/work/workdir/UnpackedTarball/cairo/src/cairo-pattern.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: c; c-basic-offset: 4; indent-tabs-mode: t; tab-width: 8; -*- */ |
2 | | /* cairo - a vector graphics library with display and print output |
3 | | * |
4 | | * Copyright © 2004 David Reveman |
5 | | * Copyright © 2005 Red Hat, Inc. |
6 | | * |
7 | | * Permission to use, copy, modify, distribute, and sell this software |
8 | | * and its documentation for any purpose is hereby granted without |
9 | | * fee, provided that the above copyright notice appear in all copies |
10 | | * and that both that copyright notice and this permission notice |
11 | | * appear in supporting documentation, and that the name of David |
12 | | * Reveman not be used in advertising or publicity pertaining to |
13 | | * distribution of the software without specific, written prior |
14 | | * permission. David Reveman makes no representations about the |
15 | | * suitability of this software for any purpose. It is provided "as |
16 | | * is" without express or implied warranty. |
17 | | * |
18 | | * DAVID REVEMAN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS |
19 | | * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND |
20 | | * FITNESS, IN NO EVENT SHALL DAVID REVEMAN BE LIABLE FOR ANY SPECIAL, |
21 | | * INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER |
22 | | * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
23 | | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR |
24 | | * IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
25 | | * |
26 | | * Authors: David Reveman <davidr@novell.com> |
27 | | * Keith Packard <keithp@keithp.com> |
28 | | * Carl Worth <cworth@cworth.org> |
29 | | */ |
30 | | |
31 | | #include "cairoint.h" |
32 | | |
33 | | #include "cairo-array-private.h" |
34 | | #include "cairo-error-private.h" |
35 | | #include "cairo-freed-pool-private.h" |
36 | | #include "cairo-image-surface-private.h" |
37 | | #include "cairo-list-inline.h" |
38 | | #include "cairo-path-private.h" |
39 | | #include "cairo-pattern-private.h" |
40 | | #include "cairo-recording-surface-inline.h" |
41 | | #include "cairo-surface-snapshot-inline.h" |
42 | | |
43 | | #include <float.h> |
44 | | |
45 | | #define PIXMAN_MAX_INT ((pixman_fixed_1 >> 1) - pixman_fixed_e) /* need to ensure deltas also fit */ |
46 | | |
47 | | /** |
48 | | * SECTION:cairo-pattern |
49 | | * @Title: cairo_pattern_t |
50 | | * @Short_Description: Sources for drawing |
51 | | * @See_Also: #cairo_t, #cairo_surface_t |
52 | | * |
53 | | * #cairo_pattern_t is the paint with which cairo draws. |
54 | | * The primary use of patterns is as the source for all cairo drawing |
55 | | * operations, although they can also be used as masks, that is, as the |
56 | | * brush too. |
57 | | * |
58 | | * A cairo pattern is created by using one of the many constructors, |
59 | | * of the form |
60 | | * <function>cairo_pattern_create_<emphasis>type</emphasis>()</function> |
61 | | * or implicitly through |
62 | | * <function>cairo_set_source_<emphasis>type</emphasis>()</function> |
63 | | * functions. |
64 | | **/ |
65 | | |
66 | | static freed_pool_t freed_pattern_pool[5]; |
67 | | |
68 | | static const cairo_solid_pattern_t _cairo_pattern_nil = { |
69 | | { |
70 | | CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */ |
71 | | CAIRO_STATUS_NO_MEMORY, /* status */ |
72 | | { 0, 0, 0, NULL }, /* user_data */ |
73 | | { NULL, NULL }, /* observers */ |
74 | | |
75 | | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
76 | | CAIRO_FILTER_DEFAULT, /* filter */ |
77 | | CAIRO_EXTEND_GRADIENT_DEFAULT, /* extend */ |
78 | | FALSE, /* has component alpha */ |
79 | | FALSE, /* is_userfont_foreground */ |
80 | | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
81 | | 1.0 /* opacity */ |
82 | | } |
83 | | }; |
84 | | |
85 | | static const cairo_solid_pattern_t _cairo_pattern_nil_null_pointer = { |
86 | | { |
87 | | CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */ |
88 | | CAIRO_STATUS_NULL_POINTER, /* status */ |
89 | | { 0, 0, 0, NULL }, /* user_data */ |
90 | | { NULL, NULL }, /* observers */ |
91 | | |
92 | | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
93 | | CAIRO_FILTER_DEFAULT, /* filter */ |
94 | | CAIRO_EXTEND_GRADIENT_DEFAULT, /* extend */ |
95 | | FALSE, /* has component alpha */ |
96 | | FALSE, /* is_userfont_foreground */ |
97 | | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
98 | | 1.0 /* opacity */ |
99 | | } |
100 | | }; |
101 | | |
102 | | const cairo_solid_pattern_t _cairo_pattern_black = { |
103 | | { |
104 | | CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */ |
105 | | CAIRO_STATUS_SUCCESS, /* status */ |
106 | | { 0, 0, 0, NULL }, /* user_data */ |
107 | | { NULL, NULL }, /* observers */ |
108 | | |
109 | | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
110 | | CAIRO_FILTER_NEAREST, /* filter */ |
111 | | CAIRO_EXTEND_REPEAT, /* extend */ |
112 | | FALSE, /* has component alpha */ |
113 | | FALSE, /* is_userfont_foreground */ |
114 | | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
115 | | 1.0 /* opacity */ |
116 | | }, |
117 | | { 0., 0., 0., 1., 0, 0, 0, 0xffff },/* color (double rgba, short rgba) */ |
118 | | }; |
119 | | |
120 | | const cairo_solid_pattern_t _cairo_pattern_clear = { |
121 | | { |
122 | | CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */ |
123 | | CAIRO_STATUS_SUCCESS, /* status */ |
124 | | { 0, 0, 0, NULL }, /* user_data */ |
125 | | { NULL, NULL }, /* observers */ |
126 | | |
127 | | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
128 | | CAIRO_FILTER_NEAREST, /* filter */ |
129 | | CAIRO_EXTEND_REPEAT, /* extend */ |
130 | | FALSE, /* has component alpha */ |
131 | | FALSE, /* is_userfont_foreground */ |
132 | | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
133 | | 1.0 /* opacity */ |
134 | | }, |
135 | | { 0., 0., 0., 0., 0, 0, 0, 0 },/* color (double rgba, short rgba) */ |
136 | | }; |
137 | | |
138 | | const cairo_solid_pattern_t _cairo_pattern_white = { |
139 | | { |
140 | | CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */ |
141 | | CAIRO_STATUS_SUCCESS, /* status */ |
142 | | { 0, 0, 0, NULL }, /* user_data */ |
143 | | { NULL, NULL }, /* observers */ |
144 | | |
145 | | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
146 | | CAIRO_FILTER_NEAREST, /* filter */ |
147 | | CAIRO_EXTEND_REPEAT, /* extend */ |
148 | | FALSE, /* has component alpha */ |
149 | | FALSE, /* is_userfont_foreground */ |
150 | | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
151 | | 1.0 /* opacity */ |
152 | | }, |
153 | | { 1., 1., 1., 1., 0xffff, 0xffff, 0xffff, 0xffff },/* color (double rgba, short rgba) */ |
154 | | }; |
155 | | |
156 | | static void |
157 | | _cairo_pattern_notify_observers (cairo_pattern_t *pattern, |
158 | | unsigned int flags) |
159 | 564k | { |
160 | 564k | cairo_pattern_observer_t *pos; |
161 | | |
162 | 564k | cairo_list_foreach_entry (pos, cairo_pattern_observer_t, &pattern->observers, link) |
163 | 0 | pos->notify (pos, pattern, flags); |
164 | 564k | } |
165 | | |
166 | | /** |
167 | | * _cairo_pattern_set_error: |
168 | | * @pattern: a pattern |
169 | | * @status: a status value indicating an error |
170 | | * |
171 | | * Atomically sets pattern->status to @status and calls _cairo_error; |
172 | | * Does nothing if status is %CAIRO_STATUS_SUCCESS. |
173 | | * |
174 | | * All assignments of an error status to pattern->status should happen |
175 | | * through _cairo_pattern_set_error(). Note that due to the nature of |
176 | | * the atomic operation, it is not safe to call this function on the nil |
177 | | * objects. |
178 | | * |
179 | | * The purpose of this function is to allow the user to set a |
180 | | * breakpoint in _cairo_error() to generate a stack trace for when the |
181 | | * user causes cairo to detect an error. |
182 | | **/ |
183 | | static cairo_status_t |
184 | | _cairo_pattern_set_error (cairo_pattern_t *pattern, |
185 | | cairo_status_t status) |
186 | 0 | { |
187 | 0 | if (status == CAIRO_STATUS_SUCCESS) |
188 | 0 | return status; |
189 | | |
190 | | /* Don't overwrite an existing error. This preserves the first |
191 | | * error, which is the most significant. */ |
192 | 0 | _cairo_status_set_error (&pattern->status, status); |
193 | | |
194 | 0 | return _cairo_error (status); |
195 | 0 | } |
196 | | |
197 | | void |
198 | | _cairo_pattern_init (cairo_pattern_t *pattern, cairo_pattern_type_t type) |
199 | 3.45M | { |
200 | | #if HAVE_VALGRIND |
201 | | switch (type) { |
202 | | case CAIRO_PATTERN_TYPE_SOLID: |
203 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_solid_pattern_t)); |
204 | | break; |
205 | | case CAIRO_PATTERN_TYPE_SURFACE: |
206 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_surface_pattern_t)); |
207 | | break; |
208 | | case CAIRO_PATTERN_TYPE_LINEAR: |
209 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_linear_pattern_t)); |
210 | | break; |
211 | | case CAIRO_PATTERN_TYPE_RADIAL: |
212 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_radial_pattern_t)); |
213 | | break; |
214 | | case CAIRO_PATTERN_TYPE_MESH: |
215 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_mesh_pattern_t)); |
216 | | break; |
217 | | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
218 | | break; |
219 | | } |
220 | | #endif |
221 | | |
222 | 3.45M | pattern->type = type; |
223 | 3.45M | pattern->status = CAIRO_STATUS_SUCCESS; |
224 | | |
225 | | /* Set the reference count to zero for on-stack patterns. |
226 | | * Callers needs to explicitly increment the count for heap allocations. */ |
227 | 3.45M | CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0); |
228 | | |
229 | 3.45M | _cairo_user_data_array_init (&pattern->user_data); |
230 | | |
231 | 3.45M | if (type == CAIRO_PATTERN_TYPE_SURFACE || |
232 | 3.45M | type == CAIRO_PATTERN_TYPE_RASTER_SOURCE) |
233 | 543k | pattern->extend = CAIRO_EXTEND_SURFACE_DEFAULT; |
234 | 2.91M | else |
235 | 2.91M | pattern->extend = CAIRO_EXTEND_GRADIENT_DEFAULT; |
236 | | |
237 | 3.45M | pattern->filter = CAIRO_FILTER_DEFAULT; |
238 | 3.45M | pattern->opacity = 1.0; |
239 | | |
240 | 3.45M | pattern->has_component_alpha = FALSE; |
241 | 3.45M | pattern->is_userfont_foreground = FALSE; |
242 | | |
243 | 3.45M | cairo_matrix_init_identity (&pattern->matrix); |
244 | | |
245 | 3.45M | cairo_list_init (&pattern->observers); |
246 | 3.45M | } |
247 | | |
248 | | static cairo_status_t |
249 | | _cairo_gradient_pattern_init_copy (cairo_gradient_pattern_t *pattern, |
250 | | const cairo_gradient_pattern_t *other) |
251 | 0 | { |
252 | 0 | if (CAIRO_INJECT_FAULT ()) |
253 | 0 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
254 | | |
255 | 0 | if (other->base.type == CAIRO_PATTERN_TYPE_LINEAR) |
256 | 0 | { |
257 | 0 | cairo_linear_pattern_t *dst = (cairo_linear_pattern_t *) pattern; |
258 | 0 | cairo_linear_pattern_t *src = (cairo_linear_pattern_t *) other; |
259 | |
|
260 | 0 | *dst = *src; |
261 | 0 | } |
262 | 0 | else |
263 | 0 | { |
264 | 0 | cairo_radial_pattern_t *dst = (cairo_radial_pattern_t *) pattern; |
265 | 0 | cairo_radial_pattern_t *src = (cairo_radial_pattern_t *) other; |
266 | |
|
267 | 0 | *dst = *src; |
268 | 0 | } |
269 | |
|
270 | 0 | if (other->stops == other->stops_embedded) |
271 | 0 | pattern->stops = pattern->stops_embedded; |
272 | 0 | else if (other->stops) |
273 | 0 | { |
274 | 0 | pattern->stops = _cairo_malloc_ab (other->stops_size, |
275 | 0 | sizeof (cairo_gradient_stop_t)); |
276 | 0 | if (unlikely (pattern->stops == NULL)) { |
277 | 0 | pattern->stops_size = 0; |
278 | 0 | pattern->n_stops = 0; |
279 | 0 | return _cairo_pattern_set_error (&pattern->base, CAIRO_STATUS_NO_MEMORY); |
280 | 0 | } |
281 | | |
282 | 0 | memcpy (pattern->stops, other->stops, |
283 | 0 | other->n_stops * sizeof (cairo_gradient_stop_t)); |
284 | 0 | } |
285 | | |
286 | 0 | return CAIRO_STATUS_SUCCESS; |
287 | 0 | } |
288 | | |
289 | | static cairo_status_t |
290 | | _cairo_mesh_pattern_init_copy (cairo_mesh_pattern_t *pattern, |
291 | | const cairo_mesh_pattern_t *other) |
292 | 0 | { |
293 | 0 | *pattern = *other; |
294 | |
|
295 | 0 | _cairo_array_init (&pattern->patches, sizeof (cairo_mesh_patch_t)); |
296 | 0 | return _cairo_array_append_multiple (&pattern->patches, |
297 | 0 | _cairo_array_index_const (&other->patches, 0), |
298 | 0 | _cairo_array_num_elements (&other->patches)); |
299 | 0 | } |
300 | | |
301 | | cairo_status_t |
302 | | _cairo_pattern_init_copy (cairo_pattern_t *pattern, |
303 | | const cairo_pattern_t *other) |
304 | 0 | { |
305 | 0 | cairo_status_t status; |
306 | |
|
307 | 0 | if (other->status) |
308 | 0 | return _cairo_pattern_set_error (pattern, other->status); |
309 | | |
310 | 0 | switch (other->type) { |
311 | 0 | case CAIRO_PATTERN_TYPE_SOLID: { |
312 | 0 | cairo_solid_pattern_t *dst = (cairo_solid_pattern_t *) pattern; |
313 | 0 | cairo_solid_pattern_t *src = (cairo_solid_pattern_t *) other; |
314 | |
|
315 | 0 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_solid_pattern_t))); |
316 | |
|
317 | 0 | *dst = *src; |
318 | 0 | } break; |
319 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: { |
320 | 0 | cairo_surface_pattern_t *dst = (cairo_surface_pattern_t *) pattern; |
321 | 0 | cairo_surface_pattern_t *src = (cairo_surface_pattern_t *) other; |
322 | |
|
323 | 0 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_surface_pattern_t))); |
324 | |
|
325 | 0 | *dst = *src; |
326 | 0 | cairo_surface_reference (dst->surface); |
327 | 0 | } break; |
328 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
329 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: { |
330 | 0 | cairo_gradient_pattern_t *dst = (cairo_gradient_pattern_t *) pattern; |
331 | 0 | cairo_gradient_pattern_t *src = (cairo_gradient_pattern_t *) other; |
332 | |
|
333 | 0 | if (other->type == CAIRO_PATTERN_TYPE_LINEAR) { |
334 | 0 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_linear_pattern_t))); |
335 | 0 | } else { |
336 | 0 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_radial_pattern_t))); |
337 | 0 | } |
338 | |
|
339 | 0 | status = _cairo_gradient_pattern_init_copy (dst, src); |
340 | 0 | if (unlikely (status)) |
341 | 0 | return status; |
342 | |
|
343 | 0 | } break; |
344 | 0 | case CAIRO_PATTERN_TYPE_MESH: { |
345 | 0 | cairo_mesh_pattern_t *dst = (cairo_mesh_pattern_t *) pattern; |
346 | 0 | cairo_mesh_pattern_t *src = (cairo_mesh_pattern_t *) other; |
347 | |
|
348 | 0 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_mesh_pattern_t))); |
349 | |
|
350 | 0 | status = _cairo_mesh_pattern_init_copy (dst, src); |
351 | 0 | if (unlikely (status)) |
352 | 0 | return status; |
353 | |
|
354 | 0 | } break; |
355 | | |
356 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: { |
357 | 0 | status = _cairo_raster_source_pattern_init_copy (pattern, other); |
358 | 0 | if (unlikely (status)) |
359 | 0 | return status; |
360 | 0 | } break; |
361 | 0 | } |
362 | | |
363 | | /* The reference count and user_data array are unique to the copy. */ |
364 | 0 | CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0); |
365 | 0 | _cairo_user_data_array_init (&pattern->user_data); |
366 | 0 | cairo_list_init (&pattern->observers); |
367 | |
|
368 | 0 | return CAIRO_STATUS_SUCCESS; |
369 | 0 | } |
370 | | |
371 | | void |
372 | | _cairo_pattern_init_static_copy (cairo_pattern_t *pattern, |
373 | | const cairo_pattern_t *other) |
374 | 16.9M | { |
375 | 16.9M | int size; |
376 | | |
377 | 16.9M | assert (other->status == CAIRO_STATUS_SUCCESS); |
378 | | |
379 | 16.9M | switch (other->type) { |
380 | 0 | default: |
381 | 0 | ASSERT_NOT_REACHED; |
382 | 15.8M | case CAIRO_PATTERN_TYPE_SOLID: |
383 | 15.8M | size = sizeof (cairo_solid_pattern_t); |
384 | 15.8M | break; |
385 | 1.08M | case CAIRO_PATTERN_TYPE_SURFACE: |
386 | 1.08M | size = sizeof (cairo_surface_pattern_t); |
387 | 1.08M | break; |
388 | 1.17k | case CAIRO_PATTERN_TYPE_LINEAR: |
389 | 1.17k | size = sizeof (cairo_linear_pattern_t); |
390 | 1.17k | break; |
391 | 5.07k | case CAIRO_PATTERN_TYPE_RADIAL: |
392 | 5.07k | size = sizeof (cairo_radial_pattern_t); |
393 | 5.07k | break; |
394 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
395 | 0 | size = sizeof (cairo_mesh_pattern_t); |
396 | 0 | break; |
397 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
398 | 0 | size = sizeof (cairo_raster_source_pattern_t); |
399 | 0 | break; |
400 | 16.9M | } |
401 | | |
402 | 16.9M | memcpy (pattern, other, size); |
403 | | |
404 | 16.9M | CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0); |
405 | 16.9M | _cairo_user_data_array_init (&pattern->user_data); |
406 | 16.9M | cairo_list_init (&pattern->observers); |
407 | 16.9M | } |
408 | | |
409 | | cairo_status_t |
410 | | _cairo_pattern_init_snapshot (cairo_pattern_t *pattern, |
411 | | const cairo_pattern_t *other) |
412 | 0 | { |
413 | 0 | cairo_status_t status; |
414 | | |
415 | | /* We don't bother doing any fancy copy-on-write implementation |
416 | | * for the pattern's data. It's generally quite tiny. */ |
417 | 0 | status = _cairo_pattern_init_copy (pattern, other); |
418 | 0 | if (unlikely (status)) |
419 | 0 | return status; |
420 | | |
421 | | /* But we do let the surface snapshot stuff be as fancy as it |
422 | | * would like to be. */ |
423 | 0 | if (pattern->type == CAIRO_PATTERN_TYPE_SURFACE) { |
424 | 0 | cairo_surface_pattern_t *surface_pattern = |
425 | 0 | (cairo_surface_pattern_t *) pattern; |
426 | 0 | cairo_surface_t *surface = surface_pattern->surface; |
427 | |
|
428 | 0 | surface_pattern->surface = _cairo_surface_snapshot (surface); |
429 | |
|
430 | 0 | cairo_surface_destroy (surface); |
431 | |
|
432 | 0 | status = surface_pattern->surface->status; |
433 | 0 | } else if (pattern->type == CAIRO_PATTERN_TYPE_RASTER_SOURCE) |
434 | 0 | status = _cairo_raster_source_pattern_snapshot (pattern); |
435 | |
|
436 | 0 | return status; |
437 | 0 | } |
438 | | |
439 | | void |
440 | | _cairo_pattern_fini (cairo_pattern_t *pattern) |
441 | 3.44M | { |
442 | 3.44M | _cairo_user_data_array_fini (&pattern->user_data); |
443 | | |
444 | 3.44M | switch (pattern->type) { |
445 | 2.89M | case CAIRO_PATTERN_TYPE_SOLID: |
446 | 2.89M | break; |
447 | 543k | case CAIRO_PATTERN_TYPE_SURFACE: { |
448 | 543k | cairo_surface_pattern_t *surface_pattern = |
449 | 543k | (cairo_surface_pattern_t *) pattern; |
450 | | |
451 | 543k | cairo_surface_destroy (surface_pattern->surface); |
452 | 543k | } break; |
453 | 4.12k | case CAIRO_PATTERN_TYPE_LINEAR: |
454 | 6.66k | case CAIRO_PATTERN_TYPE_RADIAL: { |
455 | 6.66k | cairo_gradient_pattern_t *gradient = |
456 | 6.66k | (cairo_gradient_pattern_t *) pattern; |
457 | | |
458 | 6.66k | if (gradient->stops && gradient->stops != gradient->stops_embedded) |
459 | 0 | free (gradient->stops); |
460 | 6.66k | } break; |
461 | 0 | case CAIRO_PATTERN_TYPE_MESH: { |
462 | 0 | cairo_mesh_pattern_t *mesh = |
463 | 0 | (cairo_mesh_pattern_t *) pattern; |
464 | |
|
465 | 0 | _cairo_array_fini (&mesh->patches); |
466 | 0 | } break; |
467 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
468 | 0 | _cairo_raster_source_pattern_finish (pattern); |
469 | 0 | break; |
470 | 3.44M | } |
471 | | |
472 | | #if HAVE_VALGRIND |
473 | | switch (pattern->type) { |
474 | | case CAIRO_PATTERN_TYPE_SOLID: |
475 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_solid_pattern_t)); |
476 | | break; |
477 | | case CAIRO_PATTERN_TYPE_SURFACE: |
478 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_surface_pattern_t)); |
479 | | break; |
480 | | case CAIRO_PATTERN_TYPE_LINEAR: |
481 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_linear_pattern_t)); |
482 | | break; |
483 | | case CAIRO_PATTERN_TYPE_RADIAL: |
484 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_radial_pattern_t)); |
485 | | break; |
486 | | case CAIRO_PATTERN_TYPE_MESH: |
487 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_mesh_pattern_t)); |
488 | | break; |
489 | | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
490 | | break; |
491 | | } |
492 | | #endif |
493 | 3.44M | } |
494 | | |
495 | | cairo_status_t |
496 | | _cairo_pattern_create_copy (cairo_pattern_t **pattern_out, |
497 | | const cairo_pattern_t *other) |
498 | 0 | { |
499 | 0 | cairo_pattern_t *pattern; |
500 | 0 | cairo_status_t status; |
501 | |
|
502 | 0 | if (other->status) |
503 | 0 | return other->status; |
504 | | |
505 | 0 | switch (other->type) { |
506 | 0 | case CAIRO_PATTERN_TYPE_SOLID: |
507 | 0 | pattern = _cairo_malloc (sizeof (cairo_solid_pattern_t)); |
508 | 0 | break; |
509 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: |
510 | 0 | pattern = _cairo_malloc (sizeof (cairo_surface_pattern_t)); |
511 | 0 | break; |
512 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
513 | 0 | pattern = _cairo_malloc (sizeof (cairo_linear_pattern_t)); |
514 | 0 | break; |
515 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: |
516 | 0 | pattern = _cairo_malloc (sizeof (cairo_radial_pattern_t)); |
517 | 0 | break; |
518 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
519 | 0 | pattern = _cairo_malloc (sizeof (cairo_mesh_pattern_t)); |
520 | 0 | break; |
521 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
522 | 0 | pattern = _cairo_malloc (sizeof (cairo_raster_source_pattern_t)); |
523 | 0 | break; |
524 | 0 | default: |
525 | 0 | ASSERT_NOT_REACHED; |
