lengthening rule */
1355
0
      for (left = sweep_line.stopped; left; left = left->next) {
1356
0
    if (e1->edge.top <= left->edge.bottom &&
1357
0
        edges_colinear (e1, left))
1358
0
    {
1359
0
        e1->deferred_trap = left->deferred_trap;
1360
0
        if (left->prev != NULL)
1361
0
      left->prev = left->next;
1362
0
        else
1363
0
      sweep_line.stopped = left->next;
1364
0
        if (left->next != NULL)
1365
0
      left->next->prev = left->prev;
1366
0
        break;
1367
0
    }
1368
0
      }
1369
1370
0
      left = e1->prev;
1371
0
      right = e1->next;
1372
1373
0
      if (left != NULL) {
1374
0
    status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, e1);
1375
0
    if (unlikely (status))
1376
0
        goto unwind;
1377
0
      }
1378
1379
0
      if (right != NULL) {
1380
0
    status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right);
1381
0
    if (unlikely (status))
1382
0
        goto unwind;
1383
0
      }
1384
1385
0
      break;
1386
1387
0
  case CAIRO_BO_EVENT_TYPE_STOP:
1388
0
      e1 = ((cairo_bo_queue_event_t *) event)->e1;
1389
0
      _cairo_bo_event_queue_delete (&event_queue, event);
1390
1391
0
      left = e1->prev;
1392
0
      right = e1->next;
1393
1394
0
      _cairo_bo_sweep_line_delete (&sweep_line, e1);
1395
1396
      /* first, check to see if we have a continuation via a fresh edge */
1397
0
      if (e1->deferred_trap.right != NULL) {
1398
0
    e1->next = sweep_line.stopped;
1399
0
    if (sweep_line.stopped != NULL)
1400
0
        sweep_line.stopped->prev = e1;
1401
0
    sweep_line.stopped = e1;
1402
0
    e1->prev = NULL;
1403
0
      }
1404
1405
0
      if (left != NULL && right != NULL) {
1406
0
    status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, right);
1407
0
    if (unlikely (status))
1408
0
        goto unwind;
1409
0
      }
1410
1411
0
      break;
1412
1413
0
  case CAIRO_BO_EVENT_TYPE_INTERSECTION:
1414
0
      e1 = ((cairo_bo_queue_event_t *) event)->e1;
1415
0
      e2 = ((cairo_bo_queue_event_t *) event)->e2;
1416
0
      _cairo_bo_event_queue_delete (&event_queue, event);
1417
1418
      /* skip this intersection if its edges are not adjacent */
1419
0
      if (e2 != e1->next)
1420
0
    break;
1421
1422
0
      intersection_count++;
1423
1424
0
      left = e1->prev;
1425
0
      right = e2->next;
1426
1427
0
      _cairo_bo_sweep_line_swap (&sweep_line, e1, e2);
1428
1429
      /* after the swap e2 is left of e1 */
1430
1431
0
      if (left != NULL) {
1432
0
    status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, e2);
1433
0
    if (unlikely (status))
1434
0
        goto unwind;
1435
0
      }
1436
1437
0
      if (right != NULL) {
1438
0
    status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right);
1439
0
    if (unlikely (status))
1440
0
        goto unwind;
1441
0
      }
1442
1443
0
      break;
1444
0
  }
1445
0
    }
1446
1447
0
    *num_intersections = intersection_count;
1448
0
    for (e1 = sweep_line.stopped; e1; e1 = e1->next) {
1449
0
  if (e1->deferred_trap.right != NULL) {
1450
0
      _cairo_bo_edge_end_trap (e1, e1->edge.bottom, traps);
