/work/workdir/UnpackedTarball/cairo/src/cairo-misc.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: c; c-basic-offset: 4; indent-tabs-mode: t; tab-width: 8; -*- */ |
2 | | /* cairo - a vector graphics library with display and print output |
3 | | * |
4 | | * Copyright © 2002 University of Southern California |
5 | | * Copyright © 2005 Red Hat, Inc. |
6 | | * Copyright © 2007 Adrian Johnson |
7 | | * |
8 | | * This library is free software; you can redistribute it and/or |
9 | | * modify it either under the terms of the GNU Lesser General Public |
10 | | * License version 2.1 as published by the Free Software Foundation |
11 | | * (the "LGPL") or, at your option, under the terms of the Mozilla |
12 | | * Public License Version 1.1 (the "MPL"). If you do not alter this |
13 | | * notice, a recipient may use your version of this file under either |
14 | | * the MPL or the LGPL. |
15 | | * |
16 | | * You should have received a copy of the LGPL along with this library |
17 | | * in the file COPYING-LGPL-2.1; if not, write to the Free Software |
18 | | * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA |
19 | | * You should have received a copy of the MPL along with this library |
20 | | * in the file COPYING-MPL-1.1 |
21 | | * |
22 | | * The contents of this file are subject to the Mozilla Public License |
23 | | * Version 1.1 (the "License"); you may not use this file except in |
24 | | * compliance with the License. You may obtain a copy of the License at |
25 | | * http://www.mozilla.org/MPL/ |
26 | | * |
27 | | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY |
28 | | * OF ANY KIND, either express or implied. See the LGPL or the MPL for |
29 | | * the specific language governing rights and limitations. |
30 | | * |
31 | | * The Original Code is the cairo graphics library. |
32 | | * |
33 | | * The Initial Developer of the Original Code is University of Southern |
34 | | * California. |
35 | | * |
36 | | * Contributor(s): |
37 | | * Carl D. Worth <cworth@cworth.org> |
38 | | * Adrian Johnson <ajohnson@redneon.com> |
39 | | */ |
40 | | |
41 | | #include "cairoint.h" |
42 | | #include "cairo-error-private.h" |
43 | | |
44 | | #include <stdio.h> |
45 | | #include <stdlib.h> |
46 | | #include <errno.h> |
47 | | #include <locale.h> |
48 | | #ifdef HAVE_XLOCALE_H |
49 | | #include <xlocale.h> |
50 | | #endif |
51 | | |
52 | | COMPILE_TIME_ASSERT ((int)CAIRO_STATUS_LAST_STATUS < (int)CAIRO_INT_STATUS_UNSUPPORTED); |
53 | | COMPILE_TIME_ASSERT (CAIRO_INT_STATUS_LAST_STATUS <= 127); |
54 | | |
55 | | /** |
56 | | * SECTION:cairo-status |
57 | | * @Title: Error handling |
58 | | * @Short_Description: Decoding cairo's status |
59 | | * @See_Also: cairo_status(), cairo_surface_status(), cairo_pattern_status(), |
60 | | * cairo_font_face_status(), cairo_scaled_font_status(), |
61 | | * cairo_region_status() |
62 | | * |
63 | | * Cairo uses a single status type to represent all kinds of errors. A status |
64 | | * value of %CAIRO_STATUS_SUCCESS represents no error and has an integer value |
65 | | * of zero. All other status values represent an error. |
66 | | * |
67 | | * Cairo's error handling is designed to be easy to use and safe. All major |
68 | | * cairo objects <firstterm>retain</firstterm> an error status internally which |
69 | | * can be queried anytime by the users using cairo*_status() calls. In |
70 | | * the mean time, it is safe to call all cairo functions normally even if the |
71 | | * underlying object is in an error status. This means that no error handling |
72 | | * code is required before or after each individual cairo function call. |
73 | | **/ |
74 | | |
75 | | /* Public stuff */ |
76 | | |
77 | | /** |
78 | | * cairo_status_to_string: |
79 | | * @status: a cairo status |
80 | | * |
81 | | * Provides a human-readable description of a #cairo_status_t. |
82 | | * |
83 | | * Returns: a string representation of the status |
84 | | * |
85 | | * Since: 1.0 |
86 | | **/ |
87 | | const char * |
88 | | cairo_status_to_string (cairo_status_t status) |
89 | 0 | { |
90 | 0 | switch (status) { |
91 | 0 | case CAIRO_STATUS_SUCCESS: |
92 | 0 | return "no error has occurred"; |
93 | 0 | case CAIRO_STATUS_NO_MEMORY: |
94 | 0 | return "out of memory"; |
95 | 0 | case CAIRO_STATUS_INVALID_RESTORE: |
96 | 0 | return "cairo_restore() without matching cairo_save()"; |
97 | 0 | case CAIRO_STATUS_INVALID_POP_GROUP: |
98 | 0 | return "no saved group to pop, i.e. cairo_pop_group() without matching cairo_push_group()"; |
99 | 0 | case CAIRO_STATUS_NO_CURRENT_POINT: |
100 | 0 | return "no current point defined"; |
101 | 0 | case CAIRO_STATUS_INVALID_MATRIX: |
102 | 0 | return "invalid matrix (not invertible)"; |
103 | 0 | case CAIRO_STATUS_INVALID_STATUS: |
104 | 0 | return "invalid value for an input cairo_status_t"; |
105 | 0 | case CAIRO_STATUS_NULL_POINTER: |
106 | 0 | return "NULL pointer"; |
107 | 0 | case CAIRO_STATUS_INVALID_STRING: |
108 | 0 | return "input string not valid UTF-8"; |
109 | 0 | case CAIRO_STATUS_INVALID_PATH_DATA: |
110 | 0 | return "input path data not valid"; |
111 | 0 | case CAIRO_STATUS_READ_ERROR: |
112 | 0 | return "error while reading from input stream"; |
113 | 0 | case CAIRO_STATUS_WRITE_ERROR: |
114 | 0 | return "error while writing to output stream"; |
115 | 0 | case CAIRO_STATUS_SURFACE_FINISHED: |
116 | 0 | return "the target surface has been finished"; |
117 | 0 | case CAIRO_STATUS_SURFACE_TYPE_MISMATCH: |
118 | 0 | return "the surface type is not appropriate for the operation"; |
119 | 0 | case CAIRO_STATUS_PATTERN_TYPE_MISMATCH: |