526 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
527 | 0 | } |
528 | 0 | if (unlikely (pattern == NULL)) |
529 | 0 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
530 | | |
531 | 0 | status = _cairo_pattern_init_copy (pattern, other); |
532 | 0 | if (unlikely (status)) { |
533 | 0 | free (pattern); |
534 | 0 | return status; |
535 | 0 | } |
536 | | |
537 | 0 | CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 1); |
538 | 0 | *pattern_out = pattern; |
539 | 0 | return CAIRO_STATUS_SUCCESS; |
540 | 0 | } |
541 | | |
542 | | void |
543 | | _cairo_pattern_init_solid (cairo_solid_pattern_t *pattern, |
544 | | const cairo_color_t *color) |
545 | 2.90M | { |
546 | 2.90M | _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SOLID); |
547 | 2.90M | pattern->color = *color; |
548 | 2.90M | } |
549 | | |
550 | | void |
551 | | _cairo_pattern_init_for_surface (cairo_surface_pattern_t *pattern, |
552 | | cairo_surface_t *surface) |
553 | 543k | { |
554 | 543k | if (surface->status) { |
555 | | /* Force to solid to simplify the pattern_fini process. */ |
556 | 0 | _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SOLID); |
557 | 0 | _cairo_pattern_set_error (&pattern->base, surface->status); |
558 | 0 | return; |
559 | 0 | } |
560 | | |
561 | 543k | _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SURFACE); |
562 | | |
563 | 543k | pattern->surface = cairo_surface_reference (surface); |
564 | 543k | } |
565 | | |
566 | | static void |
567 | | _cairo_pattern_init_gradient (cairo_gradient_pattern_t *pattern, |
568 | | cairo_pattern_type_t type) |
569 | 6.66k | { |
570 | 6.66k | _cairo_pattern_init (&pattern->base, type); |
571 | | |
572 | 6.66k | pattern->n_stops = 0; |
573 | 6.66k | pattern->stops_size = 0; |
574 | 6.66k | pattern->stops = NULL; |
575 | 6.66k | } |
576 | | |
577 | | static void |
578 | | _cairo_pattern_init_linear (cairo_linear_pattern_t *pattern, |
579 | | double x0, double y0, double x1, double y1) |
580 | 4.12k | { |
581 | 4.12k | _cairo_pattern_init_gradient (&pattern->base, CAIRO_PATTERN_TYPE_LINEAR); |
582 | | |
583 | 4.12k | pattern->pd1.x = x0; |
584 | 4.12k | pattern->pd1.y = y0; |
585 | 4.12k | pattern->pd2.x = x1; |
586 | 4.12k | pattern->pd2.y = y1; |
587 | 4.12k | } |
588 | | |
589 | | static void |
590 | | _cairo_pattern_init_radial (cairo_radial_pattern_t *pattern, |
591 | | double cx0, double cy0, double radius0, |
592 | | double cx1, double cy1, double radius1) |
593 | 2.53k | { |
594 | 2.53k | _cairo_pattern_init_gradient (&pattern->base, CAIRO_PATTERN_TYPE_RADIAL); |
595 | | |
596 | 2.53k | pattern->cd1.center.x = cx0; |
597 | 2.53k | pattern->cd1.center.y = cy0; |
598 | 2.53k | pattern->cd1.radius = fabs (radius0); |
599 | 2.53k | pattern->cd2.center.x = cx1; |
600 | 2.53k | pattern->cd2.center.y = cy1; |
601 | 2.53k | pattern->cd2.radius = fabs (radius1); |
602 | 2.53k | } |
603 | | |
604 | | cairo_pattern_t * |
605 | | _cairo_pattern_create_solid (const cairo_color_t *color) |
606 | 2.89M | { |
607 | 2.89M | cairo_solid_pattern_t *pattern; |
608 | | |
609 | 2.89M | pattern = |
610 | 2.89M | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_SOLID]); |
611 | 2.89M | if (unlikely (pattern == NULL)) { |
612 | | /* None cached, need to create a new pattern. */ |
613 | 4 | pattern = _cairo_malloc (sizeof (cairo_solid_pattern_t)); |
614 | 4 | if (unlikely (pattern == NULL)) { |
615 | 0 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); |
616 | 0 | return (cairo_pattern_t *) &_cairo_pattern_nil; |
617 | 0 | } |
618 | 4 | } |
619 | | |
620 | 2.89M | _cairo_pattern_init_solid (pattern, color); |
621 | 2.89M | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.ref_count, 1); |
622 | | |
623 | 2.89M | return &pattern->base; |
624 | 2.89M | } |
625 | | |
626 | | cairo_pattern_t * |
627 | | _cairo_pattern_create_in_error (cairo_status_t status) |
628 | 0 | { |
629 | 0 | cairo_pattern_t *pattern; |
630 | |
|
631 | 0 | if (status == CAIRO_STATUS_NO_MEMORY) |
632 | 0 | return (cairo_pattern_t *)&_cairo_pattern_nil.base; |
633 | | |
634 | 0 | CAIRO_MUTEX_INITIALIZE (); |
635 | |
|
636 | 0 | pattern = _cairo_pattern_create_solid (CAIRO_COLOR_BLACK); |
637 | 0 | if (pattern->status == CAIRO_STATUS_SUCCESS) |
638 | 0 | status = _cairo_pattern_set_error (pattern, status); |
639 | |
|
640 | 0 | return pattern; |
641 | 0 | } |
642 | | |
643 | | /** |
644 | | * cairo_pattern_create_rgb: |
645 | | * @red: red component of the color |
646 | | * @green: green component of the color |
647 | | * @blue: blue component of the color |
648 | | * |
649 | | * Creates a new #cairo_pattern_t corresponding to an opaque color. The |
650 | | * color components are floating point numbers in the range 0 to 1. |
651 | | * If the values passed in are outside that range, they will be |
652 | | * clamped. |
653 | | * |
654 | | * Return value: the newly created #cairo_pattern_t if successful, or |
655 | | * an error pattern in case of no memory. The caller owns the |
656 | | * returned object and should call cairo_pattern_destroy() when |
657 | | * finished with it. |
658 | | * |
659 | | * This function will always return a valid pointer, but if an error |
660 | | * occurred the pattern status will be set to an error. To inspect |
661 | | * the status of a pattern use cairo_pattern_status(). |
662 | | * |
663 | | * Since: 1.0 |
664 | | **/ |
665 | | cairo_pattern_t * |
666 | | cairo_pattern_create_rgb (double red, double green, double blue) |
667 | 0 | { |
668 | 0 | return cairo_pattern_create_rgba (red, green, blue, 1.0); |
669 | 0 | } |
670 | | slim_hidden_def (cairo_pattern_create_rgb); |
671 | | |
672 | | /** |
673 | | * cairo_pattern_create_rgba: |
674 | | * @red: red component of the color |
675 | | * @green: green component of the color |
676 | | * @blue: blue component of the color |
677 | | * @alpha: alpha component of the color |
678 | | * |
679 | | * Creates a new #cairo_pattern_t corresponding to a translucent color. |
680 | | * The color components are floating point numbers in the range 0 to |
681 | | * 1. If the values passed in are outside that range, they will be |
682 | | * clamped. |
683 | | * |
684 | | * Return value: the newly created #cairo_pattern_t if successful, or |
685 | | * an error pattern in case of no memory. The caller owns the |
686 | | * returned object and should call cairo_pattern_destroy() when |
687 | | * finished with it. |
688 | | * |
689 | | * This function will always return a valid pointer, but if an error |
690 | | * occurred the pattern status will be set to an error. To inspect |
691 | | * the status of a pattern use cairo_pattern_status(). |
692 | | * |
693 | | * Since: 1.0 |
694 | | **/ |
695 | | cairo_pattern_t * |
696 | | cairo_pattern_create_rgba (double red, double green, double blue, |
697 | | double alpha) |
698 | 2.89M | { |
699 | 2.89M | cairo_color_t color; |
700 | | |
701 | 2.89M | red = _cairo_restrict_value (red, 0.0, 1.0); |
702 | 2.89M | green = _cairo_restrict_value (green, 0.0, 1.0); |
703 | 2.89M | blue = _cairo_restrict_value (blue, 0.0, 1.0); |
704 | 2.89M | alpha = _cairo_restrict_value (alpha, 0.0, 1.0); |
705 | | |
706 | 2.89M | _cairo_color_init_rgba (&color, red, green, blue, alpha); |
707 | | |
708 | 2.89M | CAIRO_MUTEX_INITIALIZE (); |
709 | | |
710 | 2.89M | return _cairo_pattern_create_solid (&color); |
711 | 2.89M | } |
712 | | slim_hidden_def (cairo_pattern_create_rgba); |
713 | | |
714 | | /** |
715 | | * cairo_pattern_create_for_surface: |
716 | | * @surface: the surface |
717 | | * |
718 | | * Create a new #cairo_pattern_t for the given surface. |
719 | | * |
720 | | * Return value: the newly created #cairo_pattern_t if successful, or |
721 | | * an error pattern in case of no memory. The caller owns the |
722 | | * returned object and should call cairo_pattern_destroy() when |
723 | | * finished with it. |
724 | | * |
725 | | * This function will always return a valid pointer, but if an error |
726 | | * occurred the pattern status will be set to an error. To inspect |
727 | | * the status of a pattern use cairo_pattern_status(). |
728 | | * |
729 | | * Since: 1.0 |
730 | | **/ |
731 | | cairo_pattern_t * |
732 | | cairo_pattern_create_for_surface (cairo_surface_t *surface) |
733 | 543k | { |
734 | 543k | cairo_surface_pattern_t *pattern; |
735 | | |
736 | 543k | if (surface == NULL) { |
737 | 0 | _cairo_error_throw (CAIRO_STATUS_NULL_POINTER); |
738 | 0 | return (cairo_pattern_t*) &_cairo_pattern_nil_null_pointer; |
739 | 0 | } |
740 | | |
741 | 543k | if (surface->status) |
742 | 0 | return _cairo_pattern_create_in_error (surface->status); |
743 | | |
744 | 543k | pattern = |
745 | 543k | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_SURFACE]); |
746 | 543k | if (unlikely (pattern == NULL)) { |
747 | 4 | pattern = _cairo_malloc (sizeof (cairo_surface_pattern_t)); |
748 | 4 | if (unlikely (pattern == NULL)) { |
749 | 0 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); |
750 | 0 | return (cairo_pattern_t *)&_cairo_pattern_nil.base; |
751 | 0 | } |
752 | 4 | } |
753 | | |
754 | 543k | CAIRO_MUTEX_INITIALIZE (); |
755 | | |
756 | 543k | _cairo_pattern_init_for_surface (pattern, surface); |
757 | 543k | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.ref_count, 1); |
758 | | |
759 | 543k | return &pattern->base; |
760 | 543k | } |
761 | | slim_hidden_def (cairo_pattern_create_for_surface); |
762 | | |
763 | | /** |
764 | | * cairo_pattern_create_linear: |
765 | | * @x0: x coordinate of the start point |
766 | | * @y0: y coordinate of the start point |
767 | | * @x1: x coordinate of the end point |
768 | | * @y1: y coordinate of the end point |
769 | | * |
770 | | * Create a new linear gradient #cairo_pattern_t along the line defined |
771 | | * by (x0, y0) and (x1, y1). Before using the gradient pattern, a |
772 | | * number of color stops should be defined using |
773 | | * cairo_pattern_add_color_stop_rgb() or |
774 | | * cairo_pattern_add_color_stop_rgba(). |
775 | | * |
776 | | * Note: The coordinates here are in pattern space. For a new pattern, |
777 | | * pattern space is identical to user space, but the relationship |
778 | | * between the spaces can be changed with cairo_pattern_set_matrix(). |
779 | | * |
780 | | * Return value: the newly created #cairo_pattern_t if successful, or |
781 | | * an error pattern in case of no memory. The caller owns the |
782 | | * returned object and should call cairo_pattern_destroy() when |
783 | | * finished with it. |
784 | | * |
785 | | * This function will always return a valid pointer, but if an error |
786 | | * occurred the pattern status will be set to an error. To inspect |
787 | | * the status of a pattern use cairo_pattern_status(). |
788 | | * |
789 | | * Since: 1.0 |
790 | | **/ |
791 | | cairo_pattern_t * |
792 | | cairo_pattern_create_linear (double x0, double y0, double x1, double y1) |
793 | 4.12k | { |
794 | 4.12k | cairo_linear_pattern_t *pattern; |
795 | | |
796 | 4.12k | pattern = |
797 | 4.12k | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_LINEAR]); |
798 | 4.12k | if (unlikely (pattern == NULL)) { |
799 | 1 | pattern = _cairo_malloc (sizeof (cairo_linear_pattern_t)); |
800 | 1 | if (unlikely (pattern == NULL)) { |
801 | 0 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); |
802 | 0 | return (cairo_pattern_t *) &_cairo_pattern_nil.base; |
803 | 0 | } |
804 | 1 | } |
805 | | |
806 | 4.12k | CAIRO_MUTEX_INITIALIZE (); |
807 | | |
808 | 4.12k | _cairo_pattern_init_linear (pattern, x0, y0, x1, y1); |
809 | 4.12k | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.base.ref_count, 1); |
810 | | |
811 | 4.12k | return &pattern->base.base; |
812 | 4.12k | } |
813 | | |
814 | | /** |
815 | | * cairo_pattern_create_radial: |
816 | | * @cx0: x coordinate for the center of the start circle |
817 | | * @cy0: y coordinate for the center of the start circle |
818 | | * @radius0: radius of the start circle |
819 | | * @cx1: x coordinate for the center of the end circle |
820 | | * @cy1: y coordinate for the center of the end circle |
821 | | * @radius1: radius of the end circle |
822 | | * |
823 | | * Creates a new radial gradient #cairo_pattern_t between the two |
824 | | * circles defined by (cx0, cy0, radius0) and (cx1, cy1, radius1). Before using the |
825 | | * gradient pattern, a number of color stops should be defined using |
826 | | * cairo_pattern_add_color_stop_rgb() or |
827 | | * cairo_pattern_add_color_stop_rgba(). |
828 | | * |
829 | | * Note: The coordinates here are in pattern space. For a new pattern, |
830 | | * pattern space is identical to user space, but the relationship |
831 | | * between the spaces can be changed with cairo_pattern_set_matrix(). |
832 | | * |
833 | | * Return value: the newly created #cairo_pattern_t if successful, or |
834 | | * an error pattern in case of no memory. The caller owns the |
835 | | * returned object and should call cairo_pattern_destroy() when |
836 | | * finished with it. |
837 | | * |
838 | | * This function will always return a valid pointer, but if an error |
839 | | * occurred the pattern status will be set to an error. To inspect |
840 | | * the status of a pattern use cairo_pattern_status(). |
841 | | * |
842 | | * Since: 1.0 |
843 | | **/ |
844 | | cairo_pattern_t * |
845 | | cairo_pattern_create_radial (double cx0, double cy0, double radius0, |
846 | | double cx1, double cy1, double radius1) |
847 | 2.53k | { |
848 | 2.53k | cairo_radial_pattern_t *pattern; |
849 | | |
850 | 2.53k | pattern = |
851 | 2.53k | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_RADIAL]); |
852 | 2.53k | if (unlikely (pattern == NULL)) { |
853 | 1 | pattern = _cairo_malloc (sizeof (cairo_radial_pattern_t)); |
854 | 1 | if (unlikely (pattern == NULL)) { |
855 | 0 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); |
856 | 0 | return (cairo_pattern_t *) &_cairo_pattern_nil.base; |
857 | 0 | } |
858 | 1 | } |
859 | | |
860 | 2.53k | CAIRO_MUTEX_INITIALIZE (); |
861 | | |
862 | 2.53k | _cairo_pattern_init_radial (pattern, cx0, cy0, radius0, cx1, cy1, radius1); |
863 | 2.53k | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.base.ref_count, 1); |
864 | | |
865 | 2.53k | return &pattern->base.base; |
866 | 2.53k | } |
867 | | |
868 | | /* This order is specified in the diagram in the documentation for |
869 | | * cairo_pattern_create_mesh() */ |
870 | | static const int mesh_path_point_i[12] = { 0, 0, 0, 0, 1, 2, 3, 3, 3, 3, 2, 1 }; |
871 | | static const int mesh_path_point_j[12] = { 0, 1, 2, 3, 3, 3, 3, 2, 1, 0, 0, 0 }; |
872 | | static const int mesh_control_point_i[4] = { 1, 1, 2, 2 }; |
873 | | static const int mesh_control_point_j[4] = { 1, 2, 2, 1 }; |
874 | | |
875 | | /** |
876 | | * cairo_pattern_create_mesh: |
877 | | * |
878 | | * Create a new mesh pattern. |
879 | | * |
880 | | * Mesh patterns are tensor-product patch meshes (type 7 shadings in |
881 | | * PDF). Mesh patterns may also be used to create other types of |
882 | | * shadings that are special cases of tensor-product patch meshes such |
883 | | * as Coons patch meshes (type 6 shading in PDF) and Gouraud-shaded |
884 | | * triangle meshes (type 4 and 5 shadings in PDF). |
885 | | * |
886 | | * Mesh patterns consist of one or more tensor-product patches, which |
887 | | * should be defined before using the mesh pattern. Using a mesh |
888 | | * pattern with a partially defined patch as source or mask will put |
889 | | * the context in an error status with a status of |
890 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
891 | | * |
892 | | * A tensor-product patch is defined by 4 Bézier curves (side 0, 1, 2, |
893 | | * 3) and by 4 additional control points (P0, P1, P2, P3) that provide |
894 | | * further control over the patch and complete the definition of the |
895 | | * tensor-product patch. The corner C0 is the first point of the |
896 | | * patch. |
897 | | * |
898 | | * Degenerate sides are permitted so straight lines may be used. A |
899 | | * zero length line on one side may be used to create 3 sided patches. |
900 | | * |
901 | | * <informalexample><screen> |
902 | | * C1 Side 1 C2 |
903 | | * +---------------+ |
904 | | * | | |
905 | | * | P1 P2 | |
906 | | * | | |
907 | | * Side 0 | | Side 2 |
908 | | * | | |
909 | | * | | |
910 | | * | P0 P3 | |
911 | | * | | |
912 | | * +---------------+ |
913 | | * C0 Side 3 C3 |
914 | | * </screen></informalexample> |
915 | | * |
916 | | * Each patch is constructed by first calling |
917 | | * cairo_mesh_pattern_begin_patch(), then cairo_mesh_pattern_move_to() |
918 | | * to specify the first point in the patch (C0). Then the sides are |
919 | | * specified with calls to cairo_mesh_pattern_curve_to() and |
920 | | * cairo_mesh_pattern_line_to(). |
921 | | * |
922 | | * The four additional control points (P0, P1, P2, P3) in a patch can |
923 | | * be specified with cairo_mesh_pattern_set_control_point(). |
924 | | * |
925 | | * At each corner of the patch (C0, C1, C2, C3) a color may be |
926 | | * specified with cairo_mesh_pattern_set_corner_color_rgb() or |
927 | | * cairo_mesh_pattern_set_corner_color_rgba(). Any corner whose color |
928 | | * is not explicitly specified defaults to transparent black. |
929 | | * |
930 | | * A Coons patch is a special case of the tensor-product patch where |
931 | | * the control points are implicitly defined by the sides of the |
932 | | * patch. The default value for any control point not specified is the |
933 | | * implicit value for a Coons patch, i.e. if no control points are |
934 | | * specified the patch is a Coons patch. |
935 | | * |
936 | | * A triangle is a special case of the tensor-product patch where the |
937 | | * control points are implicitly defined by the sides of the patch, |
938 | | * all the sides are lines and one of them has length 0, i.e. if the |
939 | | * patch is specified using just 3 lines, it is a triangle. If the |
940 | | * corners connected by the 0-length side have the same color, the |
941 | | * patch is a Gouraud-shaded triangle. |
942 | | * |
943 | | * Patches may be oriented differently to the above diagram. For |
944 | | * example the first point could be at the top left. The diagram only |
945 | | * shows the relationship between the sides, corners and control |
946 | | * points. Regardless of where the first point is located, when |
947 | | * specifying colors, corner 0 will always be the first point, corner |
948 | | * 1 the point between side 0 and side 1 etc. |
949 | | * |
950 | | * Calling cairo_mesh_pattern_end_patch() completes the current |
951 | | * patch. If less than 4 sides have been defined, the first missing |
952 | | * side is defined as a line from the current point to the first point |
953 | | * of the patch (C0) and the other sides are degenerate lines from C0 |
954 | | * to C0. The corners between the added sides will all be coincident |
955 | | * with C0 of the patch and their color will be set to be the same as |
956 | | * the color of C0. |
957 | | * |
958 | | * Additional patches may be added with additional calls to |
959 | | * cairo_mesh_pattern_begin_patch()/cairo_mesh_pattern_end_patch(). |
960 | | * |
961 | | * <informalexample><programlisting> |
962 | | * cairo_pattern_t *pattern = cairo_pattern_create_mesh (); |
963 | | * |
964 | | * /* Add a Coons patch */ |
965 | | * cairo_mesh_pattern_begin_patch (pattern); |
966 | | * cairo_mesh_pattern_move_to (pattern, 0, 0); |
967 | | * cairo_mesh_pattern_curve_to (pattern, 30, -30, 60, 30, 100, 0); |
968 | | * cairo_mesh_pattern_curve_to (pattern, 60, 30, 130, 60, 100, 100); |
969 | | * cairo_mesh_pattern_curve_to (pattern, 60, 70, 30, 130, 0, 100); |
970 | | * cairo_mesh_pattern_curve_to (pattern, 30, 70, -30, 30, 0, 0); |
971 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 0, 1, 0, 0); |
972 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 1, 0, 1, 0); |
973 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 2, 0, 0, 1); |
974 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 3, 1, 1, 0); |
975 | | * cairo_mesh_pattern_end_patch (pattern); |
976 | | * |
977 | | * /* Add a Gouraud-shaded triangle */ |
978 | | * cairo_mesh_pattern_begin_patch (pattern) |
979 | | * cairo_mesh_pattern_move_to (pattern, 100, 100); |
980 | | * cairo_mesh_pattern_line_to (pattern, 130, 130); |
981 | | * cairo_mesh_pattern_line_to (pattern, 130, 70); |
982 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 0, 1, 0, 0); |
983 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 1, 0, 1, 0); |
984 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 2, 0, 0, 1); |
985 | | * cairo_mesh_pattern_end_patch (pattern) |
986 | | * </programlisting></informalexample> |
987 | | * |
988 | | * When two patches overlap, the last one that has been added is drawn |
989 | | * over the first one. |
990 | | * |
991 | | * When a patch folds over itself, points are sorted depending on |
992 | | * their parameter coordinates inside the patch. The v coordinate |
993 | | * ranges from 0 to 1 when moving from side 3 to side 1; the u |
994 | | * coordinate ranges from 0 to 1 when going from side 0 to side |
995 | | * 2. Points with higher v coordinate hide points with lower v |
996 | | * coordinate. When two points have the same v coordinate, the one |
997 | | * with higher u coordinate is above. This means that points nearer to |
998 | | * side 1 are above points nearer to side 3; when this is not |
999 | | * sufficient to decide which point is above (for example when both |