1451
0
  }
1452
0
    }
1453
0
    status = traps->status;
1454
0
 unwind:
1455
0
    _cairo_bo_event_queue_fini (&event_queue);
1456
1457
#if DEBUG_EVENTS
1458
    event_log ("\n");
1459
#endif
1460
1461
0
    return status;
1462
0
}
1463
1464
cairo_status_t
1465
_cairo_bentley_ottmann_tessellate_polygon (cairo_traps_t   *traps,
1466
             const cairo_polygon_t *polygon,
1467
             cairo_fill_rule_t    fill_rule)
1468
0
{
1469
0
    int intersections;
1470
0
    cairo_bo_start_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_start_event_t)];
1471
0
    cairo_bo_start_event_t *events;
1472
0
    cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
1473
0
    cairo_bo_event_t **event_ptrs;
1474
0
    cairo_bo_start_event_t *stack_event_y[64];
1475
0
    cairo_bo_start_event_t **event_y = NULL;
1476
0
    int i, num_events, y, ymin, ymax;
1477
0
    cairo_status_t status;
1478
1479
0
    num_events = polygon->num_edges;
1480
0
    if (unlikely (0 == num_events))
1481
0
  return CAIRO_STATUS_SUCCESS;
1482
1483
0
    if (polygon->num_limits) {
1484
0
  ymin = _cairo_fixed_integer_floor (polygon->limit.p1.y);
1485
0
  ymax = _cairo_fixed_integer_ceil (polygon->limit.p2.y) - ymin;
1486
1487
0
  if (ymax > 64) {
1488
0
      event_y = _cairo_malloc_ab(sizeof (cairo_bo_event_t*), ymax);
1489
0
      if (unlikely (event_y == NULL))
1490
0
    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
1491
0
  } else {
1492
0
      event_y = stack_event_y;
1493
0
  }
1494
0
  memset (event_y, 0, ymax * sizeof(cairo_bo_event_t *));
1495
0
    }
1496
1497
0
    events = stack_events;
1498
0
    event_ptrs = stack_event_ptrs;
1499
0
    if (num_events > ARRAY_LENGTH (stack_events)) {
1500
0
  events = _cairo_malloc_ab_plus_c (num_events,
1501
0
            sizeof (cairo_bo_start_event_t) +
1502
0
            sizeof (cairo_bo_event_t *),
1503
0
            sizeof (cairo_bo_event_t *));
1504
0
  if (unlikely (events == NULL)) {
1505
0
      if (event_y != stack_event_y)
1506
0
    free (event_y);
1507
0
      return _cairo_error (CAIRO_STATUS_NO_MEMORY);
1508
0
  }
1509
1510
0
  event_ptrs = (cairo_bo_event_t **) (events + num_events);
1511
0
    }
1512
1513
0
    for (i = 0; i < num_events; i++) {
1514
0
  events[i].type = CAIRO_BO_EVENT_TYPE_START;
1515
0
  events[i].point.y = polygon->edges[i].top;
1516
0
  events[i].point.x =
1517
0
      _line_compute_intersection_x_for_y (&polygon->edges[i].line,
1518
0
            events[i].point.y);
1519
1520
0
  events[i].edge.edge = polygon->edges[i];
1521
0
  events[i].edge.deferred_trap.right = NULL;
1522
0
  events[i].edge.prev = NULL;
1523
0
  events[i].edge.next = NULL;
1524
0
  events[i].edge.colinear = NULL;
1525
1526
0
  if (event_y) {
1527
0
      y = _cairo_fixed_integer_floor (events[i].point.y) - ymin;
1528
0
      events[i].edge.next = (cairo_bo_edge_t *) event_y[y];
1529
0
      event_y[y] = (cairo_bo_start_event_t *) &events[i];
1530
0
  } else
1531
0
      event_ptrs[i] = (cairo_bo_event_t *) &events[i];
1532
0
    }
1533
1534
0
    if (event_y) {
1535
0
  for (y = i = 0; y < ymax && i < num_events; y++) {
1536
0