120 | 0 | return "the pattern type is not appropriate for the operation"; |
121 | 0 | case CAIRO_STATUS_INVALID_CONTENT: |
122 | 0 | return "invalid value for an input cairo_content_t"; |
123 | 0 | case CAIRO_STATUS_INVALID_FORMAT: |
124 | 0 | return "invalid value for an input cairo_format_t"; |
125 | 0 | case CAIRO_STATUS_INVALID_VISUAL: |
126 | 0 | return "invalid value for an input Visual*"; |
127 | 0 | case CAIRO_STATUS_FILE_NOT_FOUND: |
128 | 0 | return "file not found"; |
129 | 0 | case CAIRO_STATUS_INVALID_DASH: |
130 | 0 | return "invalid value for a dash setting"; |
131 | 0 | case CAIRO_STATUS_INVALID_DSC_COMMENT: |
132 | 0 | return "invalid value for a DSC comment"; |
133 | 0 | case CAIRO_STATUS_INVALID_INDEX: |
134 | 0 | return "invalid index passed to getter"; |
135 | 0 | case CAIRO_STATUS_CLIP_NOT_REPRESENTABLE: |
136 | 0 | return "clip region not representable in desired format"; |
137 | 0 | case CAIRO_STATUS_TEMP_FILE_ERROR: |
138 | 0 | return "error creating or writing to a temporary file"; |
139 | 0 | case CAIRO_STATUS_INVALID_STRIDE: |
140 | 0 | return "invalid value for stride"; |
141 | 0 | case CAIRO_STATUS_FONT_TYPE_MISMATCH: |
142 | 0 | return "the font type is not appropriate for the operation"; |
143 | 0 | case CAIRO_STATUS_USER_FONT_IMMUTABLE: |
144 | 0 | return "the user-font is immutable"; |
145 | 0 | case CAIRO_STATUS_USER_FONT_ERROR: |
146 | 0 | return "error occurred in a user-font callback function"; |
147 | 0 | case CAIRO_STATUS_NEGATIVE_COUNT: |
148 | 0 | return "negative number used where it is not allowed"; |
149 | 0 | case CAIRO_STATUS_INVALID_CLUSTERS: |
150 | 0 | return "input clusters do not represent the accompanying text and glyph arrays"; |
151 | 0 | case CAIRO_STATUS_INVALID_SLANT: |
152 | 0 | return "invalid value for an input cairo_font_slant_t"; |
153 | 0 | case CAIRO_STATUS_INVALID_WEIGHT: |
154 | 0 | return "invalid value for an input cairo_font_weight_t"; |
155 | 0 | case CAIRO_STATUS_INVALID_SIZE: |
156 | 0 | return "invalid value (typically too big) for the size of the input (surface, pattern, etc.)"; |
157 | 0 | case CAIRO_STATUS_USER_FONT_NOT_IMPLEMENTED: |
158 | 0 | return "user-font method not implemented"; |
159 | 0 | case CAIRO_STATUS_DEVICE_TYPE_MISMATCH: |
160 | 0 | return "the device type is not appropriate for the operation"; |
161 | 0 | case CAIRO_STATUS_DEVICE_ERROR: |
162 | 0 | return "an operation to the device caused an unspecified error"; |
163 | 0 | case CAIRO_STATUS_INVALID_MESH_CONSTRUCTION: |
164 | 0 | return "invalid operation during mesh pattern construction"; |
165 | 0 | case CAIRO_STATUS_DEVICE_FINISHED: |
166 | 0 | return "the target device has been finished"; |
167 | 0 | case CAIRO_STATUS_JBIG2_GLOBAL_MISSING: |
168 | 0 | return "CAIRO_MIME_TYPE_JBIG2_GLOBAL_ID used but no CAIRO_MIME_TYPE_JBIG2_GLOBAL data provided"; |
169 | 0 | case CAIRO_STATUS_PNG_ERROR: |
170 | 0 | return "error occurred in libpng while reading from or writing to a PNG file"; |
171 | 0 | case CAIRO_STATUS_FREETYPE_ERROR: |
172 | 0 | return "error occurred in libfreetype"; |
173 | 0 | case CAIRO_STATUS_WIN32_GDI_ERROR: |
174 | 0 | return "error occurred in the Windows Graphics Device Interface"; |
175 | 0 | case CAIRO_STATUS_TAG_ERROR: |
176 | 0 | return "invalid tag name, attributes, or nesting"; |
177 | 0 | case CAIRO_STATUS_DWRITE_ERROR: |
178 | 0 | return "Window Direct Write error"; |
179 | 0 | default: |
180 | 0 | case CAIRO_STATUS_LAST_STATUS: |
181 | 0 | return "<unknown error status>"; |
182 | 0 | } |
183 | 0 | } |
184 | | |
185 | | |
186 | | /** |
187 | | * cairo_glyph_allocate: |
188 | | * @num_glyphs: number of glyphs to allocate |
189 | | * |
190 | | * Allocates an array of #cairo_glyph_t's. |
191 | | * This function is only useful in implementations of |
192 | | * #cairo_user_scaled_font_text_to_glyphs_func_t where the user |
193 | | * needs to allocate an array of glyphs that cairo will free. |
194 | | * For all other uses, user can use their own allocation method |
195 | | * for glyphs. |
196 | | * |
197 | | * This function returns %NULL if @num_glyphs is not positive, |
198 | | * or if out of memory. That means, the %NULL return value |
199 | | * signals out-of-memory only if @num_glyphs was positive. |
200 | | * |
201 | | * Returns: the newly allocated array of glyphs that should be |
202 | | * freed using cairo_glyph_free() |
203 | | * |
204 | | * Since: 1.8 |
205 | | **/ |
206 | | cairo_glyph_t * |
207 | | cairo_glyph_allocate (int num_glyphs) |
208 | 6.32k | { |
209 | 6.32k | if (num_glyphs <= 0) |
210 | 0 | return NULL; |
211 | | |
212 | 6.32k | return _cairo_malloc_ab (num_glyphs, sizeof (cairo_glyph_t)); |
213 | 6.32k | } |
214 | | slim_hidden_def (cairo_glyph_allocate); |
215 | | |
216 | | /** |
217 | | * cairo_glyph_free: |
218 | | * @glyphs: array of glyphs to free, or %NULL |
219 | | * |
220 | | * Frees an array of #cairo_glyph_t's allocated using cairo_glyph_allocate(). |
221 | | * This function is only useful to free glyph array returned |
222 | | * by cairo_scaled_font_text_to_glyphs() where cairo returns |
223 | | * an array of glyphs that the user will free. |
224 | | * For all other uses, user can use their own allocation method |
225 | | * for glyphs. |
226 | | * |
227 | | * Since: 1.8 |
228 | | **/ |
229 | | void |
230 | | cairo_glyph_free (cairo_glyph_t *glyphs) |
231 | 6.32k | { |
232 | 6.32k | free (glyphs); |
233 | 6.32k | } |
234 | | slim_hidden_def (cairo_glyph_free); |
235 | | |
236 | | /** |
237 | | * cairo_text_cluster_allocate: |
238 | | * @num_clusters: number of text_clusters to allocate |
239 | | * |
240 | | * Allocates an array of #cairo_text_cluster_t's. |