1000 | | * points belong to side 1 or side 3) points nearer to side 2 are |
1001 | | * above points nearer to side 0. |
1002 | | * |
1003 | | * For a complete definition of tensor-product patches, see the PDF |
1004 | | * specification (ISO32000), which describes the parametrization in |
1005 | | * detail. |
1006 | | * |
1007 | | * Note: The coordinates are always in pattern space. For a new |
1008 | | * pattern, pattern space is identical to user space, but the |
1009 | | * relationship between the spaces can be changed with |
1010 | | * cairo_pattern_set_matrix(). |
1011 | | * |
1012 | | * Return value: the newly created #cairo_pattern_t if successful, or |
1013 | | * an error pattern in case of no memory. The caller owns the returned |
1014 | | * object and should call cairo_pattern_destroy() when finished with |
1015 | | * it. |
1016 | | * |
1017 | | * This function will always return a valid pointer, but if an error |
1018 | | * occurred the pattern status will be set to an error. To inspect the |
1019 | | * status of a pattern use cairo_pattern_status(). |
1020 | | * |
1021 | | * Since: 1.12 |
1022 | | **/ |
1023 | | cairo_pattern_t * |
1024 | | cairo_pattern_create_mesh (void) |
1025 | 0 | { |
1026 | 0 | cairo_mesh_pattern_t *pattern; |
1027 | |
|
1028 | 0 | pattern = |
1029 | 0 | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_MESH]); |
1030 | 0 | if (unlikely (pattern == NULL)) { |
1031 | 0 | pattern = _cairo_malloc (sizeof (cairo_mesh_pattern_t)); |
1032 | 0 | if (unlikely (pattern == NULL)) { |
1033 | 0 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); |
1034 | 0 | return (cairo_pattern_t *) &_cairo_pattern_nil.base; |
1035 | 0 | } |
1036 | 0 | } |
1037 | | |
1038 | 0 | CAIRO_MUTEX_INITIALIZE (); |
1039 | |
|
1040 | 0 | _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_MESH); |
1041 | 0 | _cairo_array_init (&pattern->patches, sizeof (cairo_mesh_patch_t)); |
1042 | 0 | pattern->current_patch = NULL; |
1043 | 0 | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.ref_count, 1); |
1044 | |
|
1045 | 0 | return &pattern->base; |
1046 | 0 | } |
1047 | | |
1048 | | /** |
1049 | | * cairo_pattern_reference: |
1050 | | * @pattern: a #cairo_pattern_t |
1051 | | * |
1052 | | * Increases the reference count on @pattern by one. This prevents |
1053 | | * @pattern from being destroyed until a matching call to |
1054 | | * cairo_pattern_destroy() is made. |
1055 | | * |
1056 | | * Use cairo_pattern_get_reference_count() to get the number of |
1057 | | * references to a #cairo_pattern_t. |
1058 | | * |
1059 | | * Return value: the referenced #cairo_pattern_t. |
1060 | | * |
1061 | | * Since: 1.0 |
1062 | | **/ |
1063 | | cairo_pattern_t * |
1064 | | cairo_pattern_reference (cairo_pattern_t *pattern) |
1065 | 6.89M | { |
1066 | 6.89M | if (pattern == NULL || |
1067 | 6.89M | CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count)) |
1068 | 3.45M | return pattern; |
1069 | | |
1070 | 3.44M | assert (CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&pattern->ref_count)); |
1071 | | |
1072 | 3.44M | _cairo_reference_count_inc (&pattern->ref_count); |
1073 | | |
1074 | 3.44M | return pattern; |
1075 | 3.44M | } |
1076 | | slim_hidden_def (cairo_pattern_reference); |
1077 | | |
1078 | | /** |
1079 | | * cairo_pattern_get_type: |
1080 | | * @pattern: a #cairo_pattern_t |
1081 | | * |
1082 | | * Get the pattern's type. See #cairo_pattern_type_t for available |
1083 | | * types. |
1084 | | * |
1085 | | * Return value: The type of @pattern. |
1086 | | * |
1087 | | * Since: 1.2 |
1088 | | **/ |
1089 | | cairo_pattern_type_t |
1090 | | cairo_pattern_get_type (cairo_pattern_t *pattern) |
1091 | 0 | { |
1092 | 0 | return pattern->type; |
1093 | 0 | } |
1094 | | |
1095 | | /** |
1096 | | * cairo_pattern_status: |
1097 | | * @pattern: a #cairo_pattern_t |
1098 | | * |
1099 | | * Checks whether an error has previously occurred for this |
1100 | | * pattern. |
1101 | | * |
1102 | | * Return value: %CAIRO_STATUS_SUCCESS, %CAIRO_STATUS_NO_MEMORY, |
1103 | | * %CAIRO_STATUS_INVALID_MATRIX, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH, |
1104 | | * or %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1105 | | * |
1106 | | * Since: 1.0 |
1107 | | **/ |
1108 | | cairo_status_t |
1109 | | cairo_pattern_status (cairo_pattern_t *pattern) |
1110 | 0 | { |
1111 | 0 | return pattern->status; |
1112 | 0 | } |
1113 | | |
1114 | | /** |
1115 | | * cairo_pattern_destroy: |
1116 | | * @pattern: a #cairo_pattern_t |
1117 | | * |
1118 | | * Decreases the reference count on @pattern by one. If the result is |
1119 | | * zero, then @pattern and all associated resources are freed. See |
1120 | | * cairo_pattern_reference(). |
1121 | | * |
1122 | | * Since: 1.0 |
1123 | | **/ |
1124 | | void |
1125 | | cairo_pattern_destroy (cairo_pattern_t *pattern) |
1126 | 18.4M | { |
1127 | 18.4M | cairo_pattern_type_t type; |
1128 | | |
1129 | 18.4M | if (pattern == NULL || |
1130 | 18.4M | CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count)) |
1131 | 11.5M | return; |
1132 | | |
1133 | 6.88M | assert (CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&pattern->ref_count)); |
1134 | | |
1135 | 6.88M | if (! _cairo_reference_count_dec_and_test (&pattern->ref_count)) |
1136 | 3.44M | return; |
1137 | | |
1138 | 3.44M | type = pattern->type; |
1139 | 3.44M | _cairo_pattern_fini (pattern); |
1140 | | |
1141 | | /* maintain a small cache of freed patterns */ |
1142 | 3.44M | if (type < ARRAY_LENGTH (freed_pattern_pool)) |
1143 | 3.44M | _freed_pool_put (&freed_pattern_pool[type], pattern); |
1144 | 0 | else |
1145 | 0 | free (pattern); |
1146 | 3.44M | } |
1147 | | slim_hidden_def (cairo_pattern_destroy); |
1148 | | |
1149 | | /** |
1150 | | * cairo_pattern_get_reference_count: |
1151 | | * @pattern: a #cairo_pattern_t |
1152 | | * |
1153 | | * Returns the current reference count of @pattern. |
1154 | | * |
1155 | | * Return value: the current reference count of @pattern. If the |
1156 | | * object is a nil object, 0 will be returned. |
1157 | | * |
1158 | | * Since: 1.4 |
1159 | | **/ |
1160 | | unsigned int |
1161 | | cairo_pattern_get_reference_count (cairo_pattern_t *pattern) |
1162 | 0 | { |
1163 | 0 | if (pattern == NULL || |
1164 | 0 | CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count)) |
1165 | 0 | return 0; |
1166 | | |
1167 | 0 | return CAIRO_REFERENCE_COUNT_GET_VALUE (&pattern->ref_count); |
1168 | 0 | } |
1169 | | |
1170 | | /** |
1171 | | * cairo_pattern_get_user_data: |
1172 | | * @pattern: a #cairo_pattern_t |
1173 | | * @key: the address of the #cairo_user_data_key_t the user data was |
1174 | | * attached to |
1175 | | * |
1176 | | * Return user data previously attached to @pattern using the |
1177 | | * specified key. If no user data has been attached with the given |
1178 | | * key this function returns %NULL. |
1179 | | * |
1180 | | * Return value: the user data previously attached or %NULL. |
1181 | | * |
1182 | | * Since: 1.4 |
1183 | | **/ |
1184 | | void * |
1185 | | cairo_pattern_get_user_data (cairo_pattern_t *pattern, |
1186 | | const cairo_user_data_key_t *key) |
1187 | 0 | { |
1188 | 0 | return _cairo_user_data_array_get_data (&pattern->user_data, |
1189 | 0 | key); |
1190 | 0 | } |
1191 | | |
1192 | | /** |
1193 | | * cairo_pattern_set_user_data: |
1194 | | * @pattern: a #cairo_pattern_t |
1195 | | * @key: the address of a #cairo_user_data_key_t to attach the user data to |
1196 | | * @user_data: the user data to attach to the #cairo_pattern_t |
1197 | | * @destroy: a #cairo_destroy_func_t which will be called when the |
1198 | | * #cairo_t is destroyed or when new user data is attached using the |
1199 | | * same key. |
1200 | | * |
1201 | | * Attach user data to @pattern. To remove user data from a surface, |
1202 | | * call this function with the key that was used to set it and %NULL |
1203 | | * for @data. |
1204 | | * |
1205 | | * Return value: %CAIRO_STATUS_SUCCESS or %CAIRO_STATUS_NO_MEMORY if a |
1206 | | * slot could not be allocated for the user data. |
1207 | | * |
1208 | | * Since: 1.4 |
1209 | | **/ |
1210 | | cairo_status_t |
1211 | | cairo_pattern_set_user_data (cairo_pattern_t *pattern, |
1212 | | const cairo_user_data_key_t *key, |
1213 | | void *user_data, |
1214 | | cairo_destroy_func_t destroy) |
1215 | 0 | { |
1216 | 0 | if (CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count)) |
1217 | 0 | return pattern->status; |
1218 | | |
1219 | 0 | return _cairo_user_data_array_set_data (&pattern->user_data, |
1220 | 0 | key, user_data, destroy); |
1221 | 0 | } |
1222 | | |
1223 | | /** |
1224 | | * cairo_mesh_pattern_begin_patch: |
1225 | | * @pattern: a #cairo_pattern_t |
1226 | | * |
1227 | | * Begin a patch in a mesh pattern. |
1228 | | * |
1229 | | * After calling this function, the patch shape should be defined with |
1230 | | * cairo_mesh_pattern_move_to(), cairo_mesh_pattern_line_to() and |
1231 | | * cairo_mesh_pattern_curve_to(). |
1232 | | * |
1233 | | * After defining the patch, cairo_mesh_pattern_end_patch() must be |
1234 | | * called before using @pattern as a source or mask. |
1235 | | * |
1236 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1237 | | * into an error status with a status of |
1238 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern already has a |
1239 | | * current patch, it will be put into an error status with a status of |
1240 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1241 | | * |
1242 | | * Since: 1.12 |
1243 | | **/ |
1244 | | void |
1245 | | cairo_mesh_pattern_begin_patch (cairo_pattern_t *pattern) |
1246 | 0 | { |
1247 | 0 | cairo_mesh_pattern_t *mesh; |
1248 | 0 | cairo_status_t status; |
1249 | 0 | cairo_mesh_patch_t *current_patch; |
1250 | 0 | int i; |
1251 | |
|
1252 | 0 | if (unlikely (pattern->status)) |
1253 | 0 | return; |
1254 | | |
1255 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1256 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1257 | 0 | return; |
1258 | 0 | } |
1259 | | |
1260 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1261 | 0 | if (unlikely (mesh->current_patch)) { |
1262 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1263 | 0 | return; |
1264 | 0 | } |
1265 | | |
1266 | 0 | status = _cairo_array_allocate (&mesh->patches, 1, (void **) ¤t_patch); |
1267 | 0 | if (unlikely (status)) { |
1268 | 0 | _cairo_pattern_set_error (pattern, status); |
1269 | 0 | return; |
1270 | 0 | } |
1271 | | |
1272 | 0 | mesh->current_patch = current_patch; |
1273 | 0 | mesh->current_side = -2; /* no current point */ |
1274 | |
|
1275 | 0 | for (i = 0; i < 4; i++) |
1276 | 0 | mesh->has_control_point[i] = FALSE; |
1277 | |
|
1278 | 0 | for (i = 0; i < 4; i++) |
1279 | 0 | mesh->has_color[i] = FALSE; |
1280 | 0 | } |
1281 | | |
1282 | | |
1283 | | static void |
1284 | | _calc_control_point (cairo_mesh_patch_t *patch, int control_point) |
1285 | 0 | { |
1286 | | /* The Coons patch is a special case of the Tensor Product patch |
1287 | | * where the four control points are: |
1288 | | * |
1289 | | * P11 = S(1/3, 1/3) |
1290 | | * P12 = S(1/3, 2/3) |
1291 | | * P21 = S(2/3, 1/3) |
1292 | | * P22 = S(2/3, 2/3) |
1293 | | * |
1294 | | * where S is the gradient surface. |
1295 | | * |
1296 | | * When one or more control points has not been specified |
1297 | | * calculated the Coons patch control points are substituted. If |
1298 | | * no control points are specified the gradient will be a Coons |
1299 | | * patch. |
1300 | | * |
1301 | | * The equations below are defined in the ISO32000 standard. |
1302 | | */ |
1303 | 0 | cairo_point_double_t *p[3][3]; |
1304 | 0 | int cp_i, cp_j, i, j; |
1305 | |
|
1306 | 0 | cp_i = mesh_control_point_i[control_point]; |
1307 | 0 | cp_j = mesh_control_point_j[control_point]; |
1308 | |
|
1309 | 0 | for (i = 0; i < 3; i++) |
1310 | 0 | for (j = 0; j < 3; j++) |
1311 | 0 | p[i][j] = &patch->points[cp_i ^ i][cp_j ^ j]; |
1312 | |
|
1313 | 0 | p[0][0]->x = (- 4 * p[1][1]->x |
1314 | 0 | + 6 * (p[1][0]->x + p[0][1]->x) |
1315 | 0 | - 2 * (p[1][2]->x + p[2][1]->x) |
1316 | 0 | + 3 * (p[2][0]->x + p[0][2]->x) |
1317 | 0 | - 1 * p[2][2]->x) * (1. / 9); |
1318 | |
|
1319 | 0 | p[0][0]->y = (- 4 * p[1][1]->y |
1320 | 0 | + 6 * (p[1][0]->y + p[0][1]->y) |
1321 | 0 | - 2 * (p[1][2]->y + p[2][1]->y) |
1322 | 0 | + 3 * (p[2][0]->y + p[0][2]->y) |
1323 | 0 | - 1 * p[2][2]->y) * (1. / 9); |
1324 | 0 | } |
1325 | | |
1326 | | /** |
1327 | | * cairo_mesh_pattern_end_patch: |
1328 | | * @pattern: a #cairo_pattern_t |
1329 | | * |
1330 | | * Indicates the end of the current patch in a mesh pattern. |
1331 | | * |
1332 | | * If the current patch has less than 4 sides, it is closed with a |
1333 | | * straight line from the current point to the first point of the |
1334 | | * patch as if cairo_mesh_pattern_line_to() was used. |
1335 | | * |
1336 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1337 | | * into an error status with a status of |
1338 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern has no current |
1339 | | * patch or the current patch has no current point, @pattern will be |
1340 | | * put into an error status with a status of |
1341 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1342 | | * |
1343 | | * Since: 1.12 |
1344 | | **/ |
1345 | | void |
1346 | | cairo_mesh_pattern_end_patch (cairo_pattern_t *pattern) |
1347 | 0 | { |
1348 | 0 | cairo_mesh_pattern_t *mesh; |
1349 | 0 | cairo_mesh_patch_t *current_patch; |
1350 | 0 | int i; |
1351 | |
|
1352 | 0 | if (unlikely (pattern->status)) |
1353 | 0 | return; |
1354 | | |
1355 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1356 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1357 | 0 | return; |
1358 | 0 | } |
1359 | | |
1360 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1361 | 0 | current_patch = mesh->current_patch; |
1362 | 0 | if (unlikely (!current_patch)) { |
1363 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1364 | 0 | return; |
1365 | 0 | } |
1366 | | |
1367 | 0 | if (unlikely (mesh->current_side == -2)) { |
1368 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1369 | 0 | return; |
1370 | 0 | } |
1371 | | |
1372 | 0 | while (mesh->current_side < 3) { |
1373 | 0 | int corner_num; |
1374 | |
|
1375 | 0 | cairo_mesh_pattern_line_to (pattern, |
1376 | 0 | current_patch->points[0][0].x, |
1377 | 0 | current_patch->points[0][0].y); |
1378 | |
|
1379 | 0 | corner_num = mesh->current_side + 1; |
1380 | 0 | if (corner_num < 4 && ! mesh->has_color[corner_num]) { |
1381 | 0 | current_patch->colors[corner_num] = current_patch->colors[0]; |
1382 | 0 | mesh->has_color[corner_num] = TRUE; |
1383 | 0 | } |
1384 | 0 | } |
1385 | |
|
1386 | 0 | for (i = 0; i < 4; i++) { |
1387 | 0 | if (! mesh->has_control_point[i]) |
1388 | 0 | _calc_control_point (current_patch, i); |
1389 | 0 | } |
1390 | |
|
1391 | 0 | for (i = 0; i < 4; i++) { |
1392 | 0 | if (! mesh->has_color[i]) |
1393 | 0 | current_patch->colors[i] = *CAIRO_COLOR_TRANSPARENT; |
1394 | 0 | } |
1395 | |
|
1396 | 0 | mesh->current_patch = NULL; |
1397 | 0 | } |
1398 | | |
1399 | | /** |
1400 | | * cairo_mesh_pattern_curve_to: |
1401 | | * @pattern: a #cairo_pattern_t |
1402 | | * @x1: the X coordinate of the first control point |
1403 | | * @y1: the Y coordinate of the first control point |
1404 | | * @x2: the X coordinate of the second control point |
1405 | | * @y2: the Y coordinate of the second control point |
1406 | | * @x3: the X coordinate of the end of the curve |
1407 | | * @y3: the Y coordinate of the end of the curve |
1408 | | * |
1409 | | * Adds a cubic Bézier spline to the current patch from the current |
1410 | | * point to position (@x3, @y3) in pattern-space coordinates, using |
1411 | | * (@x1, @y1) and (@x2, @y2) as the control points. |
1412 | | * |
1413 | | * If the current patch has no current point before the call to |
1414 | | * cairo_mesh_pattern_curve_to(), this function will behave as if |
1415 | | * preceded by a call to cairo_mesh_pattern_move_to(@pattern, @x1, |
1416 | | * @y1). |
1417 | | * |
1418 | | * After this call the current point will be (@x3, @y3). |
1419 | | * |
1420 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1421 | | * into an error status with a status of |
1422 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern has no current |
1423 | | * patch or the current patch already has 4 sides, @pattern will be |
1424 | | * put into an error status with a status of |
1425 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1426 | | * |
1427 | | * Since: 1.12 |
1428 | | **/ |
1429 | | void |
1430 | | cairo_mesh_pattern_curve_to (cairo_pattern_t *pattern, |
1431 | | double x1, double y1, |
1432 | | double x2, double y2, |
1433 | | double x3, double y3) |
1434 | 0 | { |
1435 | 0 | cairo_mesh_pattern_t *mesh; |
1436 | 0 | int current_point, i, j; |
1437 | |
|
1438 | 0 | if (unlikely (pattern->status)) |
1439 | 0 | return; |
1440 | | |
1441 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1442 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1443 | 0 | return; |
1444 | 0 | } |
1445 | | |
1446 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1447 | 0 | if (unlikely (!mesh->current_patch)) { |
1448 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1449 | 0 | return; |
1450 | 0 | } |
1451 | | |
1452 | 0 | if (unlikely (mesh->current_side == 3)) { |
1453 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1454 | 0 | return; |
1455 | 0 | } |
1456 | | |
1457 | 0 | if (mesh->current_side == -2) |
1458 | 0 | cairo_mesh_pattern_move_to (pattern, x1, y1); |
1459 | |
|
1460 | 0 | assert (mesh->current_side >= -1); |
1461 | 0 | assert (pattern->status == CAIRO_STATUS_SUCCESS); |
1462 | | |
1463 | 0 | mesh->current_side++; |
1464 | |
|
1465 | 0 | current_point = 3 * mesh->current_side; |
1466 | |
|
1467 | 0 | current_point++; |
1468 | 0 | i = mesh_path_point_i[current_point]; |
1469 | 0 | j = mesh_path_point_j[current_point]; |
1470 | 0 | mesh->current_patch->points[i][j].x = x1; |
1471 | 0 | mesh->current_patch->points[i][j].y = y1; |
1472 | |
|
1473 | 0 | current_point++; |
1474 | 0 | i = mesh_path_point_i[current_point]; |
1475 | 0 | j = mesh_path_point_j[current_point]; |
1476 | 0 | mesh->current_patch->points[i][j].x = x2; |
1477 | 0 | mesh->current_patch->points[i][j].y = y2; |
1478 | |
|
1479 | 0 | current_point++; |
1480 | 0 | if (current_point < 12) { |
1481 | 0 | i = mesh_path_point_i[current_point]; |
1482 | 0 | j = mesh_path_point_j[current_point]; |
1483 | 0 | mesh->current_patch->points[i][j].x = x3; |
1484 | 0 | mesh->current_patch->points[i][j].y = y3; |
1485 | 0 | } |
1486 | 0 | } |
1487 | | slim_hidden_def (cairo_mesh_pattern_curve_to); |
1488 | | |
1489 | | /** |
1490 | | * cairo_mesh_pattern_line_to: |
1491 | | * @pattern: a #cairo_pattern_t |
1492 | | * @x: the X coordinate of the end of the new line |
1493 | | * @y: the Y coordinate of the end of the new line |
1494 | | * |
1495 | | * Adds a line to the current patch from the current point to position |
1496 | | * (@x, @y) in pattern-space coordinates. |
1497 | | * |
1498 | | * If there is no current point before the call to |
1499 | | * cairo_mesh_pattern_line_to() this function will behave as |
1500 | | * cairo_mesh_pattern_move_to(@pattern, @x, @y). |
1501 | | * |
1502 | | * After this call the current point will be (@x, @y). |
1503 | | * |
1504 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1505 | | * into an error status with a status of |
1506 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern has no current |
1507 | | * patch or the current patch already has 4 sides, @pattern will be |
1508 | | * put into an error status with a status of |
1509 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1510 | | * |
1511 | | * Since: 1.12 |
1512 | | **/ |
1513 | | void |
1514 | | cairo_mesh_pattern_line_to (cairo_pattern_t *pattern, |
1515 | | double x, double y) |
1516 | 0 | { |
1517 | 0 | cairo_mesh_pattern_t *mesh; |
1518 | 0 | cairo_point_double_t last_point; |
1519 | 0 | int last_point_idx, i, j; |
1520 | |
|
1521 | 0 | if (unlikely (pattern->status)) |
1522 | 0 | return; |
1523 | | |
1524 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1525 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1526 | 0 | return; |
1527 | 0 | } |
1528 | | |
1529 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1530 | 0 | if (unlikely (!mesh->current_patch)) { |
1531 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1532 | 0 | return; |
1533 | 0 | } |
1534 | | |
1535 | 0 | if (unlikely (mesh->current_side == 3)) { |
1536 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1537 | 0 | return; |
1538 | 0 | } |
1539 | | |
1540 | 0 | if (mesh->current_side == -2) { |
1541 | 0 | cairo_mesh_pattern_move_to (pattern, x, y); |
1542 | 0 | return; |
1543 | 0 | } |
1544 | | |
1545 | 0 | last_point_idx = 3 * (mesh->current_side + 1); |
1546 | 0 | i = mesh_path_point_i[last_point_idx]; |
1547 | 0 | j = mesh_path_point_j[last_point_idx]; |
1548 | |
|
1549 | 0 | last_point = mesh->current_patch->points[i][j]; |
1550 | |
|
1551 | 0 | cairo_mesh_pattern_curve_to (pattern, |
1552 | 0 | (2 * last_point.x + x) * (1. / 3), |
1553 | 0 | (2 * last_point.y + y) * (1. / 3), |
1554 | 0 | (last_point.x + 2 * x) * (1. / 3), |
1555 | 0 | (last_point.y + 2 * y) * (1. / 3), |
1556 | 0 | x, y); |
1557 | 0 | } |
1558 | | slim_hidden_def (cairo_mesh_pattern_line_to); |