      cairo_bo_start_event_t *e;
1537
0
      int j = i;
1538
0
      for (e = event_y[y]; e; e = (cairo_bo_start_event_t *)e->edge.next)
1539
0
    event_ptrs[i++] = (cairo_bo_event_t *) e;
1540
0
      if (i > j + 1)
1541
0
    _cairo_bo_event_queue_sort (event_ptrs+j, i-j);
1542
0
  }
1543
0
  if (event_y != stack_event_y)
1544
0
      free (event_y);
1545
0
    } else
1546
0
  _cairo_bo_event_queue_sort (event_ptrs, i);
1547
0
    event_ptrs[i] = NULL;
1548
1549
#if DEBUG_TRAPS
1550
    dump_edges (events, num_events, "bo-polygon-edges.txt");
1551
#endif
1552
1553
    /* XXX: This would be the convenient place to throw in multiple
1554
     * passes of the Bentley-Ottmann algorithm. It would merely
1555
     * require storing the results of each pass into a temporary
1556
     * cairo_traps_t. */
1557
0
    status = _cairo_bentley_ottmann_tessellate_bo_edges (event_ptrs, num_events,
1558
0
               fill_rule, traps,
1559
0
               &intersections);
1560
#if DEBUG_TRAPS
1561
    dump_traps (traps, "bo-polygon-out.txt");
1562
#endif
1563
1564
0
    if (events != stack_events)
1565
0
  free (events);
1566
1567
0
    return status;
1568
0
}
1569
1570
cairo_status_t
1571
_cairo_bentley_ottmann_tessellate_traps (cairo_traps_t *traps,
1572
           cairo_fill_rule_t fill_rule)
1573
0
{
1574
0
    cairo_status_t status;
1575
0
    cairo_polygon_t polygon;
1576
0
    int i;
1577
1578
0
    if (unlikely (0 == traps->num_traps))
1579
0
  return CAIRO_STATUS_SUCCESS;
1580
1581
#if DEBUG_TRAPS
1582
    dump_traps (traps, "bo-traps-in.txt");
1583
#endif
1584
1585
0
    _cairo_polygon_init (&polygon, traps->limits, traps->num_limits);
1586
1587
0
    for (i = 0; i < traps->num_traps; i++) {
1588
0
  status = _cairo_polygon_add_line (&polygon,
1589
0
            &traps->traps[i].left,
1590
0
            traps->traps[i].top,
1591
0
            traps->traps[i].bottom,
1592
0
            1);
1593
0
  if (unlikely (status))
1594
0
      goto CLEANUP;
1595
1596
0
  status = _cairo_polygon_add_line (&polygon,
1597
0
            &traps->traps[i].right,
1598
0
            traps->traps[i].top,
1599
0
            traps->traps[i].bottom,
1600
0
            -1);
1601
0
  if (unlikely (status))
1602
0
      goto CLEANUP;
1603
0
    }
1604
1605
0
    _cairo_traps_clear (traps);
1606
0
    status = _cairo_bentley_ottmann_tessellate_polygon (traps,
1607
0
              &polygon,
1608
0
              fill_rule);
1609
1610
#if DEBUG_TRAPS
1611
    dump_traps (traps, "bo-traps-out.txt");
1612
#endif
1613
1614
0
  CLEANUP:
1615
0
    _cairo_polygon_fini (&polygon);
1616
1617
0
    return status;
1618
0
}
1619
1620
#if 0
1621
static cairo_bool_t
1622
edges_have_an_intersection_quadratic (cairo_bo_edge_t *edges,
1623
              int    num_edges)
1624
1625
{
1626
    int i, j;
1627
    cairo_bo_edge_t *a, *b;
1628
    cairo_bo_point32_t intersection;
1629
1630
    /* We must not be given any upside-down edges. */
1631
    for (i = 0; i < num_edges; i++) {
1632
  assert (_cairo_bo_point32_compare (&edges[i].top, &edges[i].bottom) < 0);
1633
  edges[i].line.p1.x <<= CAIRO_BO_GUARD_BITS;
1634