241 | | * This function is only useful in implementations of |
242 | | * #cairo_user_scaled_font_text_to_glyphs_func_t where the user |
243 | | * needs to allocate an array of text clusters that cairo will free. |
244 | | * For all other uses, user can use their own allocation method |
245 | | * for text clusters. |
246 | | * |
247 | | * This function returns %NULL if @num_clusters is not positive, |
248 | | * or if out of memory. That means, the %NULL return value |
249 | | * signals out-of-memory only if @num_clusters was positive. |
250 | | * |
251 | | * Returns: the newly allocated array of text clusters that should be |
252 | | * freed using cairo_text_cluster_free() |
253 | | * |
254 | | * Since: 1.8 |
255 | | **/ |
256 | | cairo_text_cluster_t * |
257 | | cairo_text_cluster_allocate (int num_clusters) |
258 | 0 | { |
259 | 0 | if (num_clusters <= 0) |
260 | 0 | return NULL; |
261 | | |
262 | 0 | return _cairo_malloc_ab (num_clusters, sizeof (cairo_text_cluster_t)); |
263 | 0 | } |
264 | | slim_hidden_def (cairo_text_cluster_allocate); |
265 | | |
266 | | /** |
267 | | * cairo_text_cluster_free: |
268 | | * @clusters: array of text clusters to free, or %NULL |
269 | | * |
270 | | * Frees an array of #cairo_text_cluster's allocated using cairo_text_cluster_allocate(). |
271 | | * This function is only useful to free text cluster array returned |
272 | | * by cairo_scaled_font_text_to_glyphs() where cairo returns |
273 | | * an array of text clusters that the user will free. |
274 | | * For all other uses, user can use their own allocation method |
275 | | * for text clusters. |
276 | | * |
277 | | * Since: 1.8 |
278 | | **/ |
279 | | void |
280 | | cairo_text_cluster_free (cairo_text_cluster_t *clusters) |
281 | 0 | { |
282 | 0 | free (clusters); |
283 | 0 | } |
284 | | slim_hidden_def (cairo_text_cluster_free); |
285 | | |
286 | | |
287 | | /* Private stuff */ |
288 | | |
289 | | /** |
290 | | * _cairo_validate_text_clusters: |
291 | | * @utf8: UTF-8 text |
292 | | * @utf8_len: length of @utf8 in bytes |
293 | | * @glyphs: array of glyphs |
294 | | * @num_glyphs: number of glyphs |
295 | | * @clusters: array of cluster mapping information |
296 | | * @num_clusters: number of clusters in the mapping |
297 | | * @cluster_flags: cluster flags |
298 | | * |
299 | | * Check that clusters cover the entire glyphs and utf8 arrays, |
300 | | * and that cluster boundaries are UTF-8 boundaries. |
301 | | * |
302 | | * Return value: %CAIRO_STATUS_SUCCESS upon success, or |
303 | | * %CAIRO_STATUS_INVALID_CLUSTERS on error. |
304 | | * The error is either invalid UTF-8 input, |
305 | | * or bad cluster mapping. |
306 | | **/ |
307 | | cairo_status_t |
308 | | _cairo_validate_text_clusters (const char *utf8, |
309 | | int utf8_len, |
310 | | const cairo_glyph_t *glyphs, |
311 | | int num_glyphs, |
312 | | const cairo_text_cluster_t *clusters, |
313 | | int num_clusters, |
314 | | cairo_text_cluster_flags_t cluster_flags) |
315 | 0 | { |
316 | 0 | cairo_status_t status; |
317 | 0 | unsigned int n_bytes = 0; |
318 | 0 | unsigned int n_glyphs = 0; |
319 | 0 | int i; |
320 | |
|
321 | 0 | for (i = 0; i < num_clusters; i++) { |
322 | 0 | int cluster_bytes = clusters[i].num_bytes; |
323 | 0 | int cluster_glyphs = clusters[i].num_glyphs; |
324 | |
|
325 | 0 | if (cluster_bytes < 0 || cluster_glyphs < 0) |
326 | 0 | goto BAD; |
327 | | |
328 | | /* A cluster should cover at least one character or glyph. |
329 | | * I can't see any use for a 0,0 cluster. |
330 | | * I can't see an immediate use for a zero-text cluster |
331 | | * right now either, but they don't harm. |
332 | | * Zero-glyph clusters on the other hand are useful for |
333 | | * things like U+200C ZERO WIDTH NON-JOINER */ |
334 | 0 | if (cluster_bytes == 0 && cluster_glyphs == 0) |
335 | 0 | goto BAD; |
336 | | |
337 | | /* Since n_bytes and n_glyphs are unsigned, but the rest of |
338 | | * values involved are signed, we can detect overflow easily */ |
339 | 0 | if (n_bytes+cluster_bytes > (unsigned int)utf8_len || n_glyphs+cluster_glyphs > (unsigned int)num_glyphs) |
340 | 0 | goto BAD; |
341 | | |
342 | | /* Make sure we've got valid UTF-8 for the cluster */ |
343 | 0 | status = _cairo_utf8_to_ucs4 (utf8+n_bytes, cluster_bytes, NULL, NULL); |
344 | 0 | if (unlikely (status)) |
345 | 0 | return _cairo_error (CAIRO_STATUS_INVALID_CLUSTERS); |
346 | | |
347 | 0 | n_bytes += cluster_bytes ; |
348 | 0 | n_glyphs += cluster_glyphs; |
349 | 0 | } |
350 | | |
351 | 0 | if (n_bytes != (unsigned int) utf8_len || n_glyphs != (unsigned int) num_glyphs) { |
352 | 0 | BAD: |
353 | 0 | return _cairo_error (CAIRO_STATUS_INVALID_CLUSTERS); |
354 | 0 | } |
355 | | |
356 | 0 | return CAIRO_STATUS_SUCCESS; |
357 | 0 | } |
358 | | |
359 | | /** |
360 | | * _cairo_operator_bounded_by_mask: |
361 | | * @op: a #cairo_operator_t |
362 | | * |
363 | | * A bounded operator is one where mask pixel |
364 | | * of zero results in no effect on the destination image. |
365 | | * |
366 | | * Unbounded operators often require special handling; if you, for |
367 | | * example, draw trapezoids with an unbounded operator, the effect |
368 | | * extends past the bounding box of the trapezoids. |
369 | | * |
370 | | * Return value: %TRUE if the operator is bounded by the mask operand |
371 | | **/ |
372 | | cairo_bool_t |
373 | | _cairo_operator_bounded_by_mask (cairo_operator_t op) |
374 | 6.22k | { |
375 | 6.22k | switch (op) { |
376 | 0 | case CAIRO_OPERATOR_CLEAR: |
377 | 0 | case CAIRO_OPERATOR_SOURCE: |
378 | 6.22k | case CAIRO_OPERATOR_OVER: |
379 | 6.22k | case CAIRO_OPERATOR_ATOP: |