1559 | | |
1560 | | /** |
1561 | | * cairo_mesh_pattern_move_to: |
1562 | | * @pattern: a #cairo_pattern_t |
1563 | | * @x: the X coordinate of the new position |
1564 | | * @y: the Y coordinate of the new position |
1565 | | * |
1566 | | * Define the first point of the current patch in a mesh pattern. |
1567 | | * |
1568 | | * After this call the current point will be (@x, @y). |
1569 | | * |
1570 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1571 | | * into an error status with a status of |
1572 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern has no current |
1573 | | * patch or the current patch already has at least one side, @pattern |
1574 | | * will be put into an error status with a status of |
1575 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1576 | | * |
1577 | | * Since: 1.12 |
1578 | | **/ |
1579 | | void |
1580 | | cairo_mesh_pattern_move_to (cairo_pattern_t *pattern, |
1581 | | double x, double y) |
1582 | 0 | { |
1583 | 0 | cairo_mesh_pattern_t *mesh; |
1584 | |
|
1585 | 0 | if (unlikely (pattern->status)) |
1586 | 0 | return; |
1587 | | |
1588 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1589 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1590 | 0 | return; |
1591 | 0 | } |
1592 | | |
1593 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1594 | 0 | if (unlikely (!mesh->current_patch)) { |
1595 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1596 | 0 | return; |
1597 | 0 | } |
1598 | | |
1599 | 0 | if (unlikely (mesh->current_side >= 0)) { |
1600 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1601 | 0 | return; |
1602 | 0 | } |
1603 | | |
1604 | 0 | mesh->current_side = -1; |
1605 | 0 | mesh->current_patch->points[0][0].x = x; |
1606 | 0 | mesh->current_patch->points[0][0].y = y; |
1607 | 0 | } |
1608 | | slim_hidden_def (cairo_mesh_pattern_move_to); |
1609 | | |
1610 | | /** |
1611 | | * cairo_mesh_pattern_set_control_point: |
1612 | | * @pattern: a #cairo_pattern_t |
1613 | | * @point_num: the control point to set the position for |
1614 | | * @x: the X coordinate of the control point |
1615 | | * @y: the Y coordinate of the control point |
1616 | | * |
1617 | | * Set an internal control point of the current patch. |
1618 | | * |
1619 | | * Valid values for @point_num are from 0 to 3 and identify the |
1620 | | * control points as explained in cairo_pattern_create_mesh(). |
1621 | | * |
1622 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1623 | | * into an error status with a status of |
1624 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @point_num is not valid, |
1625 | | * @pattern will be put into an error status with a status of |
1626 | | * %CAIRO_STATUS_INVALID_INDEX. If @pattern has no current patch, |
1627 | | * @pattern will be put into an error status with a status of |
1628 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1629 | | * |
1630 | | * Since: 1.12 |
1631 | | **/ |
1632 | | void |
1633 | | cairo_mesh_pattern_set_control_point (cairo_pattern_t *pattern, |
1634 | | unsigned int point_num, |
1635 | | double x, |
1636 | | double y) |
1637 | 0 | { |
1638 | 0 | cairo_mesh_pattern_t *mesh; |
1639 | 0 | int i, j; |
1640 | |
|
1641 | 0 | if (unlikely (pattern->status)) |
1642 | 0 | return; |
1643 | | |
1644 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1645 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1646 | 0 | return; |
1647 | 0 | } |
1648 | | |
1649 | 0 | if (unlikely (point_num > 3)) { |
1650 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_INDEX); |
1651 | 0 | return; |
1652 | 0 | } |
1653 | | |
1654 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1655 | 0 | if (unlikely (!mesh->current_patch)) { |
1656 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1657 | 0 | return; |
1658 | 0 | } |
1659 | | |
1660 | 0 | i = mesh_control_point_i[point_num]; |
1661 | 0 | j = mesh_control_point_j[point_num]; |
1662 | |
|
1663 | 0 | mesh->current_patch->points[i][j].x = x; |
1664 | 0 | mesh->current_patch->points[i][j].y = y; |
1665 | 0 | mesh->has_control_point[point_num] = TRUE; |
1666 | 0 | } |
1667 | | |
1668 | | /* make room for at least one more color stop */ |
1669 | | static cairo_status_t |
1670 | | _cairo_pattern_gradient_grow (cairo_gradient_pattern_t *pattern) |
1671 | 6.66k | { |
1672 | 6.66k | cairo_gradient_stop_t *new_stops; |
1673 | 6.66k | int old_size = pattern->stops_size; |
1674 | 6.66k | int embedded_size = ARRAY_LENGTH (pattern->stops_embedded); |
1675 | 6.66k | int new_size = 2 * MAX (old_size, 4); |
1676 | | |
1677 | | /* we have a local buffer at pattern->stops_embedded. try to fulfill the request |
1678 | | * from there. */ |
1679 | 6.66k | if (old_size < embedded_size) { |
1680 | 6.66k | pattern->stops = pattern->stops_embedded; |
1681 | 6.66k | pattern->stops_size = embedded_size; |
1682 | 6.66k | return CAIRO_STATUS_SUCCESS; |
1683 | 6.66k | } |
1684 | | |
1685 | 0 | if (CAIRO_INJECT_FAULT ()) |
1686 | 0 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
1687 | | |
1688 | 0 | assert (pattern->n_stops <= pattern->stops_size); |
1689 | | |
1690 | 0 | if (pattern->stops == pattern->stops_embedded) { |
1691 | 0 | new_stops = _cairo_malloc_ab (new_size, sizeof (cairo_gradient_stop_t)); |
1692 | 0 | if (new_stops) |
1693 | 0 | memcpy (new_stops, pattern->stops, old_size * sizeof (cairo_gradient_stop_t)); |
1694 | 0 | } else { |
1695 | 0 | new_stops = _cairo_realloc_ab (pattern->stops, |
1696 | 0 | new_size, |
1697 | 0 | sizeof (cairo_gradient_stop_t)); |
1698 | 0 | } |
1699 | |
|
1700 | 0 | if (unlikely (new_stops == NULL)) |
1701 | 0 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
1702 | | |
1703 | 0 | pattern->stops = new_stops; |
1704 | 0 | pattern->stops_size = new_size; |
1705 | |
|
1706 | 0 | return CAIRO_STATUS_SUCCESS; |
1707 | 0 | } |
1708 | | |
1709 | | static void |
1710 | | _cairo_mesh_pattern_set_corner_color (cairo_mesh_pattern_t *mesh, |
1711 | | unsigned int corner_num, |
1712 | | double red, double green, double blue, |
1713 | | double alpha) |
1714 | 0 | { |
1715 | 0 | cairo_color_t *color; |
1716 | |
|
1717 | 0 | assert (mesh->current_patch); |
1718 | 0 | assert (corner_num <= 3); |
1719 | | |
1720 | 0 | color = &mesh->current_patch->colors[corner_num]; |
1721 | 0 | color->red = red; |
1722 | 0 | color->green = green; |
1723 | 0 | color->blue = blue; |
1724 | 0 | color->alpha = alpha; |
1725 | |
|
1726 | 0 | color->red_short = _cairo_color_double_to_short (red); |
1727 | 0 | color->green_short = _cairo_color_double_to_short (green); |
1728 | 0 | color->blue_short = _cairo_color_double_to_short (blue); |
1729 | 0 | color->alpha_short = _cairo_color_double_to_short (alpha); |
1730 | |
|
1731 | 0 | mesh->has_color[corner_num] = TRUE; |
1732 | 0 | } |
1733 | | |
1734 | | /** |
1735 | | * cairo_mesh_pattern_set_corner_color_rgb: |
1736 | | * @pattern: a #cairo_pattern_t |
1737 | | * @corner_num: the corner to set the color for |
1738 | | * @red: red component of color |
1739 | | * @green: green component of color |
1740 | | * @blue: blue component of color |
1741 | | * |
1742 | | * Sets the color of a corner of the current patch in a mesh pattern. |
1743 | | * |
1744 | | * The color is specified in the same way as in cairo_set_source_rgb(). |
1745 | | * |
1746 | | * Valid values for @corner_num are from 0 to 3 and identify the |
1747 | | * corners as explained in cairo_pattern_create_mesh(). |
1748 | | * |
1749 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1750 | | * into an error status with a status of |
1751 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @corner_num is not valid, |
1752 | | * @pattern will be put into an error status with a status of |
1753 | | * %CAIRO_STATUS_INVALID_INDEX. If @pattern has no current patch, |
1754 | | * @pattern will be put into an error status with a status of |
1755 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1756 | | * |
1757 | | * Since: 1.12 |
1758 | | **/ |
1759 | | void |
1760 | | cairo_mesh_pattern_set_corner_color_rgb (cairo_pattern_t *pattern, |
1761 | | unsigned int corner_num, |
1762 | | double red, double green, double blue) |
1763 | 0 | { |
1764 | 0 | cairo_mesh_pattern_set_corner_color_rgba (pattern, corner_num, red, green, blue, 1.0); |
1765 | 0 | } |
1766 | | |
1767 | | /** |
1768 | | * cairo_mesh_pattern_set_corner_color_rgba: |
1769 | | * @pattern: a #cairo_pattern_t |
1770 | | * @corner_num: the corner to set the color for |
1771 | | * @red: red component of color |
1772 | | * @green: green component of color |
1773 | | * @blue: blue component of color |
1774 | | * @alpha: alpha component of color |
1775 | | * |
1776 | | * Sets the color of a corner of the current patch in a mesh pattern. |
1777 | | * |
1778 | | * The color is specified in the same way as in cairo_set_source_rgba(). |
1779 | | * |
1780 | | * Valid values for @corner_num are from 0 to 3 and identify the |
1781 | | * corners as explained in cairo_pattern_create_mesh(). |
1782 | | * |
1783 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1784 | | * into an error status with a status of |
1785 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @corner_num is not valid, |
1786 | | * @pattern will be put into an error status with a status of |
1787 | | * %CAIRO_STATUS_INVALID_INDEX. If @pattern has no current patch, |
1788 | | * @pattern will be put into an error status with a status of |
1789 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1790 | | * |
1791 | | * Since: 1.12 |
1792 | | **/ |
1793 | | void |
1794 | | cairo_mesh_pattern_set_corner_color_rgba (cairo_pattern_t *pattern, |
1795 | | unsigned int corner_num, |
1796 | | double red, double green, double blue, |
1797 | | double alpha) |
1798 | 0 | { |
1799 | 0 | cairo_mesh_pattern_t *mesh; |
1800 | |
|
1801 | 0 | if (unlikely (pattern->status)) |
1802 | 0 | return; |
1803 | | |
1804 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1805 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1806 | 0 | return; |
1807 | 0 | } |
1808 | | |
1809 | 0 | if (unlikely (corner_num > 3)) { |
1810 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_INDEX); |
1811 | 0 | return; |
1812 | 0 | } |
1813 | | |
1814 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1815 | 0 | if (unlikely (!mesh->current_patch)) { |
1816 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1817 | 0 | return; |
1818 | 0 | } |
1819 | | |
1820 | 0 | red = _cairo_restrict_value (red, 0.0, 1.0); |
1821 | 0 | green = _cairo_restrict_value (green, 0.0, 1.0); |
1822 | 0 | blue = _cairo_restrict_value (blue, 0.0, 1.0); |
1823 | 0 | alpha = _cairo_restrict_value (alpha, 0.0, 1.0); |
1824 | |
|
1825 | 0 | _cairo_mesh_pattern_set_corner_color (mesh, corner_num, red, green, blue, alpha); |
1826 | 0 | } |
1827 | | slim_hidden_def (cairo_mesh_pattern_set_corner_color_rgba); |
1828 | | |
1829 | | static void |
1830 | | _cairo_pattern_add_color_stop (cairo_gradient_pattern_t *pattern, |
1831 | | double offset, |
1832 | | double red, |
1833 | | double green, |
1834 | | double blue, |
1835 | | double alpha) |
1836 | 13.3k | { |
1837 | 13.3k | cairo_gradient_stop_t *stops; |
1838 | 13.3k | unsigned int i; |
1839 | | |
1840 | 13.3k | if (pattern->n_stops >= pattern->stops_size) { |
1841 | 6.66k | cairo_status_t status = _cairo_pattern_gradient_grow (pattern); |
1842 | 6.66k | if (unlikely (status)) { |
1843 | 0 | status = _cairo_pattern_set_error (&pattern->base, status); |
1844 | 0 | return; |
1845 | 0 | } |
1846 | 6.66k | } |
1847 | | |
1848 | 13.3k | stops = pattern->stops; |
1849 | | |
1850 | 19.9k | for (i = 0; i < pattern->n_stops; i++) |
1851 | 6.66k | { |
1852 | 6.66k | if (offset < stops[i].offset) |
1853 | 0 | { |
1854 | 0 | memmove (&stops[i + 1], &stops[i], |
1855 | 0 | sizeof (cairo_gradient_stop_t) * (pattern->n_stops - i)); |
1856 | |
|
1857 | 0 | break; |
1858 | 0 | } |
1859 | 6.66k | } |
1860 | | |
1861 | 13.3k | stops[i].offset = offset; |
1862 | | |
1863 | 13.3k | stops[i].color.red = red; |
1864 | 13.3k | stops[i].color.green = green; |
1865 | 13.3k | stops[i].color.blue = blue; |
1866 | 13.3k | stops[i].color.alpha = alpha; |
1867 | | |
1868 | 13.3k | stops[i].color.red_short = _cairo_color_double_to_short (red); |
1869 | 13.3k | stops[i].color.green_short = _cairo_color_double_to_short (green); |
1870 | 13.3k | stops[i].color.blue_short = _cairo_color_double_to_short (blue); |
1871 | 13.3k | stops[i].color.alpha_short = _cairo_color_double_to_short (alpha); |
1872 | | |
1873 | 13.3k | pattern->n_stops++; |
1874 | 13.3k | } |
1875 | | |
1876 | | /** |
1877 | | * cairo_pattern_add_color_stop_rgb: |
1878 | | * @pattern: a #cairo_pattern_t |
1879 | | * @offset: an offset in the range [0.0 .. 1.0] |
1880 | | * @red: red component of color |
1881 | | * @green: green component of color |
1882 | | * @blue: blue component of color |
1883 | | * |
1884 | | * Adds an opaque color stop to a gradient pattern. The offset |
1885 | | * specifies the location along the gradient's control vector. For |
1886 | | * example, a linear gradient's control vector is from (x0,y0) to |
1887 | | * (x1,y1) while a radial gradient's control vector is from any point |
1888 | | * on the start circle to the corresponding point on the end circle. |
1889 | | * |
1890 | | * The color is specified in the same way as in cairo_set_source_rgb(). |
1891 | | * |
1892 | | * If two (or more) stops are specified with identical offset values, |
1893 | | * they will be sorted according to the order in which the stops are |
1894 | | * added, (stops added earlier will compare less than stops added |
1895 | | * later). This can be useful for reliably making sharp color |
1896 | | * transitions instead of the typical blend. |
1897 | | * |
1898 | | * |
1899 | | * Note: If the pattern is not a gradient pattern, (eg. a linear or |
1900 | | * radial pattern), then the pattern will be put into an error status |
1901 | | * with a status of %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. |
1902 | | * |
1903 | | * Since: 1.0 |
1904 | | **/ |
1905 | | void |
1906 | | cairo_pattern_add_color_stop_rgb (cairo_pattern_t *pattern, |
1907 | | double offset, |
1908 | | double red, |
1909 | | double green, |
1910 | | double blue) |
1911 | 0 | { |
1912 | 0 | cairo_pattern_add_color_stop_rgba (pattern, offset, red, green, blue, 1.0); |
1913 | 0 | } |
1914 | | |
1915 | | /** |
1916 | | * cairo_pattern_add_color_stop_rgba: |
1917 | | * @pattern: a #cairo_pattern_t |
1918 | | * @offset: an offset in the range [0.0 .. 1.0] |
1919 | | * @red: red component of color |
1920 | | * @green: green component of color |
1921 | | * @blue: blue component of color |
1922 | | * @alpha: alpha component of color |
1923 | | * |
1924 | | * Adds a translucent color stop to a gradient pattern. The offset |
1925 | | * specifies the location along the gradient's control vector. For |
1926 | | * example, a linear gradient's control vector is from (x0,y0) to |
1927 | | * (x1,y1) while a radial gradient's control vector is from any point |
1928 | | * on the start circle to the corresponding point on the end circle. |
1929 | | * |
1930 | | * The color is specified in the same way as in cairo_set_source_rgba(). |
1931 | | * |
1932 | | * If two (or more) stops are specified with identical offset values, |
1933 | | * they will be sorted according to the order in which the stops are |
1934 | | * added, (stops added earlier will compare less than stops added |
1935 | | * later). This can be useful for reliably making sharp color |
1936 | | * transitions instead of the typical blend. |
1937 | | * |
1938 | | * Note: If the pattern is not a gradient pattern, (eg. a linear or |
1939 | | * radial pattern), then the pattern will be put into an error status |
1940 | | * with a status of %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. |
1941 | | * |
1942 | | * Since: 1.0 |
1943 | | **/ |
1944 | | void |
1945 | | cairo_pattern_add_color_stop_rgba (cairo_pattern_t *pattern, |
1946 | | double offset, |
1947 | | double red, |
1948 | | double green, |
1949 | | double blue, |
1950 | | double alpha) |
1951 | 13.3k | { |
1952 | 13.3k | if (pattern->status) |
1953 | 0 | return; |
1954 | | |
1955 | 13.3k | if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR && |
1956 | 13.3k | pattern->type != CAIRO_PATTERN_TYPE_RADIAL) |
1957 | 0 | { |
1958 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1959 | 0 | return; |
1960 | 0 | } |
1961 | | |
1962 | 13.3k | offset = _cairo_restrict_value (offset, 0.0, 1.0); |
1963 | 13.3k | red = _cairo_restrict_value (red, 0.0, 1.0); |
1964 | 13.3k | green = _cairo_restrict_value (green, 0.0, 1.0); |
1965 | 13.3k | blue = _cairo_restrict_value (blue, 0.0, 1.0); |
1966 | 13.3k | alpha = _cairo_restrict_value (alpha, 0.0, 1.0); |
1967 | | |
1968 | 13.3k | _cairo_pattern_add_color_stop ((cairo_gradient_pattern_t *) pattern, |
1969 | 13.3k | offset, red, green, blue, alpha); |
1970 | 13.3k | } |
1971 | | slim_hidden_def (cairo_pattern_add_color_stop_rgba); |
1972 | | |
1973 | | /** |
1974 | | * cairo_pattern_set_matrix: |
1975 | | * @pattern: a #cairo_pattern_t |
1976 | | * @matrix: a #cairo_matrix_t |
1977 | | * |
1978 | | * Sets the pattern's transformation matrix to @matrix. This matrix is |
1979 | | * a transformation from user space to pattern space. |
1980 | | * |
1981 | | * When a pattern is first created it always has the identity matrix |
1982 | | * for its transformation matrix, which means that pattern space is |
1983 | | * initially identical to user space. |
1984 | | * |
1985 | | * Important: Please note that the direction of this transformation |
1986 | | * matrix is from user space to pattern space. This means that if you |
1987 | | * imagine the flow from a pattern to user space (and on to device |
1988 | | * space), then coordinates in that flow will be transformed by the |
1989 | | * inverse of the pattern matrix. |
1990 | | * |
1991 | | * For example, if you want to make a pattern appear twice as large as |
1992 | | * it does by default the correct code to use is: |
1993 | | * |
1994 | | * <informalexample><programlisting> |
1995 | | * cairo_matrix_init_scale (&matrix, 0.5, 0.5); |
1996 | | * cairo_pattern_set_matrix (pattern, &matrix); |
1997 | | * </programlisting></informalexample> |
1998 | | * |
1999 | | * Meanwhile, using values of 2.0 rather than 0.5 in the code above |
2000 | | * would cause the pattern to appear at half of its default size. |
2001 | | * |
2002 | | * Also, please note the discussion of the user-space locking |
2003 | | * semantics of cairo_set_source(). |
2004 | | * |
2005 | | * Since: 1.0 |
2006 | | **/ |
2007 | | void |
2008 | | cairo_pattern_set_matrix (cairo_pattern_t *pattern, |
2009 | | const cairo_matrix_t *matrix) |
2010 | 543k | { |
2011 | 543k | cairo_matrix_t inverse; |
2012 | 543k | cairo_status_t status; |
2013 | | |
2014 | 543k | if (pattern->status) |
2015 | 0 | return; |
2016 | | |
2017 | 543k | if (memcmp (&pattern->matrix, matrix, sizeof (cairo_matrix_t)) == 0) |
2018 | 4 | return; |
2019 | | |
2020 | 543k | pattern->matrix = *matrix; |
2021 | 543k | _cairo_pattern_notify_observers (pattern, CAIRO_PATTERN_NOTIFY_MATRIX); |
2022 | | |
2023 | 543k | inverse = *matrix; |
2024 | 543k | status = cairo_matrix_invert (&inverse); |
2025 | 543k | if (unlikely (status)) |
2026 | 0 | status = _cairo_pattern_set_error (pattern, status); |
2027 | 543k | } |
2028 | | slim_hidden_def (cairo_pattern_set_matrix); |
2029 | | |
2030 | | /** |
2031 | | * cairo_pattern_get_matrix: |
2032 | | * @pattern: a #cairo_pattern_t |
2033 | | * @matrix: return value for the matrix |
2034 | | * |
2035 | | * Stores the pattern's transformation matrix into @matrix. |
2036 | | * |
2037 | | * Since: 1.0 |
2038 | | **/ |
2039 | | void |
2040 | | cairo_pattern_get_matrix (cairo_pattern_t *pattern, cairo_matrix_t *matrix) |
2041 | 0 | { |
2042 | 0 | *matrix = pattern->matrix; |
2043 | 0 | } |
2044 | | |
2045 | | /** |
2046 | | * cairo_pattern_set_filter: |
2047 | | * @pattern: a #cairo_pattern_t |
2048 | | * @filter: a #cairo_filter_t describing the filter to use for resizing |
2049 | | * the pattern |
2050 | | * |
2051 | | * Sets the filter to be used for resizing when using this pattern. |
2052 | | * See #cairo_filter_t for details on each filter. |
2053 | | * |
2054 | | * * Note that you might want to control filtering even when you do not |
2055 | | * have an explicit #cairo_pattern_t object, (for example when using |
2056 | | * cairo_set_source_surface()). In these cases, it is convenient to |
2057 | | * use cairo_get_source() to get access to the pattern that cairo |
2058 | | * creates implicitly. For example: |
2059 | | * |
2060 | | * <informalexample><programlisting> |
2061 | | * cairo_set_source_surface (cr, image, x, y); |
2062 | | * cairo_pattern_set_filter (cairo_get_source (cr), CAIRO_FILTER_NEAREST); |
2063 | | * </programlisting></informalexample> |
2064 | | * |
2065 | | * Since: 1.0 |
2066 | | **/ |
2067 | | void |
2068 | | cairo_pattern_set_filter (cairo_pattern_t *pattern, cairo_filter_t filter) |
2069 | 0 | { |
2070 | 0 | if (pattern->status) |
2071 | 0 | return; |
2072 | | |
2073 | 0 | pattern->filter = filter; |
2074 | 0 | _cairo_pattern_notify_observers (pattern, CAIRO_PATTERN_NOTIFY_FILTER); |
2075 | 0 | } |
2076 | | |
2077 | | /** |
2078 | | * cairo_pattern_get_filter: |
2079 | | * @pattern: a #cairo_pattern_t |
2080 | | * |
2081 | | * Gets the current filter for a pattern. See #cairo_filter_t |