  edges[i].line.p1.y <<= CAIRO_BO_GUARD_BITS;
1635
  edges[i].line.p2.x <<= CAIRO_BO_GUARD_BITS;
1636
  edges[i].line.p2.y <<= CAIRO_BO_GUARD_BITS;
1637
    }
1638
1639
    for (i = 0; i < num_edges; i++) {
1640
  for (j = 0; j < num_edges; j++) {
1641
      if (i == j)
1642
    continue;
1643
1644
      a = &edges[i];
1645
      b = &edges[j];
1646
1647
      if (! _cairo_bo_edge_intersect (a, b, &intersection))
1648
    continue;
1649
1650
      printf ("Found intersection (%d,%d) between (%d,%d)-(%d,%d) and (%d,%d)-(%d,%d)\n",
1651
        intersection.x,
1652
        intersection.y,
1653
        a->line.p1.x, a->line.p1.y,
1654
        a->line.p2.x, a->line.p2.y,
1655
        b->line.p1.x, b->line.p1.y,
1656
        b->line.p2.x, b->line.p2.y);
1657
1658
      return TRUE;
1659
  }
1660
    }
1661
    return FALSE;
1662
}
1663
1664
#define TEST_MAX_EDGES 10
1665
1666
typedef struct test {
1667
    const char *name;
1668
    const char *description;
1669
    int num_edges;
1670
    cairo_bo_edge_t edges[TEST_MAX_EDGES];
1671
} test_t;
1672
1673
static test_t
1674
tests[] = {
1675
    {
1676
  "3 near misses",
1677
  "3 edges all intersecting very close to each other",
1678
  3,
1679
  {
1680
      { { 4, 2}, {0, 0}, { 9, 9}, NULL, NULL },
1681
      { { 7, 2}, {0, 0}, { 2, 3}, NULL, NULL },
1682
      { { 5, 2}, {0, 0}, { 1, 7}, NULL, NULL }
1683
  }
1684
    },
1685
    {
1686
  "inconsistent data",
1687
  "Derived from random testing---was leading to skip list and edge list disagreeing.",
1688
  2,
1689
  {
1690
      { { 2, 3}, {0, 0}, { 8, 9}, NULL, NULL },
1691
      { { 2, 3}, {0, 0}, { 6, 7}, NULL, NULL }
1692
  }
1693
    },
1694
    {
1695
  "failed sort",
1696
  "A test derived from random testing that leads to an inconsistent sort --- looks like we just can't attempt to validate the sweep line with edge_compare?",
1697
  3,
1698
  {
1699
      { { 6, 2}, {0, 0}, { 6, 5}, NULL, NULL },
1700
      { { 3, 5}, {0, 0}, { 5, 6}, NULL, NULL },
1701
      { { 9, 2}, {0, 0}, { 5, 6}, NULL, NULL },
1702
  }
1703
    },
1704
    {
1705
  "minimal-intersection",
1706
  "Intersection of a two from among the smallest possible edges.",
1707
  2,
1708
  {
1709
      { { 0, 0}, {0, 0}, { 1, 1}, NULL, NULL },
1710
      { { 1, 0}, {0, 0}, { 0, 1}, NULL, NULL }
1711
  }
1712
    },
1713
    {
1714
  "simple",
1715
  "A simple intersection of two edges at an integer (2,2).",
1716
  2,
1717
  {
1718
      { { 1, 1}, {0, 0}, { 3, 3}, NULL, NULL },
1719
      { { 2, 1}, {0, 0}, { 2, 3}, NULL, NULL }
1720
  }
1721
    },
1722
    {
1723
  "bend-to-horizontal",
1724
  "With intersection truncation one edge bends to horizontal",
1725
  2,
1726
  {
1727
      { { 9, 1}, {0, 0}, {3, 7}, NULL, NULL },
1728
      { { 3, 5}, {0, 0}, {9, 9}, NULL, NULL }
1729
  }
1730
    }
1731
};
1732
1733
/*
1734
    {
1735
  "endpoint",
1736
  "An intersection that occurs at the endpoint of a segment.",
1737
  {
1738
      { { 4, 6}, { 5, 6}, NULL, { { NULL }} },
1739
      { { 4, 5}, { 5, 7}, NULL, { { NULL }} },
1740
      { { 0, 0}, { 0, 0}, NULL, { { NULL }} },
1741
  }
1742
    }
1743
    {
1744
  name = "overlapping",
1745