380 | 6.22k | case CAIRO_OPERATOR_DEST: |
381 | 6.22k | case CAIRO_OPERATOR_DEST_OVER: |
382 | 6.22k | case CAIRO_OPERATOR_DEST_OUT: |
383 | 6.22k | case CAIRO_OPERATOR_XOR: |
384 | 6.22k | case CAIRO_OPERATOR_ADD: |
385 | 6.22k | case CAIRO_OPERATOR_SATURATE: |
386 | 6.22k | case CAIRO_OPERATOR_MULTIPLY: |
387 | 6.22k | case CAIRO_OPERATOR_SCREEN: |
388 | 6.22k | case CAIRO_OPERATOR_OVERLAY: |
389 | 6.22k | case CAIRO_OPERATOR_DARKEN: |
390 | 6.22k | case CAIRO_OPERATOR_LIGHTEN: |
391 | 6.22k | case CAIRO_OPERATOR_COLOR_DODGE: |
392 | 6.22k | case CAIRO_OPERATOR_COLOR_BURN: |
393 | 6.22k | case CAIRO_OPERATOR_HARD_LIGHT: |
394 | 6.22k | case CAIRO_OPERATOR_SOFT_LIGHT: |
395 | 6.22k | case CAIRO_OPERATOR_DIFFERENCE: |
396 | 6.22k | case CAIRO_OPERATOR_EXCLUSION: |
397 | 6.22k | case CAIRO_OPERATOR_HSL_HUE: |
398 | 6.22k | case CAIRO_OPERATOR_HSL_SATURATION: |
399 | 6.22k | case CAIRO_OPERATOR_HSL_COLOR: |
400 | 6.22k | case CAIRO_OPERATOR_HSL_LUMINOSITY: |
401 | 6.22k | return TRUE; |
402 | 0 | case CAIRO_OPERATOR_OUT: |
403 | 0 | case CAIRO_OPERATOR_IN: |
404 | 0 | case CAIRO_OPERATOR_DEST_IN: |
405 | 0 | case CAIRO_OPERATOR_DEST_ATOP: |
406 | 0 | return FALSE; |
407 | 0 | default: |
408 | 0 | ASSERT_NOT_REACHED; |
409 | 0 | return FALSE; /* squelch warning */ |
410 | 6.22k | } |
411 | 6.22k | } |
412 | | |
413 | | /** |
414 | | * _cairo_operator_bounded_by_source: |
415 | | * @op: a #cairo_operator_t |
416 | | * |
417 | | * A bounded operator is one where source pixels of zero |
418 | | * (in all four components, r, g, b and a) effect no change |
419 | | * in the resulting destination image. |
420 | | * |
421 | | * Unbounded operators often require special handling; if you, for |
422 | | * example, copy a surface with the SOURCE operator, the effect |
423 | | * extends past the bounding box of the source surface. |
424 | | * |
425 | | * Return value: %TRUE if the operator is bounded by the source operand |
426 | | **/ |
427 | | cairo_bool_t |
428 | | _cairo_operator_bounded_by_source (cairo_operator_t op) |
429 | 0 | { |
430 | 0 | switch (op) { |
431 | 0 | case CAIRO_OPERATOR_OVER: |
432 | 0 | case CAIRO_OPERATOR_ATOP: |
433 | 0 | case CAIRO_OPERATOR_DEST: |
434 | 0 | case CAIRO_OPERATOR_DEST_OVER: |
435 | 0 | case CAIRO_OPERATOR_DEST_OUT: |
436 | 0 | case CAIRO_OPERATOR_XOR: |
437 | 0 | case CAIRO_OPERATOR_ADD: |
438 | 0 | case CAIRO_OPERATOR_SATURATE: |
439 | 0 | case CAIRO_OPERATOR_MULTIPLY: |
440 | 0 | case CAIRO_OPERATOR_SCREEN: |
441 | 0 | case CAIRO_OPERATOR_OVERLAY: |
442 | 0 | case CAIRO_OPERATOR_DARKEN: |
443 | 0 | case CAIRO_OPERATOR_LIGHTEN: |
444 | 0 | case CAIRO_OPERATOR_COLOR_DODGE: |
445 | 0 | case CAIRO_OPERATOR_COLOR_BURN: |
446 | 0 | case CAIRO_OPERATOR_HARD_LIGHT: |
447 | 0 | case CAIRO_OPERATOR_SOFT_LIGHT: |
448 | 0 | case CAIRO_OPERATOR_DIFFERENCE: |
449 | 0 | case CAIRO_OPERATOR_EXCLUSION: |
450 | 0 | case CAIRO_OPERATOR_HSL_HUE: |
451 | 0 | case CAIRO_OPERATOR_HSL_SATURATION: |
452 | 0 | case CAIRO_OPERATOR_HSL_COLOR: |
453 | 0 | case CAIRO_OPERATOR_HSL_LUMINOSITY: |
454 | 0 | return TRUE; |
455 | 0 | case CAIRO_OPERATOR_CLEAR: |
456 | 0 | case CAIRO_OPERATOR_SOURCE: |
457 | 0 | case CAIRO_OPERATOR_OUT: |
458 | 0 | case CAIRO_OPERATOR_IN: |
459 | 0 | case CAIRO_OPERATOR_DEST_IN: |
460 | 0 | case CAIRO_OPERATOR_DEST_ATOP: |
461 | 0 | return FALSE; |
462 | 0 | default: |
463 | 0 | ASSERT_NOT_REACHED; |
464 | 0 | return FALSE; /* squelch warning */ |
465 | 0 | } |
466 | 0 | } |
467 | | |
468 | | uint32_t |
469 | | _cairo_operator_bounded_by_either (cairo_operator_t op) |
470 | 8.49M | { |
471 | 8.49M | switch (op) { |
472 | 8.47M | case CAIRO_OPERATOR_OVER: |
473 | 8.47M | case CAIRO_OPERATOR_ATOP: |
474 | 8.47M | case CAIRO_OPERATOR_DEST: |
475 | 8.47M | case CAIRO_OPERATOR_DEST_OVER: |
476 | 8.47M | case CAIRO_OPERATOR_DEST_OUT: |
477 | 8.47M | case CAIRO_OPERATOR_XOR: |
478 | 8.47M | case CAIRO_OPERATOR_ADD: |
479 | 8.47M | case CAIRO_OPERATOR_SATURATE: |
480 | 8.47M | case CAIRO_OPERATOR_MULTIPLY: |
481 | 8.47M | case CAIRO_OPERATOR_SCREEN: |
482 | 8.47M | case CAIRO_OPERATOR_OVERLAY: |
483 | 8.47M | case CAIRO_OPERATOR_DARKEN: |
484 | 8.47M | case CAIRO_OPERATOR_LIGHTEN: |
485 | 8.47M | case CAIRO_OPERATOR_COLOR_DODGE: |
486 | 8.47M | case CAIRO_OPERATOR_COLOR_BURN: |
487 | 8.47M | case CAIRO_OPERATOR_HARD_LIGHT: |
488 | 8.47M | case CAIRO_OPERATOR_SOFT_LIGHT: |
489 | 8.47M | case CAIRO_OPERATOR_DIFFERENCE: |
490 | 8.47M | case CAIRO_OPERATOR_EXCLUSION: |
491 | 8.47M | case CAIRO_OPERATOR_HSL_HUE: |
492 | 8.47M | case CAIRO_OPERATOR_HSL_SATURATION: |
493 | 8.47M | case CAIRO_OPERATOR_HSL_COLOR: |
494 | 8.47M | case CAIRO_OPERATOR_HSL_LUMINOSITY: |
495 | 8.47M | return CAIRO_OPERATOR_BOUND_BY_MASK | CAIRO_OPERATOR_BOUND_BY_SOURCE; |
496 | 0 | case CAIRO_OPERATOR_CLEAR: |
497 | 17.3k | case CAIRO_OPERATOR_SOURCE: |
498 | 17.3k | return CAIRO_OPERATOR_BOUND_BY_MASK; |
499 | 0 | case CAIRO_OPERATOR_OUT: |
500 | 0 | case CAIRO_OPERATOR_IN: |
501 | 0 | case CAIRO_OPERATOR_DEST_IN: |
502 | 0 | case CAIRO_OPERATOR_DEST_ATOP: |
503 | 0 | return 0; |
504 | 0 | default: |
505 | 0 | ASSERT_NOT_REACHED; |
506 | 0 | return FALSE; /* squelch warning */ |
507 | 8.49M | } |
508 | | |
509 | 8.49M | } |
510 | | |
511 | | #if DISABLE_SOME_FLOATING_POINT |
512 | | /* This function is identical to the C99 function lround(), except that it |
513 | | * performs arithmetic rounding (floor(d + .5) instead of away-from-zero rounding) and |
514 | | * has a valid input range of (INT_MIN, INT_MAX] instead of |
515 | | * [INT_MIN, INT_MAX]. It is much faster on both x86 and FPU-less systems |