2082 | | * for details on each filter. |
2083 | | * |
2084 | | * Return value: the current filter used for resizing the pattern. |
2085 | | * |
2086 | | * Since: 1.0 |
2087 | | **/ |
2088 | | cairo_filter_t |
2089 | | cairo_pattern_get_filter (cairo_pattern_t *pattern) |
2090 | 0 | { |
2091 | 0 | return pattern->filter; |
2092 | 0 | } |
2093 | | |
2094 | | /** |
2095 | | * cairo_pattern_set_extend: |
2096 | | * @pattern: a #cairo_pattern_t |
2097 | | * @extend: a #cairo_extend_t describing how the area outside of the |
2098 | | * pattern will be drawn |
2099 | | * |
2100 | | * Sets the mode to be used for drawing outside the area of a pattern. |
2101 | | * See #cairo_extend_t for details on the semantics of each extend |
2102 | | * strategy. |
2103 | | * |
2104 | | * The default extend mode is %CAIRO_EXTEND_NONE for surface patterns |
2105 | | * and %CAIRO_EXTEND_PAD for gradient patterns. |
2106 | | * |
2107 | | * Since: 1.0 |
2108 | | **/ |
2109 | | void |
2110 | | cairo_pattern_set_extend (cairo_pattern_t *pattern, cairo_extend_t extend) |
2111 | 20.8k | { |
2112 | 20.8k | if (pattern->status) |
2113 | 0 | return; |
2114 | | |
2115 | 20.8k | pattern->extend = extend; |
2116 | 20.8k | _cairo_pattern_notify_observers (pattern, CAIRO_PATTERN_NOTIFY_EXTEND); |
2117 | 20.8k | } |
2118 | | |
2119 | | /** |
2120 | | * cairo_pattern_get_extend: |
2121 | | * @pattern: a #cairo_pattern_t |
2122 | | * |
2123 | | * Gets the current extend mode for a pattern. See #cairo_extend_t |
2124 | | * for details on the semantics of each extend strategy. |
2125 | | * |
2126 | | * Return value: the current extend strategy used for drawing the |
2127 | | * pattern. |
2128 | | * |
2129 | | * Since: 1.0 |
2130 | | **/ |
2131 | | cairo_extend_t |
2132 | | cairo_pattern_get_extend (cairo_pattern_t *pattern) |
2133 | 0 | { |
2134 | 0 | return pattern->extend; |
2135 | 0 | } |
2136 | | slim_hidden_def (cairo_pattern_get_extend); |
2137 | | |
2138 | | void |
2139 | | _cairo_pattern_pretransform (cairo_pattern_t *pattern, |
2140 | | const cairo_matrix_t *ctm) |
2141 | 0 | { |
2142 | 0 | if (pattern->status) |
2143 | 0 | return; |
2144 | | |
2145 | 0 | cairo_matrix_multiply (&pattern->matrix, &pattern->matrix, ctm); |
2146 | 0 | } |
2147 | | |
2148 | | void |
2149 | | _cairo_pattern_transform (cairo_pattern_t *pattern, |
2150 | | const cairo_matrix_t *ctm_inverse) |
2151 | 37.5k | { |
2152 | 37.5k | if (pattern->status) |
2153 | 0 | return; |
2154 | | |
2155 | 37.5k | cairo_matrix_multiply (&pattern->matrix, ctm_inverse, &pattern->matrix); |
2156 | 37.5k | } |
2157 | | |
2158 | | static cairo_bool_t |
2159 | | _linear_pattern_is_degenerate (const cairo_linear_pattern_t *linear) |
2160 | 3.83k | { |
2161 | 3.83k | return fabs (linear->pd1.x - linear->pd2.x) < DBL_EPSILON && |
2162 | 3.83k | fabs (linear->pd1.y - linear->pd2.y) < DBL_EPSILON; |
2163 | 3.83k | } |
2164 | | |
2165 | | static cairo_bool_t |
2166 | | _radial_pattern_is_degenerate (const cairo_radial_pattern_t *radial) |
2167 | 7.60k | { |
2168 | | /* A radial pattern is considered degenerate if it can be |
2169 | | * represented as a solid or clear pattern. This corresponds to |
2170 | | * one of the two cases: |
2171 | | * |
2172 | | * 1) The radii are both very small: |
2173 | | * |dr| < DBL_EPSILON && min (r0, r1) < DBL_EPSILON |
2174 | | * |
2175 | | * 2) The two circles have about the same radius and are very |
2176 | | * close to each other (approximately a cylinder gradient that |
2177 | | * doesn't move with the parameter): |
2178 | | * |dr| < DBL_EPSILON && max (|dx|, |dy|) < 2 * DBL_EPSILON |
2179 | | * |
2180 | | * These checks are consistent with the assumptions used in |
2181 | | * _cairo_radial_pattern_box_to_parameter (). |
2182 | | */ |
2183 | | |
2184 | 7.60k | return fabs (radial->cd1.radius - radial->cd2.radius) < DBL_EPSILON && |
2185 | 7.60k | (MIN (radial->cd1.radius, radial->cd2.radius) < DBL_EPSILON || |
2186 | 0 | MAX (fabs (radial->cd1.center.x - radial->cd2.center.x), |
2187 | 0 | fabs (radial->cd1.center.y - radial->cd2.center.y)) < 2 * DBL_EPSILON); |
2188 | 7.60k | } |
2189 | | |
2190 | | static void |
2191 | | _cairo_linear_pattern_box_to_parameter (const cairo_linear_pattern_t *linear, |
2192 | | double x0, double y0, |
2193 | | double x1, double y1, |
2194 | | double range[2]) |
2195 | 0 | { |
2196 | 0 | double t0, tdx, tdy; |
2197 | 0 | double p1x, p1y, pdx, pdy, invsqnorm; |
2198 | |
|
2199 | 0 | assert (! _linear_pattern_is_degenerate (linear)); |
2200 | | |
2201 | | /* |
2202 | | * Linear gradients are othrogonal to the line passing through |
2203 | | * their extremes. Because of convexity, the parameter range can |
2204 | | * be computed as the convex hull (one the real line) of the |
2205 | | * parameter values of the 4 corners of the box. |
2206 | | * |
2207 | | * The parameter value t for a point (x,y) can be computed as: |
2208 | | * |
2209 | | * t = (p2 - p1) . (x,y) / |p2 - p1|^2 |
2210 | | * |
2211 | | * t0 is the t value for the top left corner |
2212 | | * tdx is the difference between left and right corners |
2213 | | * tdy is the difference between top and bottom corners |
2214 | | */ |
2215 | | |
2216 | 0 | p1x = linear->pd1.x; |
2217 | 0 | p1y = linear->pd1.y; |
2218 | 0 | pdx = linear->pd2.x - p1x; |
2219 | 0 | pdy = linear->pd2.y - p1y; |
2220 | 0 | invsqnorm = 1.0 / (pdx * pdx + pdy * pdy); |
2221 | 0 | pdx *= invsqnorm; |
2222 | 0 | pdy *= invsqnorm; |
2223 | |
|
2224 | 0 | t0 = (x0 - p1x) * pdx + (y0 - p1y) * pdy; |
2225 | 0 | tdx = (x1 - x0) * pdx; |
2226 | 0 | tdy = (y1 - y0) * pdy; |
2227 | | |
2228 | | /* |
2229 | | * Because of the linearity of the t value, tdx can simply be |
2230 | | * added the t0 to move along the top edge. After this, range[0] |
2231 | | * and range[1] represent the parameter range for the top edge, so |
2232 | | * extending it to include the whole box simply requires adding |
2233 | | * tdy to the correct extreme. |
2234 | | */ |
2235 | |
|
2236 | 0 | range[0] = range[1] = t0; |
2237 | 0 | if (tdx < 0) |
2238 | 0 | range[0] += tdx; |
2239 | 0 | else |
2240 | 0 | range[1] += tdx; |
2241 | |
|
2242 | 0 | if (tdy < 0) |
2243 | 0 | range[0] += tdy; |
2244 | 0 | else |
2245 | 0 | range[1] += tdy; |
2246 | 0 | } |
2247 | | |
2248 | | static cairo_bool_t |
2249 | | _extend_range (double range[2], double value, cairo_bool_t valid) |
2250 | 0 | { |
2251 | 0 | if (!valid) |
2252 | 0 | range[0] = range[1] = value; |
2253 | 0 | else if (value < range[0]) |
2254 | 0 | range[0] = value; |
2255 | 0 | else if (value > range[1]) |
2256 | 0 | range[1] = value; |
2257 | |
|
2258 | 0 | return TRUE; |
2259 | 0 | } |
2260 | | |
2261 | | /* |
2262 | | * _cairo_radial_pattern_focus_is_inside: |
2263 | | * |
2264 | | * Returns %TRUE if and only if the focus point exists and is |
2265 | | * contained in one of the two extreme circles. This condition is |
2266 | | * equivalent to one of the two extreme circles being completely |
2267 | | * contained in the other one. |
2268 | | * |
2269 | | * Note: if the focus is on the border of one of the two circles (in |
2270 | | * which case the circles are tangent in the focus point), it is not |
2271 | | * considered as contained in the circle, hence this function returns |
2272 | | * %FALSE. |
2273 | | * |
2274 | | */ |
2275 | | cairo_bool_t |
2276 | | _cairo_radial_pattern_focus_is_inside (const cairo_radial_pattern_t *radial) |
2277 | 0 | { |
2278 | 0 | double cx, cy, cr, dx, dy, dr; |
2279 | |
|
2280 | 0 | cx = radial->cd1.center.x; |
2281 | 0 | cy = radial->cd1.center.y; |
2282 | 0 | cr = radial->cd1.radius; |
2283 | 0 | dx = radial->cd2.center.x - cx; |
2284 | 0 | dy = radial->cd2.center.y - cy; |
2285 | 0 | dr = radial->cd2.radius - cr; |
2286 | |
|
2287 | 0 | return dx*dx + dy*dy < dr*dr; |
2288 | 0 | } |
2289 | | |
2290 | | static void |
2291 | | _cairo_radial_pattern_box_to_parameter (const cairo_radial_pattern_t *radial, |
2292 | | double x0, double y0, |
2293 | | double x1, double y1, |
2294 | | double tolerance, |
2295 | | double range[2]) |
2296 | 0 | { |
2297 | 0 | double cx, cy, cr, dx, dy, dr; |
2298 | 0 | double a, x_focus, y_focus; |
2299 | 0 | double mindr, minx, miny, maxx, maxy; |
2300 | 0 | cairo_bool_t valid; |
2301 | |
|
2302 | 0 | assert (! _radial_pattern_is_degenerate (radial)); |
2303 | 0 | assert (x0 < x1); |
2304 | 0 | assert (y0 < y1); |
2305 | | |
2306 | 0 | tolerance = MAX (tolerance, DBL_EPSILON); |
2307 | |
|
2308 | 0 | range[0] = range[1] = 0; |
2309 | 0 | valid = FALSE; |
2310 | |
|
2311 | 0 | x_focus = y_focus = 0; /* silence gcc */ |
2312 | |
|
2313 | 0 | cx = radial->cd1.center.x; |
2314 | 0 | cy = radial->cd1.center.y; |
2315 | 0 | cr = radial->cd1.radius; |
2316 | 0 | dx = radial->cd2.center.x - cx; |
2317 | 0 | dy = radial->cd2.center.y - cy; |
2318 | 0 | dr = radial->cd2.radius - cr; |
2319 | | |
2320 | | /* translate by -(cx, cy) to simplify computations */ |
2321 | 0 | x0 -= cx; |
2322 | 0 | y0 -= cy; |
2323 | 0 | x1 -= cx; |
2324 | 0 | y1 -= cy; |
2325 | | |
2326 | | /* enlarge boundaries slightly to avoid rounding problems in the |
2327 | | * parameter range computation */ |
2328 | 0 | x0 -= DBL_EPSILON; |
2329 | 0 | y0 -= DBL_EPSILON; |
2330 | 0 | x1 += DBL_EPSILON; |
2331 | 0 | y1 += DBL_EPSILON; |
2332 | | |
2333 | | /* enlarge boundaries even more to avoid rounding problems when |
2334 | | * testing if a point belongs to the box */ |
2335 | 0 | minx = x0 - DBL_EPSILON; |
2336 | 0 | miny = y0 - DBL_EPSILON; |
2337 | 0 | maxx = x1 + DBL_EPSILON; |
2338 | 0 | maxy = y1 + DBL_EPSILON; |
2339 | | |
2340 | | /* we don't allow negative radiuses, so we will be checking that |
2341 | | * t*dr >= mindr to consider t valid */ |
2342 | 0 | mindr = -(cr + DBL_EPSILON); |
2343 | | |
2344 | | /* |
2345 | | * After the previous transformations, the start circle is |
2346 | | * centered in the origin and has radius cr. A 1-unit change in |
2347 | | * the t parameter corresponds to dx,dy,dr changes in the x,y,r of |
2348 | | * the circle (center coordinates, radius). |
2349 | | * |
2350 | | * To compute the minimum range needed to correctly draw the |
2351 | | * pattern, we start with an empty range and extend it to include |
2352 | | * the circles touching the bounding box or within it. |
2353 | | */ |
2354 | | |
2355 | | /* |
2356 | | * Focus, the point where the circle has radius == 0. |
2357 | | * |
2358 | | * r = cr + t * dr = 0 |
2359 | | * t = -cr / dr |
2360 | | * |
2361 | | * If the radius is constant (dr == 0) there is no focus (the |
2362 | | * gradient represents a cylinder instead of a cone). |
2363 | | */ |
2364 | 0 | if (fabs (dr) >= DBL_EPSILON) { |
2365 | 0 | double t_focus; |
2366 | |
|
2367 | 0 | t_focus = -cr / dr; |
2368 | 0 | x_focus = t_focus * dx; |
2369 | 0 | y_focus = t_focus * dy; |
2370 | 0 | if (minx <= x_focus && x_focus <= maxx && |
2371 | 0 | miny <= y_focus && y_focus <= maxy) |
2372 | 0 | { |
2373 | 0 | valid = _extend_range (range, t_focus, valid); |
2374 | 0 | } |
2375 | 0 | } |
2376 | | |
2377 | | /* |
2378 | | * Circles externally tangent to box edges. |
2379 | | * |
2380 | | * All circles have center in (dx, dy) * t |
2381 | | * |
2382 | | * If the circle is tangent to the line defined by the edge of the |
2383 | | * box, then at least one of the following holds true: |
2384 | | * |
2385 | | * (dx*t) + (cr + dr*t) == x0 (left edge) |
2386 | | * (dx*t) - (cr + dr*t) == x1 (right edge) |
2387 | | * (dy*t) + (cr + dr*t) == y0 (top edge) |
2388 | | * (dy*t) - (cr + dr*t) == y1 (bottom edge) |
2389 | | * |
2390 | | * The solution is only valid if the tangent point is actually on |
2391 | | * the edge, i.e. if its y coordinate is in [y0,y1] for left/right |
2392 | | * edges and if its x coordinate is in [x0,x1] for top/bottom |
2393 | | * edges. |
2394 | | * |
2395 | | * For the first equation: |
2396 | | * |
2397 | | * (dx + dr) * t = x0 - cr |
2398 | | * t = (x0 - cr) / (dx + dr) |
2399 | | * y = dy * t |
2400 | | * |
2401 | | * in the code this becomes: |
2402 | | * |
2403 | | * t_edge = (num) / (den) |
2404 | | * v = (delta) * t_edge |
2405 | | * |
2406 | | * If the denominator in t is 0, the pattern is tangent to a line |
2407 | | * parallel to the edge under examination. The corner-case where |
2408 | | * the boundary line is the same as the edge is handled by the |
2409 | | * focus point case and/or by the a==0 case. |
2410 | | */ |
2411 | 0 | #define T_EDGE(num,den,delta,lower,upper) \ |
2412 | 0 | if (fabs (den) >= DBL_EPSILON) { \ |
2413 | 0 | double t_edge, v; \ |
2414 | 0 | \ |
2415 | 0 | t_edge = (num) / (den); \ |
2416 | 0 | v = t_edge * (delta); \ |
2417 | 0 | if (t_edge * dr >= mindr && (lower) <= v && v <= (upper)) \ |
2418 | 0 | valid = _extend_range (range, t_edge, valid); \ |
2419 | 0 | } |
2420 | | |
2421 | | /* circles tangent (externally) to left/right/top/bottom edge */ |
2422 | 0 | T_EDGE (x0 - cr, dx + dr, dy, miny, maxy); |
2423 | 0 | T_EDGE (x1 + cr, dx - dr, dy, miny, maxy); |
2424 | 0 | T_EDGE (y0 - cr, dy + dr, dx, minx, maxx); |
2425 | 0 | T_EDGE (y1 + cr, dy - dr, dx, minx, maxx); |
2426 | |
|
2427 | 0 | #undef T_EDGE |
2428 | | |
2429 | | /* |
2430 | | * Circles passing through a corner. |
2431 | | * |
2432 | | * A circle passing through the point (x,y) satisfies: |
2433 | | * |
2434 | | * (x-t*dx)^2 + (y-t*dy)^2 == (cr + t*dr)^2 |
2435 | | * |
2436 | | * If we set: |
2437 | | * a = dx^2 + dy^2 - dr^2 |
2438 | | * b = x*dx + y*dy + cr*dr |
2439 | | * c = x^2 + y^2 - cr^2 |
2440 | | * we have: |
2441 | | * a*t^2 - 2*b*t + c == 0 |
2442 | | */ |
2443 | 0 | a = dx * dx + dy * dy - dr * dr; |
2444 | 0 | if (fabs (a) < DBL_EPSILON * DBL_EPSILON) { |
2445 | 0 | double b, maxd2; |
2446 | | |
2447 | | /* Ensure that gradients with both a and dr small are |
2448 | | * considered degenerate. |
2449 | | * The floating point version of the degeneracy test implemented |
2450 | | * in _radial_pattern_is_degenerate() is: |
2451 | | * |
2452 | | * 1) The circles are practically the same size: |
2453 | | * |dr| < DBL_EPSILON |
2454 | | * AND |
2455 | | * 2a) The circles are both very small: |
2456 | | * min (r0, r1) < DBL_EPSILON |
2457 | | * OR |
2458 | | * 2b) The circles are very close to each other: |
2459 | | * max (|dx|, |dy|) < 2 * DBL_EPSILON |
2460 | | * |
2461 | | * Assuming that the gradient is not degenerate, we want to |
2462 | | * show that |a| < DBL_EPSILON^2 implies |dr| >= DBL_EPSILON. |
2463 | | * |
2464 | | * If the gradient is not degenerate yet it has |dr| < |
2465 | | * DBL_EPSILON, (2b) is false, thus: |
2466 | | * |
2467 | | * max (|dx|, |dy|) >= 2*DBL_EPSILON |
2468 | | * which implies: |
2469 | | * 4*DBL_EPSILON^2 <= max (|dx|, |dy|)^2 <= dx^2 + dy^2 |
2470 | | * |
2471 | | * From the definition of a, we get: |
2472 | | * a = dx^2 + dy^2 - dr^2 < DBL_EPSILON^2 |
2473 | | * dx^2 + dy^2 - DBL_EPSILON^2 < dr^2 |
2474 | | * 3*DBL_EPSILON^2 < dr^2 |
2475 | | * |
2476 | | * which is inconsistent with the hypotheses, thus |dr| < |
2477 | | * DBL_EPSILON is false or the gradient is degenerate. |
2478 | | */ |
2479 | 0 | assert (fabs (dr) >= DBL_EPSILON); |
2480 | | |
2481 | | /* |
2482 | | * If a == 0, all the circles are tangent to a line in the |
2483 | | * focus point. If this line is within the box extents, we |
2484 | | * should add the circle with infinite radius, but this would |
2485 | | * make the range unbounded, so we add the smallest circle whose |
2486 | | * distance to the desired (degenerate) circle within the |
2487 | | * bounding box does not exceed tolerance. |
2488 | | * |
2489 | | * The equation of the line is b==0, i.e.: |
2490 | | * x*dx + y*dy + cr*dr == 0 |
2491 | | * |
2492 | | * We compute the intersection of the line with the box and |
2493 | | * keep the intersection with maximum square distance (maxd2) |
2494 | | * from the focus point. |
2495 | | * |
2496 | | * In the code the intersection is represented in another |
2497 | | * coordinate system, whose origin is the focus point and |
2498 | | * which has a u,v axes, which are respectively orthogonal and |
2499 | | * parallel to the edge being intersected. |
2500 | | * |
2501 | | * The intersection is valid only if it belongs to the box, |
2502 | | * otherwise it is ignored. |
2503 | | * |
2504 | | * For example: |
2505 | | * |
2506 | | * y = y0 |
2507 | | * x*dx + y0*dy + cr*dr == 0 |
2508 | | * x = -(y0*dy + cr*dr) / dx |
2509 | | * |
2510 | | * which in (u,v) is: |
2511 | | * u = y0 - y_focus |
2512 | | * v = -(y0*dy + cr*dr) / dx - x_focus |
2513 | | * |
2514 | | * In the code: |
2515 | | * u = (edge) - (u_origin) |
2516 | | * v = -((edge) * (delta) + cr*dr) / (den) - v_focus |
2517 | | */ |
2518 | 0 | #define T_EDGE(edge,delta,den,lower,upper,u_origin,v_origin) \ |
2519 | 0 | if (fabs (den) >= DBL_EPSILON) { \ |
2520 | 0 | double v; \ |
2521 | 0 | \ |
2522 | 0 | v = -((edge) * (delta) + cr * dr) / (den); \ |
2523 | 0 | if ((lower) <= v && v <= (upper)) { \ |
2524 | 0 | double u, d2; \ |
2525 | 0 | \ |
2526 | 0 | u = (edge) - (u_origin); \ |
2527 | 0 | v -= (v_origin); \ |
2528 | 0 | d2 = u*u + v*v; \ |
2529 | 0 | if (maxd2 < d2) \ |
2530 | 0 | maxd2 = d2; \ |
2531 | 0 | } \ |
2532 | 0 | } |
2533 | | |
2534 | 0 | maxd2 = 0; |
2535 | | |
2536 | | /* degenerate circles (lines) passing through each edge */ |
2537 | 0 | T_EDGE (y0, dy, dx, minx, maxx, y_focus, x_focus); |
2538 | 0 | T_EDGE (y1, dy, dx, minx, maxx, y_focus, x_focus); |
2539 | 0 | T_EDGE (x0, dx, dy, miny, maxy, x_focus, y_focus); |
2540 | 0 | T_EDGE (x1, dx, dy, miny, maxy, x_focus, y_focus); |
2541 | |
|
2542 | 0 | #undef T_EDGE |
2543 | | |
2544 | | /* |
2545 | | * The limit circle can be transformed rigidly to the y=0 line |
2546 | | * and the circles tangent to it in (0,0) are: |
2547 | | * |
2548 | | * x^2 + (y-r)^2 = r^2 <=> x^2 + y^2 - 2*y*r = 0 |
2549 | | * |
2550 | | * y is the distance from the line, in our case tolerance; |
2551 | | * x is the distance along the line, i.e. sqrt(maxd2), |
2552 | | * so: |
2553 | | * |
2554 | | * r = cr + dr * t = (maxd2 + tolerance^2) / (2*tolerance) |
2555 | | * t = (r - cr) / dr = |
2556 | | * (maxd2 + tolerance^2 - 2*tolerance*cr) / (2*tolerance*dr) |
2557 | | */ |
2558 | 0 | if (maxd2 > 0) { |
2559 | 0 | double t_limit = maxd2 + tolerance*tolerance - 2*tolerance*cr; |
2560 | 0 | t_limit /= 2 * tolerance * dr; |
2561 | 0 | valid = _extend_range (range, t_limit, valid); |
2562 | 0 | } |
2563 | | |
2564 | | /* |
2565 | | * Nondegenerate, nonlimit circles passing through the corners. |
2566 | | * |
2567 | | * a == 0 && a*t^2 - 2*b*t + c == 0 |
2568 | | * |
2569 | | * t = c / (2*b) |
2570 | | * |
2571 | | * The b == 0 case has just been handled, so we only have to |
2572 | | * compute this if b != 0. |
2573 | | */ |
2574 | 0 | #define T_CORNER(x,y) \ |
2575 | 0 | b = (x) * dx + (y) * dy + cr * dr; \ |
2576 | 0 | if (fabs (b) >= DBL_EPSILON) { \ |
2577 | 0 | double t_corner; \ |
2578 | 0 | double x2 = (x) * (x); \ |
2579 | 0 | double y2 = (y) * (y); \ |
2580 | 0 | double cr2 = (cr) * (cr); \ |
2581 | 0 | double c = x2 + y2 - cr2; \ |
2582 | 0 | \ |
2583 | 0 | t_corner = 0.5 * c / b; \ |
2584 | 0 | if (t_corner * dr >= mindr) \ |
2585 | 0 | valid = _extend_range (range, t_corner, valid); \ |
2586 | 0 | } |
2587 | | |
2588 | | /* circles touching each corner */ |
2589 | 0 | T_CORNER (x0, y0); |
2590 | 0 | T_CORNER (x0, y1); |
2591 | 0 | T_CORNER (x1, y0); |
2592 | 0 | T_CORNER (x1, y1); |
2593 | |
|
2594 | 0 | #undef T_CORNER |
2595 | 0 | } else { |
2596 | 0 | double inva, b, c, d; |
2597 | |
|
2598 | 0 | inva = 1 / a; |
2599 | | |
2600 | | /* |
2601 | | * Nondegenerate, nonlimit circles passing through the corners. |
2602 | | * |
2603 | | * a != 0 && a*t^2 - 2*b*t + c == 0 |
2604 | | * |
2605 | | * t = (b +- sqrt (b*b - a*c)) / a |
2606 | | * |
2607 | | * If the argument of sqrt() is negative, then no circle |
2608 | | * passes through the corner. |
2609 | | */ |
2610 | 0 | #define T_CORNER(x,y) \ |
2611 | 0 | b = (x) * dx + (y) * dy + cr * dr; \ |
2612 | 0 | c = (x) * (x) + (y) * (y) - cr * cr; \ |
2613 | 0 | d = b * b - a * c; \ |
2614 | 0 | if (d >= 0) { \ |
2615 | 0 | double t_corner; \ |
2616 | 0 | \ |
2617 | 0 | d = sqrt (d); \ |
2618 | 0 | t_corner = (b + d) * inva; \ |
2619 | 0 | if (t_corner * dr >= mindr) \ |
2620 | 0 | valid = _extend_range (range, t_corner, valid); \ |
2621 | 0 | t_corner = (b - d) * inva; \ |
2622 | 0 | if (t_corner * dr >= mindr) \ |
2623 | 0 | valid = _extend_range (range, t_corner, valid); \ |
2624 | 0 | } |
2625 | | |
2626 | | /* circles touching each corner */ |
2627 | 0 | T_CORNER (x0, y0); |
2628 | 0 | T_CORNER (x0, y1); |
2629 | 0 | T_CORNER (x1, y0); |
2630 | 0 | T_CORNER (x1, y1); |
2631 | |
|
2632 | 0 | #undef T_CORNER |
2633 | 0 | } |
2634 | 0 | } |
2635 | | |
2636 | | /** |
2637 | | * _cairo_gradient_pattern_box_to_parameter: |
2638 | | * |
2639 | | * Compute a interpolation range sufficient to draw (within the given |
2640 | | * tolerance) the gradient in the given box getting the same result as |
2641 | | * using the (-inf, +inf) range. |
2642 | | * |
2643 | | * Assumes that the pattern is not degenerate. This can be guaranteed |
2644 | | * by simplifying it to a solid clear if _cairo_pattern_is_clear or to |
2645 | | * a solid color if _cairo_gradient_pattern_is_solid. |
2646 | | * |
2647 | | * The range isn't guaranteed to be minimal, but it tries to. |
2648 | | **/ |
2649 | | void |