  desc = "Parallel segments that share an endpoint, with different slopes.",
1746
  edges = {
1747
      { top = { x = 2, y = 0}, bottom = { x = 1, y = 1}},
1748
      { top = { x = 2, y = 0}, bottom = { x = 0, y = 2}},
1749
      { top = { x = 0, y = 3}, bottom = { x = 1, y = 3}},
1750
      { top = { x = 0, y = 3}, bottom = { x = 2, y = 3}},
1751
      { top = { x = 0, y = 4}, bottom = { x = 0, y = 6}},
1752
      { top = { x = 0, y = 5}, bottom = { x = 0, y = 6}}
1753
  }
1754
    },
1755
    {
1756
  name = "hobby_stage_3",
1757
  desc = "A particularly tricky part of the 3rd stage of the 'hobby' test below.",
1758
  edges = {
1759
      { top = { x = -1, y = -2}, bottom = { x =  4, y = 2}},
1760
      { top = { x =  5, y =  3}, bottom = { x =  9, y = 5}},
1761
      { top = { x =  5, y =  3}, bottom = { x =  6, y = 3}},
1762
  }
1763
    },
1764
    {
1765
  name = "hobby",
1766
  desc = "Example from John Hobby's paper. Requires 3 passes of the iterative algorithm.",
1767
  edges = {
1768
      { top = { x =   0, y =   0}, bottom = { x =   9, y =   5}},
1769
      { top = { x =   0, y =   0}, bottom = { x =  13, y =   6}},
1770
      { top = { x =  -1, y =  -2}, bottom = { x =   9, y =   5}}
1771
  }
1772
    },
1773
    {
1774
  name = "slope",
1775
  desc = "Edges with same start/stop points but different slopes",
1776
  edges = {
1777
      { top = { x = 4, y = 1}, bottom = { x = 6, y = 3}},
1778
      { top = { x = 4, y = 1}, bottom = { x = 2, y = 3}},
1779
      { top = { x = 2, y = 4}, bottom = { x = 4, y = 6}},
1780
      { top = { x = 6, y = 4}, bottom = { x = 4, y = 6}}
1781
  }
1782
    },
1783
    {
1784
  name = "horizontal",
1785
  desc = "Test of a horizontal edge",
1786
  edges = {
1787
      { top = { x = 1, y = 1}, bottom = { x = 6, y = 6}},
1788
      { top = { x = 2, y = 3}, bottom = { x = 5, y = 3}}
1789
  }
1790
    },
1791
    {
1792
  name = "vertical",
1793
  desc = "Test of a vertical edge",
1794
  edges = {
1795
      { top = { x = 5, y = 1}, bottom = { x = 5, y = 7}},
1796
      { top = { x = 2, y = 4}, bottom = { x = 8, y = 5}}
1797
  }
1798
    },
1799
    {
1800
  name = "congruent",
1801
  desc = "Two overlapping edges with the same slope",
1802
  edges = {
1803
      { top = { x = 5, y = 1}, bottom = { x = 5, y = 7}},
1804
      { top = { x = 5, y = 2}, bottom = { x = 5, y = 6}},
1805
      { top = { x = 2, y = 4}, bottom = { x = 8, y = 5}}
1806
  }
1807
    },
1808
    {
1809
  name = "multi",
1810
  desc = "Several segments with a common intersection point",
1811
  edges = {
1812
      { top = { x = 1, y = 2}, bottom = { x = 5, y = 4} },
1813
      { top = { x = 1, y = 1}, bottom = { x = 5, y = 5} },
1814
      { top = { x = 2, y = 1}, bottom = { x = 4, y = 5} },
1815
      { top = { x = 4, y = 1}, bottom = { x = 2, y = 5} },
1816
      { top = { x = 5, y = 1}, bottom = { x = 1, y = 5} },
1817
      { top = { x = 5, y = 2}, bottom = { x = 1, y = 4} }
1818
  }
1819
    }
1820
};
1821
*/
1822
1823
static int
1824
run_test (const char    *test_name,
1825
          cairo_bo_edge_t *test_edges,
1826
          int      num_edges)
1827
{
1828