516 | | * than other commonly used methods for rounding (lround, round, rint, lrint |
517 | | * or float (d + 0.5)). |
518 | | * |
519 | | * The reason why this function is much faster on x86 than other |
520 | | * methods is due to the fact that it avoids the fldcw instruction. |
521 | | * This instruction incurs a large performance penalty on modern Intel |
522 | | * processors due to how it prevents efficient instruction pipelining. |
523 | | * |
524 | | * The reason why this function is much faster on FPU-less systems is for |
525 | | * an entirely different reason. All common rounding methods involve multiple |
526 | | * floating-point operations. Each one of these operations has to be |
527 | | * emulated in software, which adds up to be a large performance penalty. |
528 | | * This function doesn't perform any floating-point calculations, and thus |
529 | | * avoids this penalty. |
530 | | */ |
531 | | int |
532 | | _cairo_lround (double d) |
533 | | { |
534 | | uint32_t top, shift_amount, output; |
535 | | union { |
536 | | double d; |
537 | | uint64_t ui64; |
538 | | uint32_t ui32[2]; |
539 | | } u; |
540 | | |
541 | | u.d = d; |
542 | | |
543 | | /* If the integer word order doesn't match the float word order, we swap |
544 | | * the words of the input double. This is needed because we will be |
545 | | * treating the whole double as a 64-bit unsigned integer. Notice that we |
546 | | * use WORDS_BIGENDIAN to detect the integer word order, which isn't |
547 | | * exactly correct because WORDS_BIGENDIAN refers to byte order, not word |
548 | | * order. Thus, we are making the assumption that the byte order is the |
549 | | * same as the integer word order which, on the modern machines that we |
550 | | * care about, is OK. |
551 | | */ |
552 | | #if ( defined(FLOAT_WORDS_BIGENDIAN) && !defined(WORDS_BIGENDIAN)) || \ |
553 | | (!defined(FLOAT_WORDS_BIGENDIAN) && defined(WORDS_BIGENDIAN)) |
554 | | { |
555 | | uint32_t temp = u.ui32[0]; |
556 | | u.ui32[0] = u.ui32[1]; |
557 | | u.ui32[1] = temp; |
558 | | } |
559 | | #endif |
560 | | |
561 | | #ifdef WORDS_BIGENDIAN |
562 | | #define MSW (0) /* Most Significant Word */ |
563 | | #define LSW (1) /* Least Significant Word */ |
564 | | #else |
565 | | #define MSW (1) |
566 | | #define LSW (0) |
567 | | #endif |
568 | | |
569 | | /* By shifting the most significant word of the input double to the |
570 | | * right 20 places, we get the very "top" of the double where the exponent |
571 | | * and sign bit lie. |
572 | | */ |
573 | | top = u.ui32[MSW] >> 20; |
574 | | |
575 | | /* Here, we calculate how much we have to shift the mantissa to normalize |
576 | | * it to an integer value. We extract the exponent "top" by masking out the |
577 | | * sign bit, then we calculate the shift amount by subtracting the exponent |
578 | | * from the bias. Notice that the correct bias for 64-bit doubles is |
579 | | * actually 1075, but we use 1053 instead for two reasons: |
580 | | * |
581 | | * 1) To perform rounding later on, we will first need the target |
582 | | * value in a 31.1 fixed-point format. Thus, the bias needs to be one |
583 | | * less: (1075 - 1: 1074). |
584 | | * |
585 | | * 2) To avoid shifting the mantissa as a full 64-bit integer (which is |
586 | | * costly on certain architectures), we break the shift into two parts. |
587 | | * First, the upper and lower parts of the mantissa are shifted |
588 | | * individually by a constant amount that all valid inputs will require |
589 | | * at the very least. This amount is chosen to be 21, because this will |
590 | | * allow the two parts of the mantissa to later be combined into a |
591 | | * single 32-bit representation, on which the remainder of the shift |
592 | | * will be performed. Thus, we decrease the bias by an additional 21: |
593 | | * (1074 - 21: 1053). |
594 | | */ |
595 | | shift_amount = 1053 - (top & 0x7FF); |
596 | | |
597 | | /* We are done with the exponent portion in "top", so here we shift it off |
598 | | * the end. |
599 | | */ |
600 | | top >>= 11; |
601 | | |
602 | | /* Before we perform any operations on the mantissa, we need to OR in |
603 | | * the implicit 1 at the top (see the IEEE-754 spec). We needn't mask |
604 | | * off the sign bit nor the exponent bits because these higher bits won't |
605 | | * make a bit of difference in the rest of our calculations. |
606 | | */ |
607 | | u.ui32[MSW] |= 0x100000; |
608 | | |
609 | | /* If the input double is negative, we have to decrease the mantissa |
610 | | * by a hair. This is an important part of performing arithmetic rounding, |
611 | | * as negative numbers must round towards positive infinity in the |
612 | | * halfwase case of -x.5. Since "top" contains only the sign bit at this |
613 | | * point, we can just decrease the mantissa by the value of "top". |
614 | | */ |
615 | | u.ui64 -= top; |
616 | | |
617 | | /* By decrementing "top", we create a bitmask with a value of either |
618 | | * 0x0 (if the input was negative) or 0xFFFFFFFF (if the input was positive |
619 | | * and thus the unsigned subtraction underflowed) that we'll use later. |
620 | | */ |
621 | | top--; |
622 | | |
623 | | /* Here, we shift the mantissa by the constant value as described above. |
624 | | * We can emulate a 64-bit shift right by 21 through shifting the top 32 |
625 | | * bits left 11 places and ORing in the bottom 32 bits shifted 21 places |
626 | | * to the right. Both parts of the mantissa are now packed into a single |
627 | | * 32-bit integer. Although we severely truncate the lower part in the |