2650 | | _cairo_gradient_pattern_box_to_parameter (const cairo_gradient_pattern_t *gradient, |
2651 | | double x0, double y0, |
2652 | | double x1, double y1, |
2653 | | double tolerance, |
2654 | | double out_range[2]) |
2655 | 0 | { |
2656 | 0 | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || |
2657 | 0 | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL); |
2658 | | |
2659 | 0 | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
2660 | 0 | _cairo_linear_pattern_box_to_parameter ((cairo_linear_pattern_t *) gradient, |
2661 | 0 | x0, y0, x1, y1, out_range); |
2662 | 0 | } else { |
2663 | 0 | _cairo_radial_pattern_box_to_parameter ((cairo_radial_pattern_t *) gradient, |
2664 | 0 | x0, y0, x1, y1, tolerance, out_range); |
2665 | 0 | } |
2666 | 0 | } |
2667 | | |
2668 | | /** |
2669 | | * _cairo_gradient_pattern_interpolate: |
2670 | | * |
2671 | | * Interpolate between the start and end objects of linear or radial |
2672 | | * gradients. The interpolated object is stored in out_circle, with |
2673 | | * the radius being zero in the linear gradient case. |
2674 | | **/ |
2675 | | void |
2676 | | _cairo_gradient_pattern_interpolate (const cairo_gradient_pattern_t *gradient, |
2677 | | double t, |
2678 | | cairo_circle_double_t *out_circle) |
2679 | 0 | { |
2680 | 0 | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || |
2681 | 0 | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL); |
2682 | | |
2683 | 0 | #define lerp(a,b) (a)*(1-t) + (b)*t |
2684 | | |
2685 | 0 | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
2686 | 0 | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient; |
2687 | 0 | out_circle->center.x = lerp (linear->pd1.x, linear->pd2.x); |
2688 | 0 | out_circle->center.y = lerp (linear->pd1.y, linear->pd2.y); |
2689 | 0 | out_circle->radius = 0; |
2690 | 0 | } else { |
2691 | 0 | cairo_radial_pattern_t *radial = (cairo_radial_pattern_t *) gradient; |
2692 | 0 | out_circle->center.x = lerp (radial->cd1.center.x, radial->cd2.center.x); |
2693 | 0 | out_circle->center.y = lerp (radial->cd1.center.y, radial->cd2.center.y); |
2694 | 0 | out_circle->radius = lerp (radial->cd1.radius , radial->cd2.radius); |
2695 | 0 | } |
2696 | |
|
2697 | 0 | #undef lerp |
2698 | 0 | } |
2699 | | |
2700 | | |
2701 | | /** |
2702 | | * _cairo_gradient_pattern_fit_to_range: |
2703 | | * |
2704 | | * Scale the extremes of a gradient to guarantee that the coordinates |
2705 | | * and their deltas are within the range (-max_value, max_value). The |
2706 | | * new extremes are stored in out_circle. |
2707 | | * |
2708 | | * The pattern matrix is scaled to guarantee that the aspect of the |
2709 | | * gradient is the same and the result is stored in out_matrix. |
2710 | | * |
2711 | | **/ |
2712 | | void |
2713 | | _cairo_gradient_pattern_fit_to_range (const cairo_gradient_pattern_t *gradient, |
2714 | | double max_value, |
2715 | | cairo_matrix_t *out_matrix, |
2716 | | cairo_circle_double_t out_circle[2]) |
2717 | 3.06k | { |
2718 | 3.06k | double dim; |
2719 | | |
2720 | 3.06k | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || |
2721 | 3.06k | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL); |
2722 | | |
2723 | 3.06k | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
2724 | 573 | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient; |
2725 | | |
2726 | 573 | out_circle[0].center = linear->pd1; |
2727 | 573 | out_circle[0].radius = 0; |
2728 | 573 | out_circle[1].center = linear->pd2; |
2729 | 573 | out_circle[1].radius = 0; |
2730 | | |
2731 | 573 | dim = fabs (linear->pd1.x); |
2732 | 573 | dim = MAX (dim, fabs (linear->pd1.y)); |
2733 | 573 | dim = MAX (dim, fabs (linear->pd2.x)); |
2734 | 573 | dim = MAX (dim, fabs (linear->pd2.y)); |
2735 | 573 | dim = MAX (dim, fabs (linear->pd1.x - linear->pd2.x)); |
2736 | 573 | dim = MAX (dim, fabs (linear->pd1.y - linear->pd2.y)); |
2737 | 2.48k | } else { |
2738 | 2.48k | cairo_radial_pattern_t *radial = (cairo_radial_pattern_t *) gradient; |
2739 | | |
2740 | 2.48k | out_circle[0] = radial->cd1; |
2741 | 2.48k | out_circle[1] = radial->cd2; |
2742 | | |
2743 | 2.48k | dim = fabs (radial->cd1.center.x); |
2744 | 2.48k | dim = MAX (dim, fabs (radial->cd1.center.y)); |
2745 | 2.48k | dim = MAX (dim, fabs (radial->cd1.radius)); |
2746 | 2.48k | dim = MAX (dim, fabs (radial->cd2.center.x)); |
2747 | 2.48k | dim = MAX (dim, fabs (radial->cd2.center.y)); |
2748 | 2.48k | dim = MAX (dim, fabs (radial->cd2.radius)); |
2749 | 2.48k | dim = MAX (dim, fabs (radial->cd1.center.x - radial->cd2.center.x)); |
2750 | 2.48k | dim = MAX (dim, fabs (radial->cd1.center.y - radial->cd2.center.y)); |
2751 | 2.48k | dim = MAX (dim, fabs (radial->cd1.radius - radial->cd2.radius)); |
2752 | 2.48k | } |
2753 | | |
2754 | 3.06k | if (unlikely (dim > max_value)) { |
2755 | 2.25k | cairo_matrix_t scale; |
2756 | | |
2757 | 2.25k | dim = max_value / dim; |
2758 | | |
2759 | 2.25k | out_circle[0].center.x *= dim; |
2760 | 2.25k | out_circle[0].center.y *= dim; |
2761 | 2.25k | out_circle[0].radius *= dim; |
2762 | 2.25k | out_circle[1].center.x *= dim; |
2763 | 2.25k | out_circle[1].center.y *= dim; |
2764 | 2.25k | out_circle[1].radius *= dim; |
2765 | | |
2766 | 2.25k | cairo_matrix_init_scale (&scale, dim, dim); |
2767 | 2.25k | cairo_matrix_multiply (out_matrix, &gradient->base.matrix, &scale); |
2768 | 2.25k | } else { |
2769 | 808 | *out_matrix = gradient->base.matrix; |
2770 | 808 | } |
2771 | 3.06k | } |
2772 | | |
2773 | | static cairo_bool_t |
2774 | | _gradient_is_clear (const cairo_gradient_pattern_t *gradient, |
2775 | | const cairo_rectangle_int_t *extents) |
2776 | 9.49k | { |
2777 | 9.49k | unsigned int i; |
2778 | | |
2779 | 9.49k | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || |
2780 | 9.49k | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL); |
2781 | | |
2782 | 9.49k | if (gradient->n_stops == 0 || |
2783 | 9.49k | (gradient->base.extend == CAIRO_EXTEND_NONE && |
2784 | 9.49k | gradient->stops[0].offset == gradient->stops[gradient->n_stops - 1].offset)) |
2785 | 0 | return TRUE; |
2786 | | |
2787 | 9.49k | if (gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) { |
2788 | | /* degenerate radial gradients are clear */ |
2789 | 5.07k | if (_radial_pattern_is_degenerate ((cairo_radial_pattern_t *) gradient)) |
2790 | 0 | return TRUE; |
2791 | 5.07k | } else if (gradient->base.extend == CAIRO_EXTEND_NONE) { |
2792 | | /* EXTEND_NONE degenerate linear gradients are clear */ |
2793 | 0 | if (_linear_pattern_is_degenerate ((cairo_linear_pattern_t *) gradient)) |
2794 | 0 | return TRUE; |
2795 | 0 | } |
2796 | | |
2797 | | /* Check if the extents intersect the drawn part of the pattern. */ |
2798 | 9.49k | if (extents != NULL && |
2799 | 9.49k | (gradient->base.extend == CAIRO_EXTEND_NONE || |
2800 | 0 | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL)) |
2801 | 0 | { |
2802 | 0 | double t[2]; |
2803 | |
|
2804 | 0 | _cairo_gradient_pattern_box_to_parameter (gradient, |
2805 | 0 | extents->x, |
2806 | 0 | extents->y, |
2807 | 0 | extents->x + extents->width, |
2808 | 0 | extents->y + extents->height, |
2809 | 0 | DBL_EPSILON, |
2810 | 0 | t); |
2811 | |
|
2812 | 0 | if (gradient->base.extend == CAIRO_EXTEND_NONE && |
2813 | 0 | (t[0] >= gradient->stops[gradient->n_stops - 1].offset || |
2814 | 0 | t[1] <= gradient->stops[0].offset)) |
2815 | 0 | { |
2816 | 0 | return TRUE; |
2817 | 0 | } |
2818 | | |
2819 | 0 | if (t[0] == t[1]) |
2820 | 0 | return TRUE; |
2821 | 0 | } |
2822 | | |
2823 | 9.49k | for (i = 0; i < gradient->n_stops; i++) |
2824 | 9.49k | if (! CAIRO_COLOR_IS_CLEAR (&gradient->stops[i].color)) |
2825 | 9.49k | return FALSE; |
2826 | | |
2827 | 0 | return TRUE; |
2828 | 9.49k | } |
2829 | | |
2830 | | static void |
2831 | | _gradient_color_average (const cairo_gradient_pattern_t *gradient, |
2832 | | cairo_color_t *color) |
2833 | 0 | { |
2834 | 0 | double delta0, delta1; |
2835 | 0 | double r, g, b, a; |
2836 | 0 | unsigned int i, start = 1, end; |
2837 | |
|
2838 | 0 | assert (gradient->n_stops > 0); |
2839 | 0 | assert (gradient->base.extend != CAIRO_EXTEND_NONE); |
2840 | | |
2841 | 0 | if (gradient->n_stops == 1) { |
2842 | 0 | _cairo_color_init_rgba (color, |
2843 | 0 | gradient->stops[0].color.red, |
2844 | 0 | gradient->stops[0].color.green, |
2845 | 0 | gradient->stops[0].color.blue, |
2846 | 0 | gradient->stops[0].color.alpha); |
2847 | 0 | return; |
2848 | 0 | } |
2849 | | |
2850 | 0 | end = gradient->n_stops - 1; |
2851 | |
|
2852 | 0 | switch (gradient->base.extend) { |
2853 | 0 | case CAIRO_EXTEND_REPEAT: |
2854 | | /* |
2855 | | * Sa, Sb and Sy, Sz are the first two and last two stops respectively. |
2856 | | * The weight of the first and last stop can be computed as the area of |
2857 | | * the following triangles (taken with height 1, since the whole [0-1] |
2858 | | * will have total weight 1 this way): b*h/2 |
2859 | | * |
2860 | | * + + |
2861 | | * / |\ / | \ |
2862 | | * / | \ / | \ |
2863 | | * / | \ / | \ |
2864 | | * ~~~~~+---+---+---+~~~~~~~+-------+---+---+~~~~~ |
2865 | | * -1+Sz 0 Sa Sb Sy Sz 1 1+Sa |
2866 | | * |
2867 | | * For the first stop: (Sb-(-1+Sz)/2 = (1+Sb-Sz)/2 |
2868 | | * For the last stop: ((1+Sa)-Sy)/2 = (1+Sa-Sy)/2 |
2869 | | * Halving the result is done after summing up all the areas. |
2870 | | */ |
2871 | 0 | delta0 = 1.0 + gradient->stops[1].offset - gradient->stops[end].offset; |
2872 | 0 | delta1 = 1.0 + gradient->stops[0].offset - gradient->stops[end-1].offset; |
2873 | 0 | break; |
2874 | | |
2875 | 0 | case CAIRO_EXTEND_REFLECT: |
2876 | | /* |
2877 | | * Sa, Sb and Sy, Sz are the first two and last two stops respectively. |
2878 | | * The weight of the first and last stop can be computed as the area of |
2879 | | * the following trapezoids (taken with height 1, since the whole [0-1] |
2880 | | * will have total weight 1 this way): (b+B)*h/2 |
2881 | | * |
2882 | | * +-------+ +---+ |
2883 | | * | |\ / | | |
2884 | | * | | \ / | | |
2885 | | * | | \ / | | |
2886 | | * +-------+---+~~~~~~~+-------+---+ |
2887 | | * 0 Sa Sb Sy Sz 1 |
2888 | | * |
2889 | | * For the first stop: (Sa+Sb)/2 |
2890 | | * For the last stop: ((1-Sz) + (1-Sy))/2 = (2-Sy-Sz)/2 |
2891 | | * Halving the result is done after summing up all the areas. |
2892 | | */ |
2893 | 0 | delta0 = gradient->stops[0].offset + gradient->stops[1].offset; |
2894 | 0 | delta1 = 2.0 - gradient->stops[end-1].offset - gradient->stops[end].offset; |
2895 | 0 | break; |
2896 | | |
2897 | 0 | case CAIRO_EXTEND_PAD: |
2898 | | /* PAD is computed as the average of the first and last stop: |
2899 | | * - take both of them with weight 1 (they will be halved |
2900 | | * after the whole sum has been computed). |
2901 | | * - avoid summing any of the inner stops. |
2902 | | */ |
2903 | 0 | delta0 = delta1 = 1.0; |
2904 | 0 | start = end; |
2905 | 0 | break; |
2906 | | |
2907 | 0 | case CAIRO_EXTEND_NONE: |
2908 | 0 | default: |
2909 | 0 | ASSERT_NOT_REACHED; |
2910 | 0 | _cairo_color_init_rgba (color, 0, 0, 0, 0); |
2911 | 0 | return; |
2912 | 0 | } |
2913 | | |
2914 | 0 | r = delta0 * gradient->stops[0].color.red; |
2915 | 0 | g = delta0 * gradient->stops[0].color.green; |
2916 | 0 | b = delta0 * gradient->stops[0].color.blue; |
2917 | 0 | a = delta0 * gradient->stops[0].color.alpha; |
2918 | |
|
2919 | 0 | for (i = start; i < end; ++i) { |
2920 | | /* Inner stops weight is the same as the area of the triangle they influence |
2921 | | * (which goes from the stop before to the stop after), again with height 1 |
2922 | | * since the whole must sum up to 1: b*h/2 |
2923 | | * Halving is done after the whole sum has been computed. |
2924 | | */ |
2925 | 0 | double delta = gradient->stops[i+1].offset - gradient->stops[i-1].offset; |
2926 | 0 | r += delta * gradient->stops[i].color.red; |
2927 | 0 | g += delta * gradient->stops[i].color.green; |
2928 | 0 | b += delta * gradient->stops[i].color.blue; |
2929 | 0 | a += delta * gradient->stops[i].color.alpha; |
2930 | 0 | } |
2931 | |
|
2932 | 0 | r += delta1 * gradient->stops[end].color.red; |
2933 | 0 | g += delta1 * gradient->stops[end].color.green; |
2934 | 0 | b += delta1 * gradient->stops[end].color.blue; |
2935 | 0 | a += delta1 * gradient->stops[end].color.alpha; |
2936 | |
|
2937 | 0 | _cairo_color_init_rgba (color, r * .5, g * .5, b * .5, a * .5); |
2938 | 0 | } |
2939 | | |
2940 | | /** |
2941 | | * _cairo_pattern_alpha_range: |
2942 | | * |
2943 | | * Convenience function to determine the minimum and maximum alpha in |
2944 | | * the drawn part of a pattern (i.e. ignoring clear parts caused by |
2945 | | * extend modes and/or pattern shape). |
2946 | | * |
2947 | | * If not NULL, out_min and out_max will be set respectively to the |
2948 | | * minimum and maximum alpha value of the pattern. |
2949 | | **/ |
2950 | | void |
2951 | | _cairo_pattern_alpha_range (const cairo_pattern_t *pattern, |
2952 | | double *out_min, |
2953 | | double *out_max) |
2954 | 0 | { |
2955 | 0 | double alpha_min, alpha_max; |
2956 | |
|
2957 | 0 | switch (pattern->type) { |
2958 | 0 | case CAIRO_PATTERN_TYPE_SOLID: { |
2959 | 0 | const cairo_solid_pattern_t *solid = (cairo_solid_pattern_t *) pattern; |
2960 | 0 | alpha_min = alpha_max = solid->color.alpha; |
2961 | 0 | break; |
2962 | 0 | } |
2963 | | |
2964 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
2965 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: { |
2966 | 0 | const cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t *) pattern; |
2967 | 0 | unsigned int i; |
2968 | |
|
2969 | 0 | assert (gradient->n_stops >= 1); |
2970 | | |
2971 | 0 | alpha_min = alpha_max = gradient->stops[0].color.alpha; |
2972 | 0 | for (i = 1; i < gradient->n_stops; i++) { |
2973 | 0 | if (alpha_min > gradient->stops[i].color.alpha) |
2974 | 0 | alpha_min = gradient->stops[i].color.alpha; |
2975 | 0 | else if (alpha_max < gradient->stops[i].color.alpha) |
2976 | 0 | alpha_max = gradient->stops[i].color.alpha; |
2977 | 0 | } |
2978 | |
|
2979 | 0 | break; |
2980 | 0 | } |
2981 | | |
2982 | 0 | case CAIRO_PATTERN_TYPE_MESH: { |
2983 | 0 | const cairo_mesh_pattern_t *mesh = (const cairo_mesh_pattern_t *) pattern; |
2984 | 0 | const cairo_mesh_patch_t *patch = _cairo_array_index_const (&mesh->patches, 0); |
2985 | 0 | unsigned int i, j, n = _cairo_array_num_elements (&mesh->patches); |
2986 | |
|
2987 | 0 | assert (n >= 1); |
2988 | | |
2989 | 0 | alpha_min = alpha_max = patch[0].colors[0].alpha; |
2990 | 0 | for (i = 0; i < n; i++) { |
2991 | 0 | for (j = 0; j < 4; j++) { |
2992 | 0 | if (patch[i].colors[j].alpha < alpha_min) |
2993 | 0 | alpha_min = patch[i].colors[j].alpha; |
2994 | 0 | else if (patch[i].colors[j].alpha > alpha_max) |
2995 | 0 | alpha_max = patch[i].colors[j].alpha; |
2996 | 0 | } |
2997 | 0 | } |
2998 | |
|
2999 | 0 | break; |
3000 | 0 | } |
3001 | | |
3002 | 0 | default: |
3003 | 0 | ASSERT_NOT_REACHED; |
3004 | | /* fall through */ |
3005 | | |
3006 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: |
3007 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3008 | 0 | alpha_min = 0; |
3009 | 0 | alpha_max = 1; |
3010 | 0 | break; |
3011 | 0 | } |
3012 | | |
3013 | 0 | if (out_min) |
3014 | 0 | *out_min = alpha_min; |
3015 | 0 | if (out_max) |
3016 | 0 | *out_max = alpha_max; |
3017 | 0 | } |
3018 | | |
3019 | | /** |
3020 | | * _cairo_mesh_pattern_coord_box: |
3021 | | * |
3022 | | * Convenience function to determine the range of the coordinates of |
3023 | | * the points used to define the patches of the mesh. |
3024 | | * |
3025 | | * This is guaranteed to contain the pattern extents, but might not be |
3026 | | * tight, just like a Bezier curve is always inside the convex hull of |
3027 | | * the control points. |
3028 | | * |
3029 | | * This function cannot be used while the mesh is being constructed. |
3030 | | * |
3031 | | * The function returns TRUE and sets the output parameters to define |
3032 | | * the coordinate range if the mesh pattern contains at least one |
3033 | | * patch, otherwise it returns FALSE. |
3034 | | **/ |
3035 | | cairo_bool_t |
3036 | | _cairo_mesh_pattern_coord_box (const cairo_mesh_pattern_t *mesh, |
3037 | | double *out_xmin, |
3038 | | double *out_ymin, |
3039 | | double *out_xmax, |
3040 | | double *out_ymax) |
3041 | 0 | { |
3042 | 0 | const cairo_mesh_patch_t *patch; |
3043 | 0 | unsigned int num_patches, i, j, k; |
3044 | 0 | double x0, y0, x1, y1; |
3045 | |
|
3046 | 0 | assert (mesh->current_patch == NULL); |
3047 | | |
3048 | 0 | num_patches = _cairo_array_num_elements (&mesh->patches); |
3049 | |
|
3050 | 0 | if (num_patches == 0) |
3051 | 0 | return FALSE; |
3052 | | |
3053 | 0 | patch = _cairo_array_index_const (&mesh->patches, 0); |
3054 | 0 | x0 = x1 = patch->points[0][0].x; |
3055 | 0 | y0 = y1 = patch->points[0][0].y; |
3056 | |
|
3057 | 0 | for (i = 0; i < num_patches; i++) { |
3058 | 0 | for (j = 0; j < 4; j++) { |
3059 | 0 | for (k = 0; k < 4; k++) { |
3060 | 0 | x0 = MIN (x0, patch[i].points[j][k].x); |
3061 | 0 | y0 = MIN (y0, patch[i].points[j][k].y); |
3062 | 0 | x1 = MAX (x1, patch[i].points[j][k].x); |
3063 | 0 | y1 = MAX (y1, patch[i].points[j][k].y); |
3064 | 0 | } |
3065 | 0 | } |
3066 | 0 | } |
3067 | |
|
3068 | 0 | *out_xmin = x0; |
3069 | 0 | *out_ymin = y0; |
3070 | 0 | *out_xmax = x1; |
3071 | 0 | *out_ymax = y1; |
3072 | |
|
3073 | 0 | return TRUE; |
3074 | 0 | } |
3075 | | |
3076 | | /** |
3077 | | * _cairo_gradient_pattern_is_solid: |
3078 | | * |
3079 | | * Convenience function to determine whether a gradient pattern is |
3080 | | * a solid color within the given extents. In this case the color |
3081 | | * argument is initialized to the color the pattern represents. |
3082 | | * This functions doesn't handle completely transparent gradients, |
3083 | | * thus it should be called only after _cairo_pattern_is_clear has |
3084 | | * returned FALSE. |
3085 | | * |
3086 | | * Return value: %TRUE if the pattern is a solid color. |
3087 | | **/ |
3088 | | cairo_bool_t |
3089 | | _cairo_gradient_pattern_is_solid (const cairo_gradient_pattern_t *gradient, |
3090 | | const cairo_rectangle_int_t *extents, |
3091 | | cairo_color_t *color) |
3092 | 6.37k | { |
3093 | 6.37k | unsigned int i; |
3094 | | |
3095 | 6.37k | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || |
3096 | 6.37k | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL); |
3097 | | |
3098 | | /* TODO: radial */ |
3099 | 6.37k | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
3100 | 3.83k | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient; |
3101 | 3.83k | if (_linear_pattern_is_degenerate (linear)) { |
3102 | 0 | _gradient_color_average (gradient, color); |
3103 | 0 | return TRUE; |
3104 | 0 | } |
3105 | | |
3106 | 3.83k | if (gradient->base.extend == CAIRO_EXTEND_NONE) { |
3107 | 0 | double t[2]; |
3108 | | |
3109 | | /* We already know that the pattern is not clear, thus if some |
3110 | | * part of it is clear, the whole is not solid. |
3111 | | */ |
3112 | |
|
3113 | 0 | if (extents == NULL) |
3114 | 0 | return FALSE; |
3115 | | |
3116 | 0 | _cairo_linear_pattern_box_to_parameter (linear, |
3117 | 0 | extents->x, |
3118 | 0 | extents->y, |
3119 | 0 | extents->x + extents->width, |
3120 | 0 | extents->y + extents->height, |
3121 | 0 | t); |
3122 | |
|
3123 | 0 | if (t[0] < 0.0 || t[1] > 1.0) |
3124 | 0 | return FALSE; |
3125 | 0 | } |
3126 | 3.83k | } else |
3127 | 2.53k | return FALSE; |
3128 | | |
3129 | 7.09k | for (i = 1; i < gradient->n_stops; i++) |
3130 | 3.83k | if (! _cairo_color_stop_equal (&gradient->stops[0].color, |
3131 | 3.83k | &gradient->stops[i].color)) |
3132 | 585 | return FALSE; |
3133 | | |
3134 | 3.25k | _cairo_color_init_rgba (color, |
3135 | 3.25k | gradient->stops[0].color.red, |
3136 | 3.25k | gradient->stops[0].color.green, |
3137 | 3.25k | gradient->stops[0].color.blue, |
3138 | 3.25k | gradient->stops[0].color.alpha); |
3139 | | |
3140 | 3.25k | return TRUE; |
3141 | 3.83k | } |
3142 | | |
3143 | | /** |
3144 | | * _cairo_pattern_is_constant_alpha: |
3145 | | * |
3146 | | * Convenience function to determine whether a pattern has constant |
3147 | | * alpha within the given extents. In this case the alpha argument is |
3148 | | * initialized to the alpha within the extents. |
3149 | | * |
3150 | | * Return value: %TRUE if the pattern has constant alpha. |
3151 | | **/ |
3152 | | cairo_bool_t |
3153 | | _cairo_pattern_is_constant_alpha (const cairo_pattern_t *abstract_pattern, |
3154 | | const cairo_rectangle_int_t *extents, |
3155 | | double *alpha) |
3156 | 0 | { |
3157 | 0 | const cairo_pattern_union_t *pattern; |
3158 | 0 | cairo_color_t color; |
3159 | |
|
3160 | 0 | if (_cairo_pattern_is_clear (abstract_pattern)) { |
3161 | 0 | *alpha = 0.0; |
3162 | 0 | return TRUE; |
3163 | 0 | } |
3164 | | |
3165 | 0 | if (_cairo_pattern_is_opaque (abstract_pattern, extents)) { |
3166 | 0 | *alpha = 1.0; |
3167 | 0 | return TRUE; |
3168 | 0 | } |
3169 | | |
3170 | 0 | pattern = (cairo_pattern_union_t *) abstract_pattern; |
3171 | 0 | switch (pattern->base.type) { |
3172 | 0 | case CAIRO_PATTERN_TYPE_SOLID: |
3173 | 0 | *alpha = pattern->solid.color.alpha; |
3174 | 0 | return TRUE; |
3175 | | |
3176 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
3177 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: |
3178 | 0 | if (_cairo_gradient_pattern_is_solid (&pattern->gradient.base, extents, &color)) { |
3179 | 0 | *alpha = color.alpha; |
3180 | 0 | return TRUE; |