    int i, intersections, passes;
1829
    cairo_bo_edge_t *edges;
1830
    cairo_array_t intersected_edges;
1831
1832
    printf ("Testing: %s\n", test_name);
1833
1834
    _cairo_array_init (&intersected_edges, sizeof (cairo_bo_edge_t));
1835
1836
    intersections = _cairo_bentley_ottmann_intersect_edges (test_edges, num_edges, &intersected_edges);
1837
    if (intersections)
1838
  printf ("Pass 1 found %d intersections:\n", intersections);
1839
1840
1841
    /* XXX: Multi-pass Bentley-Ottmmann. Preferable would be to add a
1842
     * pass of Hobby's tolerance-square algorithm instead. */
1843
    passes = 1;
1844
    while (intersections) {
1845
  int num_edges = _cairo_array_num_elements (&intersected_edges);
1846
  passes++;
1847
  edges = _cairo_malloc_ab (num_edges, sizeof (cairo_bo_edge_t));
1848
  assert (edges != NULL);
1849
  memcpy (edges, _cairo_array_index (&intersected_edges, 0), num_edges * sizeof (cairo_bo_edge_t));
1850
  _cairo_array_fini (&intersected_edges);
1851
  _cairo_array_init (&intersected_edges, sizeof (cairo_bo_edge_t));
1852
  intersections = _cairo_bentley_ottmann_intersect_edges (edges, num_edges, &intersected_edges);
1853
  free (edges);
1854
1855
  if (intersections){
1856
      printf ("Pass %d found %d remaining intersections:\n", passes, intersections);
1857
  } else {
1858
      if (passes > 3)
1859
    for (i = 0; i < passes; i++)
1860
        printf ("*");
1861
      printf ("No remainining intersections found after pass %d\n", passes);
1862
  }
1863
    }
1864
1865
    if (edges_have_an_intersection_quadratic (_cairo_array_index (&intersected_edges, 0),
1866
                _cairo_array_num_elements (&intersected_edges)))
1867
  printf ("*** FAIL ***\n");
1868
    else
1869
  printf ("PASS\n");
1870
1871
    _cairo_array_fini (&intersected_edges);
1872
1873
    return 0;
1874
}
1875
1876
#define MAX_RANDOM 300
1877
1878
int
1879
main (void)
1880
{
1881
    char random_name[] = "random-XX";
1882
    cairo_bo_edge_t random_edges[MAX_RANDOM], *edge;
1883
    unsigned int i, num_random;
1884
    test_t *test;
1885
1886
    for (i = 0; i < ARRAY_LENGTH (tests); i++) {
1887
  test = &tests[i];
1888
  run_test (test->name, test->edges, test->num_edges);
1889
    }
1890
1891
    for (num_random = 0; num_random < MAX_RANDOM; num_random++) {
1892
  srand (0);
1893
  for (i = 0; i < num_random; i++) {
1894
      do {
1895
    edge = &random_edges[i];
1896
    edge->line.p1.x = (int32_t) (10.0 * (rand() / (RAND_MAX + 1.0)));
1897
    edge->line.p1.y = (int32_t) (10.0 * (rand() / (RAND_MAX + 1.0)));
1898
    edge->line.p2.x = (int32_t) (10.0 * (rand() / (RAND_MAX + 1.0)));
1899
    edge->line.p2.y = (int32_t) (10.0 * (rand() / (RAND_MAX + 1.0)));
1900
    if (edge->line.p1.y > edge->line.p2.y) {
1901
        int32_t tmp = edge->line.p1.y;
1902
        edge->line.p1.y = edge->line.p2.y;
1903
        edge->line.p2.y = tmp;
1904
    }
1905
      } while (edge->line.p1.y == edge->line.p2.y);
1906
  }
1907
1908
  sprintf (random_name, "random-%02d", num_random);
1909
1910
  run_test (random_name, random_edges, num_random);
1911
    }
1912
1913
    return 0;
1914
}
1915
#endif