628 | | * process, we still have enough significant bits to perform the conversion |
629 | | * without error (for all valid inputs). |
630 | | */ |
631 | | output = (u.ui32[MSW] << 11) | (u.ui32[LSW] >> 21); |
632 | | |
633 | | /* Next, we perform the shift that converts the X.Y fixed-point number |
634 | | * currently found in "output" to the desired 31.1 fixed-point format |
635 | | * needed for the following rounding step. It is important to consider |
636 | | * all possible values for "shift_amount" at this point: |
637 | | * |
638 | | * - {shift_amount < 0} Since shift_amount is an unsigned integer, it |
639 | | * really can't have a value less than zero. But, if the shift_amount |
640 | | * calculation above caused underflow (which would happen with |
641 | | * input > INT_MAX or input <= INT_MIN) then shift_amount will now be |
642 | | * a very large number, and so this shift will result in complete |
643 | | * garbage. But that's OK, as the input was out of our range, so our |
644 | | * output is undefined. |
645 | | * |
646 | | * - {shift_amount > 31} If the magnitude of the input was very small |
647 | | * (i.e. |input| << 1.0), shift_amount will have a value greater than |
648 | | * 31. Thus, this shift will also result in garbage. After performing |
649 | | * the shift, we will zero-out "output" if this is the case. |
650 | | * |
651 | | * - {0 <= shift_amount < 32} In this case, the shift will properly convert |
652 | | * the mantissa into a 31.1 fixed-point number. |
653 | | */ |
654 | | output >>= shift_amount; |
655 | | |
656 | | /* This is where we perform rounding with the 31.1 fixed-point number. |
657 | | * Since what we're after is arithmetic rounding, we simply add the single |
658 | | * fractional bit into the integer part of "output", and just keep the |
659 | | * integer part. |
660 | | */ |
661 | | output = (output >> 1) + (output & 1); |
662 | | |
663 | | /* Here, we zero-out the result if the magnitude if the input was very small |
664 | | * (as explained in the section above). Notice that all input out of the |
665 | | * valid range is also caught by this condition, which means we produce 0 |
666 | | * for all invalid input, which is a nice side effect. |
667 | | * |
668 | | * The most straightforward way to do this would be: |
669 | | * |
670 | | * if (shift_amount > 31) |
671 | | * output = 0; |
672 | | * |
673 | | * But we can use a little trick to avoid the potential branch. The |
674 | | * expression (shift_amount > 31) will be either 1 or 0, which when |
675 | | * decremented will be either 0x0 or 0xFFFFFFFF (unsigned underflow), |
676 | | * which can be used to conditionally mask away all the bits in "output" |
677 | | * (in the 0x0 case), effectively zeroing it out. Certain, compilers would |
678 | | * have done this for us automatically. |
679 | | */ |
680 | | output &= ((shift_amount > 31) - 1); |
681 | | |
682 | | /* If the input double was a negative number, then we have to negate our |
683 | | * output. The most straightforward way to do this would be: |
684 | | * |
685 | | * if (!top) |
686 | | * output = -output; |
687 | | * |
688 | | * as "top" at this point is either 0x0 (if the input was negative) or |
689 | | * 0xFFFFFFFF (if the input was positive). But, we can use a trick to |
690 | | * avoid the branch. Observe that the following snippet of code has the |
691 | | * same effect as the reference snippet above: |
692 | | * |
693 | | * if (!top) |
694 | | * output = 0 - output; |
695 | | * else |
696 | | * output = output - 0; |
697 | | * |
698 | | * Armed with the bitmask found in "top", we can condense the two statements |
699 | | * into the following: |
700 | | * |
701 | | * output = (output & top) - (output & ~top); |
702 | | * |
703 | | * where, in the case that the input double was negative, "top" will be 0, |
704 | | * and the statement will be equivalent to: |
705 | | * |
706 | | * output = (0) - (output); |
707 | | * |
708 | | * and if the input double was positive, "top" will be 0xFFFFFFFF, and the |
709 | | * statement will be equivalent to: |
710 | | * |
711 | | * output = (output) - (0); |
712 | | * |
713 | | * Which, as pointed out earlier, is equivalent to the original reference |
714 | | * snippet. |
715 | | */ |
716 | | output = (output & top) - (output & ~top); |
717 | | |
718 | | return output; |
719 | | #undef MSW |
720 | | #undef LSW |
721 | | } |
722 | | #endif |
723 | | |
724 | | /* Convert a 32-bit IEEE single precision floating point number to a |
725 | | * 'half' representation (s10.5) |
726 | | */ |
727 | | uint16_t |
728 | | _cairo_half_from_float (float f) |
729 | 0 | { |
730 | 0 | union { |
731 | 0 | uint32_t ui; |
732 | 0 | float f; |
733 | 0 | } u; |
734 | 0 | int s, e, m; |
735 | |
|
736 | 0 | u.f = f; |
737 | 0 | s = (u.ui >> 16) & 0x00008000; |
738 | 0 | e = ((u.ui >> 23) & 0x000000ff) - (127 - 15); |
739 | 0 | m = u.ui & 0x007fffff; |
740 | 0 | if (e <= 0) { |
741 | 0 | if (e < -10) { |
742 | | /* underflow */ |
743 | 0 | return 0; |
744 | 0 | } |
745 | | |
746 | 0 | m = (m | 0x00800000) >> (1 - e); |
747 | | |
748 | | /* round to nearest, round 0.5 up. */ |
749 | 0 | if (m & 0x00001000) |
750 | 0 | m += 0x00002000; |
751 | 0 | return s | (m >> 13); |
752 | 0 | } else if (e == 0xff - (127 - 15)) { |
753 | 0 | if (m == 0) { |
754 | | /* infinity */ |
755 | 0 | return s | 0x7c00; |
756 | 0 | } else { |
757 | | /* nan */ |
758 | 0 | m >>= 13; |
759 | 0 | return s | 0x7c00 | m | (m == 0); |
760 | 0 | } |
761 | 0 | } else { |
762 | | /* round to nearest, round 0.5 up. */ |
763 | 0 | if (m & 0x00001000) { |
764 | 0 | m += 0x00002000; |
765 | |
|
766 | 0 | if (m & 0x00800000) { |