3181 | 0 | } else { |
3182 | 0 | return FALSE; |
3183 | 0 | } |
3184 | | |
3185 | | /* TODO: need to test these as well */ |
3186 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: |
3187 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3188 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
3189 | 0 | return FALSE; |
3190 | 0 | } |
3191 | | |
3192 | 0 | ASSERT_NOT_REACHED; |
3193 | 0 | return FALSE; |
3194 | 0 | } |
3195 | | |
3196 | | static cairo_bool_t |
3197 | | _mesh_is_clear (const cairo_mesh_pattern_t *mesh) |
3198 | 0 | { |
3199 | 0 | double x1, y1, x2, y2; |
3200 | 0 | cairo_bool_t is_valid; |
3201 | |
|
3202 | 0 | is_valid = _cairo_mesh_pattern_coord_box (mesh, &x1, &y1, &x2, &y2); |
3203 | 0 | if (!is_valid) |
3204 | 0 | return TRUE; |
3205 | | |
3206 | 0 | if (x2 - x1 < DBL_EPSILON || y2 - y1 < DBL_EPSILON) |
3207 | 0 | return TRUE; |
3208 | | |
3209 | 0 | return FALSE; |
3210 | 0 | } |
3211 | | |
3212 | | /** |
3213 | | * _cairo_pattern_is_opaque_solid: |
3214 | | * |
3215 | | * Convenience function to determine whether a pattern is an opaque |
3216 | | * (alpha==1.0) solid color pattern. This is done by testing whether |
3217 | | * the pattern's alpha value when converted to a byte is 255, so if a |
3218 | | * backend actually supported deep alpha channels this function might |
3219 | | * not do the right thing. |
3220 | | * |
3221 | | * Return value: %TRUE if the pattern is an opaque, solid color. |
3222 | | **/ |
3223 | | cairo_bool_t |
3224 | | _cairo_pattern_is_opaque_solid (const cairo_pattern_t *pattern) |
3225 | 690k | { |
3226 | 690k | cairo_solid_pattern_t *solid; |
3227 | | |
3228 | 690k | if (pattern->type != CAIRO_PATTERN_TYPE_SOLID) |
3229 | 3.93k | return FALSE; |
3230 | | |
3231 | 686k | solid = (cairo_solid_pattern_t *) pattern; |
3232 | | |
3233 | 686k | return CAIRO_COLOR_IS_OPAQUE (&solid->color); |
3234 | 690k | } |
3235 | | |
3236 | | static cairo_bool_t |
3237 | | _surface_is_opaque (const cairo_surface_pattern_t *pattern, |
3238 | | const cairo_rectangle_int_t *sample) |
3239 | 809 | { |
3240 | 809 | cairo_rectangle_int_t extents; |
3241 | | |
3242 | 809 | if (pattern->surface->content & CAIRO_CONTENT_ALPHA) |
3243 | 809 | return FALSE; |
3244 | | |
3245 | 0 | if (pattern->base.extend != CAIRO_EXTEND_NONE) |
3246 | 0 | return TRUE; |
3247 | | |
3248 | 0 | if (! _cairo_surface_get_extents (pattern->surface, &extents)) |
3249 | 0 | return TRUE; |
3250 | | |
3251 | 0 | if (sample == NULL) |
3252 | 0 | return FALSE; |
3253 | | |
3254 | 0 | return _cairo_rectangle_contains_rectangle (&extents, sample); |
3255 | 0 | } |
3256 | | |
3257 | | static cairo_bool_t |
3258 | | _raster_source_is_opaque (const cairo_raster_source_pattern_t *pattern, |
3259 | | const cairo_rectangle_int_t *sample) |
3260 | 0 | { |
3261 | 0 | if (pattern->content & CAIRO_CONTENT_ALPHA) |
3262 | 0 | return FALSE; |
3263 | | |
3264 | 0 | if (pattern->base.extend != CAIRO_EXTEND_NONE) |
3265 | 0 | return TRUE; |
3266 | | |
3267 | 0 | if (sample == NULL) |
3268 | 0 | return FALSE; |
3269 | | |
3270 | 0 | return _cairo_rectangle_contains_rectangle (&pattern->extents, sample); |
3271 | 0 | } |
3272 | | |
3273 | | static cairo_bool_t |
3274 | | _surface_is_clear (const cairo_surface_pattern_t *pattern) |
3275 | 1.08M | { |
3276 | 1.08M | cairo_rectangle_int_t extents; |
3277 | | |
3278 | 1.08M | if (_cairo_surface_get_extents (pattern->surface, &extents) && |
3279 | 1.08M | (extents.width == 0 || extents.height == 0)) |
3280 | 0 | return TRUE; |
3281 | | |
3282 | 1.08M | return pattern->surface->is_clear && |
3283 | 1.08M | pattern->surface->content & CAIRO_CONTENT_ALPHA; |
3284 | 1.08M | } |
3285 | | |
3286 | | static cairo_bool_t |
3287 | | _raster_source_is_clear (const cairo_raster_source_pattern_t *pattern) |
3288 | 0 | { |
3289 | 0 | return pattern->extents.width == 0 || pattern->extents.height == 0; |
3290 | 0 | } |
3291 | | |
3292 | | static cairo_bool_t |
3293 | | _gradient_is_opaque (const cairo_gradient_pattern_t *gradient, |
3294 | | const cairo_rectangle_int_t *sample) |
3295 | 3.01k | { |
3296 | 3.01k | unsigned int i; |
3297 | | |
3298 | 3.01k | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || |
3299 | 3.01k | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL); |
3300 | | |
3301 | 3.01k | if (gradient->n_stops == 0 || |
3302 | 3.01k | (gradient->base.extend == CAIRO_EXTEND_NONE && |
3303 | 3.01k | gradient->stops[0].offset == gradient->stops[gradient->n_stops - 1].offset)) |
3304 | 0 | return FALSE; |
3305 | | |
3306 | 3.01k | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
3307 | 555 | if (gradient->base.extend == CAIRO_EXTEND_NONE) { |
3308 | 0 | double t[2]; |
3309 | 0 | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient; |
3310 | | |
3311 | | /* EXTEND_NONE degenerate radial gradients are clear */ |
3312 | 0 | if (_linear_pattern_is_degenerate (linear)) |
3313 | 0 | return FALSE; |
3314 | | |
3315 | 0 | if (sample == NULL) |
3316 | 0 | return FALSE; |
3317 | | |
3318 | 0 | _cairo_linear_pattern_box_to_parameter (linear, |
3319 | 0 | sample->x, |
3320 | 0 | sample->y, |
3321 | 0 | sample->x + sample->width, |
3322 | 0 | sample->y + sample->height, |
3323 | 0 | t); |
3324 | |
|
3325 | 0 | if (t[0] < 0.0 || t[1] > 1.0) |
3326 | 0 | return FALSE; |
3327 | 0 | } |
3328 | 555 | } else |
3329 | 2.46k | return FALSE; /* TODO: check actual intersection */ |
3330 | | |
3331 | 1.66k | for (i = 0; i < gradient->n_stops; i++) |
3332 | 1.11k | if (! CAIRO_COLOR_IS_OPAQUE (&gradient->stops[i].color)) |
3333 | 0 | return FALSE; |
3334 | | |
3335 | 555 | return TRUE; |
3336 | 555 | } |
3337 | | |
3338 | | /** |
3339 | | * _cairo_pattern_is_opaque: |
3340 | | * |
3341 | | * Convenience function to determine whether a pattern is an opaque |
3342 | | * pattern (of any type). The same caveats that apply to |
3343 | | * _cairo_pattern_is_opaque_solid apply here as well. |
3344 | | * |
3345 | | * Return value: %TRUE if the pattern is a opaque. |
3346 | | **/ |
3347 | | cairo_bool_t |
3348 | | _cairo_pattern_is_opaque (const cairo_pattern_t *abstract_pattern, |
3349 | | const cairo_rectangle_int_t *sample) |
3350 | 651k | { |
3351 | 651k | const cairo_pattern_union_t *pattern; |
3352 | | |
3353 | 651k | if (abstract_pattern->has_component_alpha) |
3354 | 0 | return FALSE; |
3355 | | |
3356 | 651k | pattern = (cairo_pattern_union_t *) abstract_pattern; |
3357 | 651k | switch (pattern->base.type) { |
3358 | 647k | case CAIRO_PATTERN_TYPE_SOLID: |
3359 | 647k | return _cairo_pattern_is_opaque_solid (abstract_pattern); |
3360 | 809 | case CAIRO_PATTERN_TYPE_SURFACE: |
3361 | 809 | return _surface_is_opaque (&pattern->surface, sample); |
3362 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3363 | 0 | return _raster_source_is_opaque (&pattern->raster_source, sample); |
3364 | 555 | case CAIRO_PATTERN_TYPE_LINEAR: |
3365 | 3.01k | case CAIRO_PATTERN_TYPE_RADIAL: |
3366 | 3.01k | return _gradient_is_opaque (&pattern->gradient.base, sample); |
3367 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
3368 | 0 | return FALSE; |
3369 | 651k | } |
3370 | | |
3371 | 0 | ASSERT_NOT_REACHED; |
3372 | 0 | return FALSE; |
3373 | 0 | } |
3374 | | |
3375 | | cairo_bool_t |
3376 | | _cairo_pattern_is_clear (const cairo_pattern_t *abstract_pattern) |
3377 | 17.0M | { |
3378 | 17.0M | const cairo_pattern_union_t *pattern; |
3379 | | |
3380 | 17.0M | if (abstract_pattern->has_component_alpha) |
3381 | 0 | return FALSE; |
3382 | | |
3383 | 17.0M | pattern = (cairo_pattern_union_t *) abstract_pattern; |
3384 | 17.0M | switch (abstract_pattern->type) { |
3385 | 15.9M | case CAIRO_PATTERN_TYPE_SOLID: |
3386 | 15.9M | return CAIRO_COLOR_IS_CLEAR (&pattern->solid.color); |
3387 | 1.08M | case CAIRO_PATTERN_TYPE_SURFACE: |
3388 | 1.08M | return _surface_is_clear (&pattern->surface); |
3389 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3390 | 0 | return _raster_source_is_clear (&pattern->raster_source); |
3391 | 4.42k | case CAIRO_PATTERN_TYPE_LINEAR: |
3392 | 9.49k | case CAIRO_PATTERN_TYPE_RADIAL: |
3393 | 9.49k | return _gradient_is_clear (&pattern->gradient.base, NULL); |
3394 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
3395 | 0 | return _mesh_is_clear (&pattern->mesh); |
3396 | 17.0M | } |
3397 | | |
3398 | 0 | ASSERT_NOT_REACHED; |
3399 | 0 | return FALSE; |
3400 | 0 | } |
3401 | | |
3402 | | /* |
3403 | | * Will given row of back-translation matrix work with bilinear scale? |
3404 | | * This is true for scales larger than 1. Also it was judged acceptable |
3405 | | * for scales larger than .75. And if there is integer translation |
3406 | | * then a scale of exactly .5 works. |
3407 | | */ |
3408 | | static int |
3409 | | use_bilinear(double x, double y, double t) |
3410 | 412 | { |
3411 | | /* This is the inverse matrix! */ |
3412 | 412 | double h = x*x + y*y; |
3413 | 412 | if (h < 1.0 / (0.75 * 0.75)) |
3414 | 318 | return TRUE; /* scale > .75 */ |
3415 | 94 | if ((h > 3.99 && h < 4.01) /* scale is 1/2 */ |
3416 | 94 | && !_cairo_fixed_from_double(x*y) /* parallel to an axis */ |
3417 | 94 | && _cairo_fixed_is_integer (_cairo_fixed_from_double (t))) |
3418 | 0 | return TRUE; |
3419 | 94 | return FALSE; |
3420 | 94 | } |
3421 | | |
3422 | | /** |
3423 | | * _cairo_pattern_analyze_filter: |
3424 | | * @pattern: surface pattern |
3425 | | * Returns: the optimized #cairo_filter_t to use with @pattern. |
3426 | | * |
3427 | | * Possibly optimize the filter to a simpler value depending on transformation |
3428 | | **/ |
3429 | | cairo_filter_t |
3430 | | _cairo_pattern_analyze_filter (const cairo_pattern_t *pattern) |
3431 | 543k | { |
3432 | 543k | switch (pattern->filter) { |
3433 | 543k | case CAIRO_FILTER_GOOD: |
3434 | 543k | case CAIRO_FILTER_BEST: |
3435 | 543k | case CAIRO_FILTER_BILINEAR: |
3436 | 543k | case CAIRO_FILTER_FAST: |
3437 | | /* If source pixels map 1:1 onto destination pixels, we do |
3438 | | * not need to filter (and do not want to filter, since it |
3439 | | * will cause blurriness) |
3440 | | */ |
3441 | 543k | if (_cairo_matrix_is_pixel_exact (&pattern->matrix)) { |
3442 | 543k | return CAIRO_FILTER_NEAREST; |
3443 | 543k | } else { |
3444 | | /* Use BILINEAR for any scale greater than .75 instead |
3445 | | * of GOOD. For scales of 1 and larger this is identical, |
3446 | | * for the smaller sizes it was judged that the artifacts |
3447 | | * were not worse than the artifacts from a box filer. |
3448 | | * BILINEAR can also be used if the scale is exactly .5 |
3449 | | * and the translation in that direction is an integer. |
3450 | | */ |
3451 | 253 | if (pattern->filter == CAIRO_FILTER_GOOD && |
3452 | 253 | use_bilinear (pattern->matrix.xx, pattern->matrix.xy, |
3453 | 253 | pattern->matrix.x0) && |
3454 | 253 | use_bilinear (pattern->matrix.yx, pattern->matrix.yy, |
3455 | 159 | pattern->matrix.y0)) |
3456 | 159 | return CAIRO_FILTER_BILINEAR; |
3457 | 253 | } |
3458 | 94 | break; |
3459 | | |
3460 | 94 | case CAIRO_FILTER_NEAREST: |
3461 | 0 | case CAIRO_FILTER_GAUSSIAN: |
3462 | 0 | default: |
3463 | 0 | break; |
3464 | 543k | } |
3465 | | |
3466 | 94 | return pattern->filter; |
3467 | 543k | } |
3468 | | |
3469 | | /** |
3470 | | * _cairo_hypot: |
3471 | | * Returns: value similar to hypot(@x,@y) |
3472 | | * |
3473 | | * May want to replace this with Manhattan distance (abs(x)+abs(y)) if |
3474 | | * hypot is too slow, as there is no need for accuracy here. |
3475 | | **/ |
3476 | | static inline double |
3477 | | _cairo_hypot(double x, double y) |
3478 | 188 | { |
3479 | 188 | return hypot(x, y); |
3480 | 188 | } |
3481 | | |
3482 | | /** |
3483 | | * _cairo_pattern_sampled_area: |
3484 | | * |
3485 | | * Return region of @pattern that will be sampled to fill @extents, |
3486 | | * based on the transformation and filter. |
3487 | | * |
3488 | | * This does not include pixels that are mulitiplied by values very |
3489 | | * close to zero by the ends of filters. This is so that transforms |
3490 | | * that should be the identity or 90 degree rotations do not expand |
3491 | | * the source unexpectedly. |
3492 | | * |
3493 | | * XXX: We don't actually have any way of querying the backend for |
3494 | | * the filter radius, so we just guess base on what we know that |
3495 | | * backends do currently (see bug #10508) |
3496 | | **/ |
3497 | | void |
3498 | | _cairo_pattern_sampled_area (const cairo_pattern_t *pattern, |
3499 | | const cairo_rectangle_int_t *extents, |
3500 | | cairo_rectangle_int_t *sample) |
3501 | 543k | { |
3502 | 543k | double x1, x2, y1, y2; |
3503 | 543k | double padx, pady; |
3504 | | |
3505 | | /* Assume filters are interpolating, which means identity |
3506 | | cannot change the image */ |
3507 | 543k | if (_cairo_matrix_is_identity (&pattern->matrix)) { |
3508 | 36.0k | *sample = *extents; |
3509 | 36.0k | return; |
3510 | 36.0k | } |
3511 | | |
3512 | | /* Transform the centers of the corner pixels */ |
3513 | 507k | x1 = extents->x + 0.5; |
3514 | 507k | y1 = extents->y + 0.5; |
3515 | 507k | x2 = x1 + (extents->width - 1); |
3516 | 507k | y2 = y1 + (extents->height - 1); |
3517 | 507k | _cairo_matrix_transform_bounding_box (&pattern->matrix, |
3518 | 507k | &x1, &y1, &x2, &y2, |
3519 | 507k | NULL); |
3520 | | |
3521 | | /* How far away from center will it actually sample? |
3522 | | * This is the distance from a transformed pixel center to the |
3523 | | * furthest sample of reasonable size. |
3524 | | */ |
3525 | 507k | switch (pattern->filter) { |
3526 | 507k | case CAIRO_FILTER_NEAREST: |
3527 | 507k | case CAIRO_FILTER_FAST: |
3528 | | /* Correct value is zero, but when the sample is on an integer |
3529 | | * it is unknown if the backend will sample the pixel to the |
3530 | | * left or right. This value makes it include both possible pixels. |
3531 | | */ |
3532 | 507k | padx = pady = 0.004; |
3533 | 507k | break; |
3534 | 159 | case CAIRO_FILTER_BILINEAR: |
3535 | 159 | case CAIRO_FILTER_GAUSSIAN: |
3536 | 159 | default: |
3537 | | /* Correct value is .5 */ |
3538 | 159 | padx = pady = 0.495; |
3539 | 159 | break; |
3540 | 94 | case CAIRO_FILTER_GOOD: |
3541 | | /* Correct value is max(width,1)*.5 */ |
3542 | 94 | padx = _cairo_hypot (pattern->matrix.xx, pattern->matrix.xy); |
3543 | 94 | if (padx <= 1.0) padx = 0.495; |
3544 | 94 | else if (padx >= 16.0) padx = 7.92; |
3545 | 83 | else padx *= 0.495; |
3546 | 94 | pady = _cairo_hypot (pattern->matrix.yx, pattern->matrix.yy); |
3547 | 94 | if (pady <= 1.0) pady = 0.495; |
3548 | 0 | else if (pady >= 16.0) pady = 7.92; |
3549 | 0 | else pady *= 0.495; |
3550 | 94 | break; |
3551 | 0 | case CAIRO_FILTER_BEST: |
3552 | | /* Correct value is width*2 */ |
3553 | 0 | padx = _cairo_hypot (pattern->matrix.xx, pattern->matrix.xy) * 1.98; |
3554 | 0 | if (padx > 7.92) padx = 7.92; |
3555 | 0 | pady = _cairo_hypot (pattern->matrix.yx, pattern->matrix.yy) * 1.98; |
3556 | 0 | if (pady > 7.92) pady = 7.92; |
3557 | 0 | break; |
3558 | 507k | } |
3559 | | |
3560 | | /* round furthest samples to edge of pixels */ |
3561 | 507k | x1 = floor (x1 - padx); |
3562 | 507k | if (x1 < CAIRO_RECT_INT_MIN) x1 = CAIRO_RECT_INT_MIN; |
3563 | 507k | sample->x = x1; |
3564 | | |
3565 | 507k | y1 = floor (y1 - pady); |
3566 | 507k | if (y1 < CAIRO_RECT_INT_MIN) y1 = CAIRO_RECT_INT_MIN; |
3567 | 507k | sample->y = y1; |
3568 | | |
3569 | 507k | x2 = floor (x2 + padx) + 1.0; |
3570 | 507k | if (x2 > CAIRO_RECT_INT_MAX) x2 = CAIRO_RECT_INT_MAX; |
3571 | 507k | sample->width = x2 - x1; |
3572 | | |
3573 | 507k | y2 = floor (y2 + pady) + 1.0; |
3574 | 507k | if (y2 > CAIRO_RECT_INT_MAX) y2 = CAIRO_RECT_INT_MAX; |
3575 | 507k | sample->height = y2 - y1; |
3576 | 507k | } |
3577 | | |
3578 | | /** |
3579 | | * _cairo_pattern_get_extents: |
3580 | | * |
3581 | | * Return the "target-space" extents of @pattern in @extents. |
3582 | | * |
3583 | | * For unbounded patterns, the @extents will be initialized with |
3584 | | * "infinite" extents, (minimum and maximum fixed-point values). |
3585 | | * |
3586 | | * When is_vector is TRUE, avoid rounding to zero widths or heights that |
3587 | | * are less than 1 unit. |
3588 | | * |
3589 | | * XXX: Currently, bounded gradient patterns will also return |
3590 | | * "infinite" extents, though it would be possible to optimize these |
3591 | | * with a little more work. |
3592 | | **/ |
3593 | | void |
3594 | | _cairo_pattern_get_extents (const cairo_pattern_t *pattern, |
3595 | | cairo_rectangle_int_t *extents, |
3596 | | cairo_bool_t is_vector) |
3597 | 8.49M | { |
3598 | 8.49M | double x1, y1, x2, y2; |
3599 | 8.49M | int ix1, ix2, iy1, iy2; |
3600 | 8.49M | cairo_bool_t round_x = FALSE; |
3601 | 8.49M | cairo_bool_t round_y = FALSE; |
3602 | | |
3603 | 8.49M | switch (pattern->type) { |
3604 | 7.95M | case CAIRO_PATTERN_TYPE_SOLID: |
3605 | 7.95M | goto UNBOUNDED; |
3606 | | |
3607 | 540k | case CAIRO_PATTERN_TYPE_SURFACE: |
3608 | 540k | { |
3609 | 540k | cairo_rectangle_int_t surface_extents; |
3610 | 540k | const cairo_surface_pattern_t *surface_pattern = |
3611 | 540k | (const cairo_surface_pattern_t *) pattern; |
3612 | 540k | cairo_surface_t *surface = surface_pattern->surface; |
3613 | | |
3614 | 540k | if (! _cairo_surface_get_extents (surface, &surface_extents)) |
3615 | 0 | goto UNBOUNDED; |
3616 | | |
3617 | 540k | if (surface_extents.width == 0 || surface_extents.height == 0) |
3618 | 0 | goto EMPTY; |
3619 | | |
3620 | 540k | if (pattern->extend != CAIRO_EXTEND_NONE) |
3621 | 18.1k | goto UNBOUNDED; |
3622 | | |
3623 | 522k | x1 = surface_extents.x; |
3624 | 522k | y1 = surface_extents.y; |
3625 | 522k | x2 = surface_extents.x + (int) surface_extents.width; |
3626 | 522k | y2 = surface_extents.y + (int) surface_extents.height; |
3627 | | |
3628 | 522k | goto HANDLE_FILTER; |
3629 | 540k | } |
3630 | 0 | break; |
3631 | | |
3632 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3633 | 0 | { |
3634 | 0 | const cairo_raster_source_pattern_t *raster = |
3635 | 0 | (const cairo_raster_source_pattern_t *) pattern; |
3636 | |
|
3637 | 0 | if (raster->extents.width == 0 || raster->extents.height == 0) |
3638 | 0 | goto EMPTY; |
3639 | | |
3640 | 0 | if (pattern->extend != CAIRO_EXTEND_NONE) |
3641 | 0 | goto UNBOUNDED; |
3642 | | |
3643 | 0 | x1 = raster->extents.x; |
3644 | 0 | y1 = raster->extents.y; |
3645 | 0 | x2 = raster->extents.x + (int) raster->extents.width; |
3646 | 0 | y2 = raster->extents.y + (int) raster->extents.height; |
3647 | 0 | } |
3648 | 522k | HANDLE_FILTER: |
3649 | 522k | switch (pattern->filter) { |
3650 | 522k | case CAIRO_FILTER_NEAREST: |
3651 | 522k | case CAIRO_FILTER_FAST: |
3652 | 522k | round_x = round_y = TRUE; |
3653 | | /* We don't know which way .5 will go, so fudge it slightly. */ |
3654 | 522k | x1 -= 0.004; |
3655 | 522k | y1 -= 0.004; |
3656 | 522k | x2 += 0.004; |
3657 | 522k | y2 += 0.004; |
3658 | 522k | break; |
3659 | 0 | case CAIRO_FILTER_BEST: |
3660 | | /* Assume best filter will produce nice antialiased edges */ |
3661 | 0 | break; |
3662 | 0 | case CAIRO_FILTER_BILINEAR: |
3663 | 0 | case CAIRO_FILTER_GAUSSIAN: |
3664 | 0 | case CAIRO_FILTER_GOOD: |
3665 | 0 | default: |
3666 | | /* These filters can blur the edge out 1/2 pixel when scaling up */ |
3667 | 0 | if (_cairo_hypot (pattern->matrix.xx, pattern->matrix.yx) < 1.0) { |
3668 | 0 | x1 -= 0.5; |
3669 | 0 | x2 += 0.5; |
3670 | 0 | round_x = TRUE; |
3671 | 0 | } |
3672 | 0 | if (_cairo_hypot (pattern->matrix.xy, pattern->matrix.yy) < 1.0) { |
3673 | 0 | y1 -= 0.5; |
3674 | 0 | y2 += 0.5; |
3675 | 0 | round_y = TRUE; |
3676 | 0 | } |
3677 | 0 | break; |
3678 | 522k | } |
3679 | 522k | break; |
3680 | | |
3681 | 522k | case CAIRO_PATTERN_TYPE_RADIAL: |
3682 | 2.53k | { |
3683 | 2.53k | const cairo_radial_pattern_t *radial = |
3684 | 2.53k | (const cairo_radial_pattern_t *) pattern; |
3685 | 2.53k | double cx1, cy1; |
3686 | 2.53k | double cx2, cy2; |
3687 | 2.53k | double r1, r2; |
3688 | | |
3689 | 2.53k | if (_radial_pattern_is_degenerate (radial)) { |
3690 | | /* cairo-gstate should have optimised degenerate |
3691 | | * patterns to solid clear patterns, so we can ignore |
3692 | | * them here. */ |
3693 | 0 | goto EMPTY; |
3694 | 0 | } |
3695 | | |
3696 | | /* TODO: in some cases (focus outside/on the circle) it is |
3697 | | * half-bounded. */ |
3698 | 2.53k | if (pattern->extend != CAIRO_EXTEND_NONE) |
3699 | 2.53k | goto UNBOUNDED; |
3700 | | |
3701 | 0 | cx1 = radial->cd1.center.x; |
3702 | 0 | cy1 = radial->cd1.center.y; |
3703 | 0 | r1 = radial->cd1.radius; |
3704 | |
|
3705 | 0 | cx2 = radial->cd2.center.x; |
3706 | 0 | cy2 = radial->cd2.center.y; |
3707 | 0 | r2 = radial->cd2.radius; |
3708 | |
|
3709 | 0 | x1 = MIN (cx1 - r1, cx2 - r2); |
3710 | 0 | y1 = MIN (cy1 - r1, cy2 - r2); |
3711 | 0 | x2 = MAX (cx1 + r1, cx2 + r2); |
3712 | 0 | y2 = MAX (cy1 + r1, cy2 + r2); |
3713 | 0 | } |
3714 | 0 | break; |
3715 | | |
3716 | 585 | case CAIRO_PATTERN_TYPE_LINEAR: |
3717 | 585 | { |
3718 | 585 | const cairo_linear_pattern_t *linear = |
3719 | 585 | (const cairo_linear_pattern_t *) pattern; |
3720 | | |
3721 | 585 | if (pattern->extend != CAIRO_EXTEND_NONE) |
3722 | 585 | goto UNBOUNDED; |
3723 | | |
3724 | 0 | if (_linear_pattern_is_degenerate (linear)) { |
3725 | | /* cairo-gstate should have optimised degenerate |
3726 | | * patterns to solid ones, so we can again ignore |
3727 | | * them here. */ |
3728 | 0 | goto EMPTY; |