767 | 0 | m = 0; |
768 | 0 | e += 1; |
769 | 0 | } |
770 | 0 | } |
771 | |
|
772 | 0 | if (e > 30) { |
773 | | /* overflow -> infinity */ |
774 | 0 | return s | 0x7c00; |
775 | 0 | } |
776 | | |
777 | 0 | return s | (e << 10) | (m >> 13); |
778 | 0 | } |
779 | 0 | } |
780 | | |
781 | | #ifndef __BIONIC__ |
782 | | # include <locale.h> |
783 | | |
784 | | const char * |
785 | | _cairo_get_locale_decimal_point (void) |
786 | 6 | { |
787 | 6 | struct lconv *locale_data = localeconv (); |
788 | 6 | return locale_data->decimal_point; |
789 | 6 | } |
790 | | |
791 | | #else |
792 | | /* Android's Bionic libc doesn't provide decimal_point */ |
793 | | const char * |
794 | | _cairo_get_locale_decimal_point (void) |
795 | | { |
796 | | return "."; |
797 | | } |
798 | | #endif |
799 | | |
800 | | #if defined (HAVE_NEWLOCALE) && defined (HAVE_STRTOD_L) |
801 | | |
802 | | static locale_t C_locale; |
803 | | |
804 | | static locale_t |
805 | | get_C_locale (void) |
806 | 0 | { |
807 | 0 | locale_t C; |
808 | |
|
809 | 0 | retry: |
810 | 0 | C = (locale_t) _cairo_atomic_ptr_get ((void **) &C_locale); |
811 | |
|
812 | 0 | if (unlikely (!C)) { |
813 | 0 | C = newlocale (LC_ALL_MASK, "C", NULL); |
814 | |
|
815 | 0 | if (!_cairo_atomic_ptr_cmpxchg ((void **) &C_locale, NULL, C)) { |
816 | 0 | freelocale (C_locale); |
817 | 0 | goto retry; |
818 | 0 | } |
819 | 0 | } |
820 | | |
821 | 0 | return C; |
822 | 0 | } |
823 | | |
824 | | double |
825 | | _cairo_strtod (const char *nptr, char **endptr) |
826 | 0 | { |
827 | 0 | return strtod_l (nptr, endptr, get_C_locale ()); |
828 | 0 | } |
829 | | |
830 | | #else |
831 | | |
832 | | /* strtod replacement that ignores locale and only accepts decimal points */ |
833 | | double |
834 | | _cairo_strtod (const char *nptr, char **endptr) |
835 | | { |
836 | | const char *decimal_point; |
837 | | int decimal_point_len; |
838 | | const char *p; |
839 | | char buf[100]; |
840 | | char *bufptr; |
841 | | char *bufend = buf + sizeof(buf) - 1; |
842 | | double value; |
843 | | char *end; |
844 | | int delta; |
845 | | cairo_bool_t have_dp; |
846 | | |
847 | | decimal_point = _cairo_get_locale_decimal_point (); |
848 | | decimal_point_len = strlen (decimal_point); |
849 | | assert (decimal_point_len != 0); |
850 | | |
851 | | p = nptr; |
852 | | bufptr = buf; |
853 | | delta = 0; |
854 | | have_dp = FALSE; |
855 | | while (*p && _cairo_isspace (*p)) { |
856 | | p++; |
857 | | delta++; |
858 | | } |
859 | | |
860 | | while (*p && (bufptr + decimal_point_len < bufend)) { |
861 | | if (_cairo_isdigit (*p)) { |
862 | | *bufptr++ = *p; |
863 | | } else if (*p == '.') { |
864 | | if (have_dp) |
865 | | break; |
866 | | strncpy (bufptr, decimal_point, decimal_point_len); |
867 | | bufptr += decimal_point_len; |
868 | | delta -= decimal_point_len - 1; |
869 | | have_dp = TRUE; |
870 | | } else if (bufptr == buf && (*p == '-' || *p == '+')) { |
871 | | *bufptr++ = *p; |
872 | | } else { |
873 | | break; |
874 | | } |
875 | | p++; |
876 | | } |
877 | | *bufptr = 0; |
878 | | |
879 | | value = strtod (buf, &end); |
880 | | if (endptr) { |
881 | | if (end == buf) |
882 | | *endptr = (char*)(nptr); |
883 | | else |
884 | | *endptr = (char*)(nptr + (end - buf) + delta); |
885 | | } |
886 | | |
887 | | return value; |
888 | | } |
889 | | #endif |
890 | | |
891 | | /** |
892 | | * _cairo_fopen: |
893 | | * @filename: filename to open |
894 | | * @mode: mode string with which to open the file |
895 | | * @file_out: reference to file handle |
896 | | * |
897 | | * Exactly like the C library function, but possibly doing encoding |
898 | | * conversion on the filename. On all platforms, the filename is |
899 | | * passed directly to the system, but on Windows, the filename is |
900 | | * interpreted as UTF-8, rather than in a codepage that would depend |
901 | | * on system settings. |
902 | | * |
903 | | * Return value: CAIRO_STATUS_SUCCESS when the filename was converted |
904 | | * successfully to the native encoding, or the error reported by |
905 | | * _cairo_utf8_to_utf16 otherwise. To check if the file handle could |
906 | | * be obtained, dereference file_out and compare its value against |
907 | | * NULL |
908 | | **/ |
909 | | cairo_status_t |
910 | | _cairo_fopen (const char *filename, const char *mode, FILE **file_out) |
911 | 0 | { |
912 | 0 | FILE *result; |
913 | | #ifdef _WIN32 /* also defined on x86_64 */ |
914 | | uint16_t *filename_w; |
915 | | uint16_t *mode_w; |
916 | | cairo_status_t status; |
917 | | |
918 | | *file_out = NULL; |
919 | | |
920 | | if (filename == NULL || mode == NULL) { |
921 | | errno = EINVAL; |
922 | | return CAIRO_STATUS_SUCCESS; |
923 | | } |
924 | | |
925 | | if ((status = _cairo_utf8_to_utf16 (filename, -1, &filename_w, NULL)) != CAIRO_STATUS_SUCCESS) { |
926 | | errno = EINVAL; |
927 | | return status; |
928 | | } |
929 | | |
930 | | if ((status = _cairo_utf8_to_utf16 (mode, -1, &mode_w, NULL)) != CAIRO_STATUS_SUCCESS) { |
931 | | free (filename_w); |
932 | | errno = EINVAL; |
933 | | return status; |
934 | | } |
935 | | |
936 | | result = _wfopen(filename_w, mode_w); |
937 | | |
938 | | free (filename_w); |
939 | | free (mode_w); |
940 | | |
941 | | #else /* Use fopen directly */ |
942 | 0 | result = fopen (filename, mode); |
943 | 0 | #endif |
944 | |
|
945 | 0 | *file_out = result; |
946 | |
|
947 | 0 | return CAIRO_STATUS_SUCCESS; |
948 | 0 | } |
949 | | |
950 | | #ifdef _WIN32 |
951 | | |
952 | | #define WIN32_LEAN_AND_MEAN |
953 | | /* We require Windows 2000 features such as ETO_PDY */ |
954 | | #if !defined(WINVER) || (WINVER < 0x0500) |
955 | | # define WINVER 0x0500 |
956 | | #endif |
957 | | #if !defined(_WIN32_WINNT) || (_WIN32_WINNT < 0x0500) |
958 | | # define _WIN32_WINNT 0x0500 |
959 | | #endif |
960 | | |
961 | | #include <windows.h> |
962 | | #include <io.h> |
963 | | |
964 | | #if !_WIN32_WCE |
965 | | /* tmpfile() replacement for Windows. |
966 | | * |
967 | | * On Windows tmpfile() creates the file in the root directory. This |
968 | | * may fail due to insufficient privileges. However, this isn't a |
969 | | * problem on Windows CE so we don't use it there. |
970 | | */ |
971 | | FILE * |
972 | | _cairo_win32_tmpfile (void) |
973 | | { |
974 | | DWORD path_len; |
975 | | WCHAR path_name[MAX_PATH + 1]; |
976 | | WCHAR file_name[MAX_PATH + 1]; |
977 | | HANDLE handle; |
978 | | int fd; |
979 | | FILE *fp; |
980 | | |
981 | | path_len = GetTempPathW (MAX_PATH, path_name); |
982 | | if (path_len <= 0 || path_len >= MAX_PATH) |
983 | | return NULL; |
984 | | |
985 | | if (GetTempFileNameW (path_name, L"ps_", 0, file_name) == 0) |
986 | | return NULL; |
987 | | |
988 | | handle = CreateFileW (file_name, |
989 | | GENERIC_READ | GENERIC_WRITE, |
990 | | 0, |
991 | | NULL, |
992 | | CREATE_ALWAYS, |
993 | | FILE_ATTRIBUTE_NORMAL | FILE_FLAG_DELETE_ON_CLOSE, |
994 | | NULL); |
995 | | if (handle == INVALID_HANDLE_VALUE) { |
996 | | DeleteFileW (file_name); |
997 | | return NULL; |
998 | | } |
999 | | |
1000 | | fd = _open_osfhandle((intptr_t) handle, 0); |
1001 | | if (fd < 0) { |
1002 | | CloseHandle (handle); |
1003 | | return NULL; |
1004 | | } |
1005 | | |
1006 | | fp = fdopen(fd, "w+b"); |
1007 | | if (fp == NULL) { |
1008 | | _close(fd); |
1009 | | return NULL; |
1010 | | } |
1011 | | |
1012 | | return fp; |
1013 | | } |
1014 | | #endif /* !_WIN32_WCE */ |
1015 | | |
1016 | | #endif /* _WIN32 */ |
1017 | | |
1018 | | typedef struct _cairo_intern_string { |
1019 | | cairo_hash_entry_t hash_entry; |
1020 | | int len; |
1021 | | char *string; |
1022 | | } cairo_intern_string_t; |
1023 | | |
1024 | | static cairo_hash_table_t *_cairo_intern_string_ht; |
1025 | | |
1026 | | unsigned long |
1027 | | _cairo_string_hash (const char *str, int len) |
1028 | 0 | { |
1029 | 0 | const signed char *p = (const signed char *) str; |
1030 | 0 | unsigned int h = *p; |
1031 | |
|
1032 | 0 | for (p += 1; len > 0; len--, p++) |
1033 | 0 | h = (h << 5) - h + *p; |
1034 | |
|
1035 | 0 | return h; |
1036 | 0 | } |
1037 | | |
1038 | | static cairo_bool_t |
1039 | | _intern_string_equal (const void *_a, const void *_b) |
1040 | 0 | { |
1041 | 0 | const cairo_intern_string_t *a = _a; |
1042 | 0 | const cairo_intern_string_t *b = _b; |
1043 | |
|
1044 | 0 | if (a->len != b->len) |
1045 | 0 | return FALSE; |
1046 | | |
1047 | 0 | return memcmp (a->string, b->string, a->len) == 0; |
1048 | 0 | } |
1049 | | |
1050 | | cairo_status_t |
1051 | | _cairo_intern_string (const char **str_inout, int len) |
1052 | 0 | { |
1053 | 0 | char *str = (char *) *str_inout; |
1054 | 0 | cairo_intern_string_t tmpl, *istring; |
1055 | 0 | cairo_status_t status = CAIRO_STATUS_SUCCESS; |
1056 | |
|
1057 | 0 | if (CAIRO_INJECT_FAULT ()) |
1058 | 0 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
1059 | | |
1060 | 0 | if (len < 0) |
1061 | 0 | len = strlen (str); |
1062 | 0 | tmpl.hash_entry.hash = _cairo_string_hash (str, len); |
1063 | 0 | tmpl.len = len; |
1064 | 0 | tmpl.string = (char *) str; |
1065 | |
|
1066 | 0 | CAIRO_MUTEX_LOCK (_cairo_intern_string_mutex); |
1067 | 0 | if (_cairo_intern_string_ht == NULL) { |
1068 | 0 | _cairo_intern_string_ht = _cairo_hash_table_create (_intern_string_equal); |
1069 | 0 | if (unlikely (_cairo_intern_string_ht == NULL)) { |
1070 | 0 | status = _cairo_error (CAIRO_STATUS_NO_MEMORY); |
1071 | 0 | goto BAIL; |
1072 | 0 | } |
1073 | 0 | } |
1074 | | |
1075 | 0 | istring = _cairo_hash_table_lookup (_cairo_intern_string_ht, |
1076 | 0 | &tmpl.hash_entry); |
1077 | 0 | if (istring == NULL) { |
1078 | 0 | istring = _cairo_malloc (sizeof (cairo_intern_string_t) + len + 1); |
1079 | 0 | if (likely (istring != NULL)) { |
1080 | 0 | istring->hash_entry.hash = tmpl.hash_entry.hash; |
1081 | 0 | istring->len = tmpl.len; |
1082 | 0 | istring->string = (char *) (istring + 1); |
1083 | 0 | memcpy (istring->string, str, len); |
1084 | 0 | istring->string[len] = '\0'; |
1085 | |
|
1086 | 0 | status = _cairo_hash_table_insert (_cairo_intern_string_ht, |
1087 | 0 | &istring->hash_entry); |
1088 | 0 | if (unlikely (status)) { |
1089 | 0 | free (istring); |
1090 | 0 | goto BAIL; |
1091 | 0 | } |
1092 | 0 | } else { |
1093 | 0 | status = _cairo_error (CAIRO_STATUS_NO_MEMORY); |
1094 | 0 | goto BAIL; |
1095 | 0 | } |
1096 | 0 | } |
1097 | | |
1098 | 0 | *str_inout = istring->string; |
1099 | |
|
1100 | 0 | BAIL: |
1101 | 0 | CAIRO_MUTEX_UNLOCK (_cairo_intern_string_mutex); |
1102 | 0 | return status; |
1103 | 0 | } |
1104 | | |
1105 | | static void |
1106 | | _intern_string_pluck (void *entry, void *closure) |
1107 | 0 | { |
1108 | 0 | _cairo_hash_table_remove (closure, entry); |
1109 | 0 | free (entry); |
1110 | 0 | } |
1111 | | |
1112 | | void |
1113 | | _cairo_intern_string_reset_static_data (void) |
1114 | 0 | { |
1115 | 0 | CAIRO_MUTEX_LOCK (_cairo_intern_string_mutex); |
1116 | 0 | if (_cairo_intern_string_ht != NULL) { |
1117 | 0 | _cairo_hash_table_foreach (_cairo_intern_string_ht, |
1118 | 0 | _intern_string_pluck, |
1119 | 0 | _cairo_intern_string_ht); |
1120 | 0 | _cairo_hash_table_destroy(_cairo_intern_string_ht); |
1121 | 0 | _cairo_intern_string_ht = NULL; |
1122 | 0 | } |
1123 | 0 | CAIRO_MUTEX_UNLOCK (_cairo_intern_string_mutex); |
1124 | 0 | } |