3729 | 0 | } |
3730 | | |
3731 | | /* TODO: to get tight extents, use the matrix to transform |
3732 | | * the pattern instead of transforming the extents later. */ |
3733 | 0 | if (pattern->matrix.xy != 0. || pattern->matrix.yx != 0.) |
3734 | 0 | goto UNBOUNDED; |
3735 | | |
3736 | 0 | if (linear->pd1.x == linear->pd2.x) { |
3737 | 0 | x1 = -HUGE_VAL; |
3738 | 0 | x2 = HUGE_VAL; |
3739 | 0 | y1 = MIN (linear->pd1.y, linear->pd2.y); |
3740 | 0 | y2 = MAX (linear->pd1.y, linear->pd2.y); |
3741 | 0 | } else if (linear->pd1.y == linear->pd2.y) { |
3742 | 0 | x1 = MIN (linear->pd1.x, linear->pd2.x); |
3743 | 0 | x2 = MAX (linear->pd1.x, linear->pd2.x); |
3744 | 0 | y1 = -HUGE_VAL; |
3745 | 0 | y2 = HUGE_VAL; |
3746 | 0 | } else { |
3747 | 0 | goto UNBOUNDED; |
3748 | 0 | } |
3749 | | |
3750 | | /* The current linear renderer just point-samples in the middle |
3751 | | of the pixels, similar to the NEAREST filter: */ |
3752 | 0 | round_x = round_y = TRUE; |
3753 | 0 | } |
3754 | 0 | break; |
3755 | | |
3756 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
3757 | 0 | { |
3758 | 0 | const cairo_mesh_pattern_t *mesh = |
3759 | 0 | (const cairo_mesh_pattern_t *) pattern; |
3760 | 0 | if (! _cairo_mesh_pattern_coord_box (mesh, &x1, &y1, &x2, &y2)) |
3761 | 0 | goto EMPTY; |
3762 | 0 | } |
3763 | 0 | break; |
3764 | | |
3765 | 0 | default: |
3766 | 0 | ASSERT_NOT_REACHED; |
3767 | 8.49M | } |
3768 | | |
3769 | 522k | if (_cairo_matrix_is_translation (&pattern->matrix)) { |
3770 | 522k | x1 -= pattern->matrix.x0; x2 -= pattern->matrix.x0; |
3771 | 522k | y1 -= pattern->matrix.y0; y2 -= pattern->matrix.y0; |
3772 | 522k | } else { |
3773 | 0 | cairo_matrix_t imatrix; |
3774 | 0 | cairo_status_t status; |
3775 | |
|
3776 | 0 | imatrix = pattern->matrix; |
3777 | 0 | status = cairo_matrix_invert (&imatrix); |
3778 | | /* cairo_pattern_set_matrix ensures the matrix is invertible */ |
3779 | 0 | assert (status == CAIRO_STATUS_SUCCESS); |
3780 | | |
3781 | 0 | _cairo_matrix_transform_bounding_box (&imatrix, |
3782 | 0 | &x1, &y1, &x2, &y2, |
3783 | 0 | NULL); |
3784 | 0 | } |
3785 | | |
3786 | 522k | if (!round_x) { |
3787 | 0 | x1 -= 0.5; |
3788 | 0 | x2 += 0.5; |
3789 | 0 | } |
3790 | 522k | if (x1 < CAIRO_RECT_INT_MIN) |
3791 | 0 | ix1 = CAIRO_RECT_INT_MIN; |
3792 | 522k | else |
3793 | 522k | ix1 = _cairo_lround (x1); |
3794 | 522k | if (x2 > CAIRO_RECT_INT_MAX) |
3795 | 0 | ix2 = CAIRO_RECT_INT_MAX; |
3796 | 522k | else |
3797 | 522k | ix2 = _cairo_lround (x2); |
3798 | 522k | extents->x = ix1; extents->width = ix2 - ix1; |
3799 | 522k | if (is_vector && extents->width == 0 && x1 != x2) |
3800 | 0 | extents->width += 1; |
3801 | | |
3802 | 522k | if (!round_y) { |
3803 | 0 | y1 -= 0.5; |
3804 | 0 | y2 += 0.5; |
3805 | 0 | } |
3806 | 522k | if (y1 < CAIRO_RECT_INT_MIN) |
3807 | 0 | iy1 = CAIRO_RECT_INT_MIN; |
3808 | 522k | else |
3809 | 522k | iy1 = _cairo_lround (y1); |
3810 | 522k | if (y2 > CAIRO_RECT_INT_MAX) |
3811 | 0 | iy2 = CAIRO_RECT_INT_MAX; |
3812 | 522k | else |
3813 | 522k | iy2 = _cairo_lround (y2); |
3814 | 522k | extents->y = iy1; extents->height = iy2 - iy1; |
3815 | 522k | if (is_vector && extents->height == 0 && y1 != y2) |
3816 | 0 | extents->height += 1; |
3817 | | |
3818 | 522k | return; |
3819 | | |
3820 | 7.97M | UNBOUNDED: |
3821 | | /* unbounded patterns -> 'infinite' extents */ |
3822 | 7.97M | _cairo_unbounded_rectangle_init (extents); |
3823 | 7.97M | return; |
3824 | | |
3825 | 0 | EMPTY: |
3826 | 0 | extents->x = extents->y = 0; |
3827 | 0 | extents->width = extents->height = 0; |
3828 | 0 | return; |
3829 | 522k | } |
3830 | | |
3831 | | /** |
3832 | | * _cairo_pattern_get_ink_extents: |
3833 | | * |
3834 | | * Return the "target-space" inked extents of @pattern in @extents. |
3835 | | **/ |
3836 | | cairo_int_status_t |
3837 | | _cairo_pattern_get_ink_extents (const cairo_pattern_t *pattern, |
3838 | | cairo_rectangle_int_t *extents) |
3839 | 0 | { |
3840 | 0 | if (pattern->type == CAIRO_PATTERN_TYPE_SURFACE && |
3841 | 0 | pattern->extend == CAIRO_EXTEND_NONE) |
3842 | 0 | { |
3843 | 0 | const cairo_surface_pattern_t *surface_pattern = |
3844 | 0 | (const cairo_surface_pattern_t *) pattern; |
3845 | 0 | cairo_surface_t *surface = surface_pattern->surface; |
3846 | |
|
3847 | 0 | surface = _cairo_surface_get_source (surface, NULL); |
3848 | 0 | if (_cairo_surface_is_recording (surface)) { |
3849 | 0 | cairo_matrix_t imatrix; |
3850 | 0 | cairo_box_t box; |
3851 | 0 | cairo_status_t status; |
3852 | |
|
3853 | 0 | imatrix = pattern->matrix; |
3854 | 0 | status = cairo_matrix_invert (&imatrix); |
3855 | | /* cairo_pattern_set_matrix ensures the matrix is invertible */ |
3856 | 0 | assert (status == CAIRO_STATUS_SUCCESS); |
3857 | | |
3858 | 0 | status = _cairo_recording_surface_get_ink_bbox ((cairo_recording_surface_t *)surface, |
3859 | 0 | &box, &imatrix); |
3860 | 0 | if (unlikely (status)) |
3861 | 0 | return status; |
3862 | | |
3863 | 0 | _cairo_box_round_to_rectangle (&box, extents); |
3864 | 0 | return CAIRO_STATUS_SUCCESS; |
3865 | 0 | } |
3866 | 0 | } |
3867 | | |
3868 | 0 | _cairo_pattern_get_extents (pattern, extents, TRUE); |
3869 | 0 | return CAIRO_STATUS_SUCCESS; |
3870 | 0 | } |
3871 | | |
3872 | | static uintptr_t |
3873 | | _cairo_solid_pattern_hash (uintptr_t hash, |
3874 | | const cairo_solid_pattern_t *solid) |
3875 | 0 | { |
3876 | 0 | hash = _cairo_hash_bytes (hash, &solid->color, sizeof (solid->color)); |
3877 | |
|
3878 | 0 | return hash; |
3879 | 0 | } |
3880 | | |
3881 | | static uintptr_t |
3882 | | _cairo_gradient_color_stops_hash (uintptr_t hash, |
3883 | | const cairo_gradient_pattern_t *gradient) |
3884 | 0 | { |
3885 | 0 | unsigned int n; |
3886 | |
|
3887 | 0 | hash = _cairo_hash_bytes (hash, |
3888 | 0 | &gradient->n_stops, |
3889 | 0 | sizeof (gradient->n_stops)); |
3890 | |
|
3891 | 0 | for (n = 0; n < gradient->n_stops; n++) { |
3892 | 0 | hash = _cairo_hash_bytes (hash, |
3893 | 0 | &gradient->stops[n].offset, |
3894 | 0 | sizeof (double)); |
3895 | 0 | hash = _cairo_hash_bytes (hash, |
3896 | 0 | &gradient->stops[n].color, |
3897 | 0 | sizeof (cairo_color_stop_t)); |
3898 | 0 | } |
3899 | |
|
3900 | 0 | return hash; |
3901 | 0 | } |
3902 | | |
3903 | | uintptr_t |
3904 | | _cairo_linear_pattern_hash (uintptr_t hash, |
3905 | | const cairo_linear_pattern_t *linear) |
3906 | 0 | { |
3907 | 0 | hash = _cairo_hash_bytes (hash, &linear->pd1, sizeof (linear->pd1)); |
3908 | 0 | hash = _cairo_hash_bytes (hash, &linear->pd2, sizeof (linear->pd2)); |
3909 | |
|
3910 | 0 | return _cairo_gradient_color_stops_hash (hash, &linear->base); |
3911 | 0 | } |
3912 | | |
3913 | | uintptr_t |
3914 | | _cairo_radial_pattern_hash (uintptr_t hash, |
3915 | | const cairo_radial_pattern_t *radial) |
3916 | 0 | { |
3917 | 0 | hash = _cairo_hash_bytes (hash, &radial->cd1.center, sizeof (radial->cd1.center)); |
3918 | 0 | hash = _cairo_hash_bytes (hash, &radial->cd1.radius, sizeof (radial->cd1.radius)); |
3919 | 0 | hash = _cairo_hash_bytes (hash, &radial->cd2.center, sizeof (radial->cd2.center)); |
3920 | 0 | hash = _cairo_hash_bytes (hash, &radial->cd2.radius, sizeof (radial->cd2.radius)); |
3921 | |
|
3922 | 0 | return _cairo_gradient_color_stops_hash (hash, &radial->base); |
3923 | 0 | } |
3924 | | |
3925 | | static uintptr_t |
3926 | | _cairo_mesh_pattern_hash (uintptr_t hash, const cairo_mesh_pattern_t *mesh) |
3927 | 0 | { |
3928 | 0 | const cairo_mesh_patch_t *patch = _cairo_array_index_const (&mesh->patches, 0); |
3929 | 0 | unsigned int i, n = _cairo_array_num_elements (&mesh->patches); |
3930 | |
|
3931 | 0 | for (i = 0; i < n; i++) |
3932 | 0 | hash = _cairo_hash_bytes (hash, patch + i, sizeof (cairo_mesh_patch_t)); |
3933 | |
|
3934 | 0 | return hash; |
3935 | 0 | } |
3936 | | |
3937 | | static uintptr_t |
3938 | | _cairo_surface_pattern_hash (uintptr_t hash, |
3939 | | const cairo_surface_pattern_t *surface) |
3940 | 0 | { |
3941 | 0 | hash ^= surface->surface->unique_id; |
3942 | |
|
3943 | 0 | return hash; |
3944 | 0 | } |
3945 | | |
3946 | | static uintptr_t |
3947 | | _cairo_raster_source_pattern_hash (uintptr_t hash, |
3948 | | const cairo_raster_source_pattern_t *raster) |
3949 | 0 | { |
3950 | 0 | hash ^= (uintptr_t)raster->user_data; |
3951 | |
|
3952 | 0 | return hash; |
3953 | 0 | } |
3954 | | |
3955 | | uintptr_t |
3956 | | _cairo_pattern_hash (const cairo_pattern_t *pattern) |
3957 | 0 | { |
3958 | 0 | uintptr_t hash = _CAIRO_HASH_INIT_VALUE; |
3959 | |
|
3960 | 0 | if (pattern->status) |
3961 | 0 | return 0; |
3962 | | |
3963 | 0 | hash = _cairo_hash_bytes (hash, &pattern->type, sizeof (pattern->type)); |
3964 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_SOLID) { |
3965 | 0 | hash = _cairo_hash_bytes (hash, |
3966 | 0 | &pattern->matrix, sizeof (pattern->matrix)); |
3967 | 0 | hash = _cairo_hash_bytes (hash, |
3968 | 0 | &pattern->filter, sizeof (pattern->filter)); |
3969 | 0 | hash = _cairo_hash_bytes (hash, |
3970 | 0 | &pattern->extend, sizeof (pattern->extend)); |
3971 | 0 | hash = _cairo_hash_bytes (hash, |
3972 | 0 | &pattern->has_component_alpha, |
3973 | 0 | sizeof (pattern->has_component_alpha)); |
3974 | 0 | } |
3975 | |
|
3976 | 0 | switch (pattern->type) { |
3977 | 0 | case CAIRO_PATTERN_TYPE_SOLID: |
3978 | 0 | return _cairo_solid_pattern_hash (hash, (cairo_solid_pattern_t *) pattern); |
3979 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
3980 | 0 | return _cairo_linear_pattern_hash (hash, (cairo_linear_pattern_t *) pattern); |
3981 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: |
3982 | 0 | return _cairo_radial_pattern_hash (hash, (cairo_radial_pattern_t *) pattern); |
3983 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
3984 | 0 | return _cairo_mesh_pattern_hash (hash, (cairo_mesh_pattern_t *) pattern); |
3985 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: |
3986 | 0 | return _cairo_surface_pattern_hash (hash, (cairo_surface_pattern_t *) pattern); |
3987 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3988 | 0 | return _cairo_raster_source_pattern_hash (hash, (cairo_raster_source_pattern_t *) pattern); |
3989 | 0 | default: |
3990 | 0 | ASSERT_NOT_REACHED; |
3991 | 0 | return FALSE; |
3992 | 0 | } |
3993 | 0 | } |
3994 | | |
3995 | | static cairo_bool_t |
3996 | | _cairo_solid_pattern_equal (const cairo_solid_pattern_t *a, |
3997 | | const cairo_solid_pattern_t *b) |
3998 | 0 | { |
3999 | 0 | return _cairo_color_equal (&a->color, &b->color); |
4000 | 0 | } |
4001 | | |
4002 | | static cairo_bool_t |
4003 | | _cairo_gradient_color_stops_equal (const cairo_gradient_pattern_t *a, |
4004 | | const cairo_gradient_pattern_t *b) |
4005 | 0 | { |
4006 | 0 | unsigned int n; |
4007 | |
|
4008 | 0 | if (a->n_stops != b->n_stops) |
4009 | 0 | return FALSE; |
4010 | | |
4011 | 0 | for (n = 0; n < a->n_stops; n++) { |
4012 | 0 | if (a->stops[n].offset != b->stops[n].offset) |
4013 | 0 | return FALSE; |
4014 | 0 | if (! _cairo_color_stop_equal (&a->stops[n].color, &b->stops[n].color)) |
4015 | 0 | return FALSE; |
4016 | 0 | } |
4017 | | |
4018 | 0 | return TRUE; |
4019 | 0 | } |
4020 | | |
4021 | | cairo_bool_t |
4022 | | _cairo_linear_pattern_equal (const cairo_linear_pattern_t *a, |
4023 | | const cairo_linear_pattern_t *b) |
4024 | 0 | { |
4025 | 0 | if (a->pd1.x != b->pd1.x) |
4026 | 0 | return FALSE; |
4027 | | |
4028 | 0 | if (a->pd1.y != b->pd1.y) |
4029 | 0 | return FALSE; |
4030 | | |
4031 | 0 | if (a->pd2.x != b->pd2.x) |
4032 | 0 | return FALSE; |
4033 | | |
4034 | 0 | if (a->pd2.y != b->pd2.y) |
4035 | 0 | return FALSE; |
4036 | | |
4037 | 0 | return _cairo_gradient_color_stops_equal (&a->base, &b->base); |
4038 | 0 | } |
4039 | | |
4040 | | cairo_bool_t |
4041 | | _cairo_radial_pattern_equal (const cairo_radial_pattern_t *a, |
4042 | | const cairo_radial_pattern_t *b) |
4043 | 0 | { |
4044 | 0 | if (a->cd1.center.x != b->cd1.center.x) |
4045 | 0 | return FALSE; |
4046 | | |
4047 | 0 | if (a->cd1.center.y != b->cd1.center.y) |
4048 | 0 | return FALSE; |
4049 | | |
4050 | 0 | if (a->cd1.radius != b->cd1.radius) |
4051 | 0 | return FALSE; |
4052 | | |
4053 | 0 | if (a->cd2.center.x != b->cd2.center.x) |
4054 | 0 | return FALSE; |
4055 | | |
4056 | 0 | if (a->cd2.center.y != b->cd2.center.y) |
4057 | 0 | return FALSE; |
4058 | | |
4059 | 0 | if (a->cd2.radius != b->cd2.radius) |
4060 | 0 | return FALSE; |
4061 | | |
4062 | 0 | return _cairo_gradient_color_stops_equal (&a->base, &b->base); |
4063 | 0 | } |
4064 | | |
4065 | | static cairo_bool_t |
4066 | | _cairo_mesh_pattern_equal (const cairo_mesh_pattern_t *a, |
4067 | | const cairo_mesh_pattern_t *b) |
4068 | 0 | { |
4069 | 0 | const cairo_mesh_patch_t *patch_a, *patch_b; |
4070 | 0 | unsigned int i, num_patches_a, num_patches_b; |
4071 | |
|
4072 | 0 | num_patches_a = _cairo_array_num_elements (&a->patches); |
4073 | 0 | num_patches_b = _cairo_array_num_elements (&b->patches); |
4074 | |
|
4075 | 0 | if (num_patches_a != num_patches_b) |
4076 | 0 | return FALSE; |
4077 | | |
4078 | 0 | for (i = 0; i < num_patches_a; i++) { |
4079 | 0 | patch_a = _cairo_array_index_const (&a->patches, i); |
4080 | 0 | patch_b = _cairo_array_index_const (&b->patches, i); |
4081 | 0 | if (memcmp (patch_a, patch_b, sizeof(cairo_mesh_patch_t)) != 0) |
4082 | 0 | return FALSE; |
4083 | 0 | } |
4084 | | |
4085 | 0 | return TRUE; |
4086 | 0 | } |
4087 | | |
4088 | | static cairo_bool_t |
4089 | | _cairo_surface_pattern_equal (const cairo_surface_pattern_t *a, |
4090 | | const cairo_surface_pattern_t *b) |
4091 | 0 | { |
4092 | 0 | return a->surface->unique_id == b->surface->unique_id; |
4093 | 0 | } |
4094 | | |
4095 | | static cairo_bool_t |
4096 | | _cairo_raster_source_pattern_equal (const cairo_raster_source_pattern_t *a, |
4097 | | const cairo_raster_source_pattern_t *b) |
4098 | 0 | { |
4099 | 0 | return a->user_data == b->user_data; |
4100 | 0 | } |
4101 | | |
4102 | | cairo_bool_t |
4103 | | _cairo_pattern_equal (const cairo_pattern_t *a, const cairo_pattern_t *b) |
4104 | 0 | { |
4105 | 0 | if (a->status || b->status) |
4106 | 0 | return FALSE; |
4107 | | |
4108 | 0 | if (a == b) |
4109 | 0 | return TRUE; |
4110 | | |
4111 | 0 | if (a->type != b->type) |
4112 | 0 | return FALSE; |
4113 | | |
4114 | 0 | if (a->has_component_alpha != b->has_component_alpha) |
4115 | 0 | return FALSE; |
4116 | | |
4117 | 0 | if (a->type != CAIRO_PATTERN_TYPE_SOLID) { |
4118 | 0 | if (memcmp (&a->matrix, &b->matrix, sizeof (cairo_matrix_t))) |
4119 | 0 | return FALSE; |
4120 | | |
4121 | 0 | if (a->filter != b->filter) |
4122 | 0 | return FALSE; |
4123 | | |
4124 | 0 | if (a->extend != b->extend) |
4125 | 0 | return FALSE; |
4126 | 0 | } |
4127 | | |
4128 | 0 | switch (a->type) { |
4129 | 0 | case CAIRO_PATTERN_TYPE_SOLID: |
4130 | 0 | return _cairo_solid_pattern_equal ((cairo_solid_pattern_t *) a, |
4131 | 0 | (cairo_solid_pattern_t *) b); |
4132 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
4133 | 0 | return _cairo_linear_pattern_equal ((cairo_linear_pattern_t *) a, |
4134 | 0 | (cairo_linear_pattern_t *) b); |
4135 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: |
4136 | 0 | return _cairo_radial_pattern_equal ((cairo_radial_pattern_t *) a, |
4137 | 0 | (cairo_radial_pattern_t *) b); |
4138 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
4139 | 0 | return _cairo_mesh_pattern_equal ((cairo_mesh_pattern_t *) a, |
4140 | 0 | (cairo_mesh_pattern_t *) b); |
4141 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: |
4142 | 0 | return _cairo_surface_pattern_equal ((cairo_surface_pattern_t *) a, |
4143 | 0 | (cairo_surface_pattern_t *) b); |
4144 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
4145 | 0 | return _cairo_raster_source_pattern_equal ((cairo_raster_source_pattern_t *) a, |
4146 | 0 | (cairo_raster_source_pattern_t *) b); |
4147 | 0 | default: |
4148 | 0 | ASSERT_NOT_REACHED; |
4149 | 0 | return FALSE; |
4150 | 0 | } |
4151 | 0 | } |
4152 | | |
4153 | | /** |
4154 | | * cairo_pattern_get_rgba: |
4155 | | * @pattern: a #cairo_pattern_t |
4156 | | * @red: return value for red component of color, or %NULL |
4157 | | * @green: return value for green component of color, or %NULL |
4158 | | * @blue: return value for blue component of color, or %NULL |
4159 | | * @alpha: return value for alpha component of color, or %NULL |
4160 | | * |
4161 | | * Gets the solid color for a solid color pattern. |
4162 | | * |
4163 | | * Return value: %CAIRO_STATUS_SUCCESS, or |
4164 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if the pattern is not a solid |
4165 | | * color pattern. |
4166 | | * |
4167 | | * Since: 1.4 |
4168 | | **/ |
4169 | | cairo_status_t |
4170 | | cairo_pattern_get_rgba (cairo_pattern_t *pattern, |
4171 | | double *red, double *green, |
4172 | | double *blue, double *alpha) |
4173 | 0 | { |
4174 | 0 | cairo_solid_pattern_t *solid = (cairo_solid_pattern_t*) pattern; |
4175 | 0 | double r0, g0, b0, a0; |
4176 | |
|
4177 | 0 | if (pattern->status) |
4178 | 0 | return pattern->status; |
4179 | | |
4180 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_SOLID) |
4181 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4182 | | |
4183 | 0 | _cairo_color_get_rgba (&solid->color, &r0, &g0, &b0, &a0); |
4184 | |
|
4185 | 0 | if (red) |
4186 | 0 | *red = r0; |
4187 | 0 | if (green) |
4188 | 0 | *green = g0; |
4189 | 0 | if (blue) |
4190 | 0 | *blue = b0; |
4191 | 0 | if (alpha) |
4192 | 0 | *alpha = a0; |
4193 | |
|
4194 | 0 | return CAIRO_STATUS_SUCCESS; |
4195 | 0 | } |
4196 | | |
4197 | | /** |
4198 | | * cairo_pattern_get_surface: |
4199 | | * @pattern: a #cairo_pattern_t |
4200 | | * @surface: return value for surface of pattern, or %NULL |
4201 | | * |
4202 | | * Gets the surface of a surface pattern. The reference returned in |
4203 | | * @surface is owned by the pattern; the caller should call |
4204 | | * cairo_surface_reference() if the surface is to be retained. |
4205 | | * |
4206 | | * Return value: %CAIRO_STATUS_SUCCESS, or |
4207 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if the pattern is not a surface |
4208 | | * pattern. |
4209 | | * |
4210 | | * Since: 1.4 |
4211 | | **/ |
4212 | | cairo_status_t |
4213 | | cairo_pattern_get_surface (cairo_pattern_t *pattern, |
4214 | | cairo_surface_t **surface) |
4215 | 0 | { |
4216 | 0 | cairo_surface_pattern_t *spat = (cairo_surface_pattern_t*) pattern; |
4217 | |
|
4218 | 0 | if (pattern->status) |
4219 | 0 | return pattern->status; |
4220 | | |
4221 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_SURFACE) |
4222 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4223 | | |
4224 | 0 | if (surface) |
4225 | 0 | *surface = spat->surface; |
4226 | |
|
4227 | 0 | return CAIRO_STATUS_SUCCESS; |
4228 | 0 | } |
4229 | | |
4230 | | /** |
4231 | | * cairo_pattern_get_color_stop_rgba: |
4232 | | * @pattern: a #cairo_pattern_t |
4233 | | * @index: index of the stop to return data for |
4234 | | * @offset: return value for the offset of the stop, or %NULL |
4235 | | * @red: return value for red component of color, or %NULL |
4236 | | * @green: return value for green component of color, or %NULL |
4237 | | * @blue: return value for blue component of color, or %NULL |
4238 | | * @alpha: return value for alpha component of color, or %NULL |
4239 | | * |
4240 | | * Gets the color and offset information at the given @index for a |
4241 | | * gradient pattern. Values of @index range from 0 to n-1 |
4242 | | * where n is the number returned |
4243 | | * by cairo_pattern_get_color_stop_count(). |
4244 | | * |
4245 | | * Return value: %CAIRO_STATUS_SUCCESS, or %CAIRO_STATUS_INVALID_INDEX |
4246 | | * if @index is not valid for the given pattern. If the pattern is |
4247 | | * not a gradient pattern, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH is |
4248 | | * returned. |
4249 | | * |
4250 | | * Since: 1.4 |
4251 | | **/ |
4252 | | cairo_status_t |
4253 | | cairo_pattern_get_color_stop_rgba (cairo_pattern_t *pattern, |
4254 | | int index, double *offset, |
4255 | | double *red, double *green, |
4256 | | double *blue, double *alpha) |
4257 | 0 | { |
4258 | 0 | cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t*) pattern; |
4259 | |
|
4260 | 0 | if (pattern->status) |
4261 | 0 | return pattern->status; |
4262 | | |
4263 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR && |
4264 | 0 | pattern->type != CAIRO_PATTERN_TYPE_RADIAL) |
4265 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4266 | | |
4267 | 0 | if (index < 0 || (unsigned int) index >= gradient->n_stops) |
4268 | 0 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4269 | | |
4270 | 0 | if (offset) |
4271 | 0 | *offset = gradient->stops[index].offset; |
4272 | 0 | if (red) |
4273 | 0 | *red = gradient->stops[index].color.red; |
4274 | 0 | if (green) |
4275 | 0 | *green = gradient->stops[index].color.green; |
4276 | 0 | if (blue) |
4277 | 0 | *blue = gradient->stops[index].color.blue; |
4278 | 0 | if (alpha) |
4279 | 0 | *alpha = gradient->stops[index].color.alpha; |
4280 | |
|
4281 | 0 | return CAIRO_STATUS_SUCCESS; |
4282 | 0 | } |
4283 | | |
4284 | | /** |
4285 | | * cairo_pattern_get_color_stop_count: |
4286 | | * @pattern: a #cairo_pattern_t |
4287 | | * @count: return value for the number of color stops, or %NULL |
4288 | | * |
4289 | | * Gets the number of color stops specified in the given gradient |
4290 | | * pattern. |
4291 | | * |
4292 | | * Return value: %CAIRO_STATUS_SUCCESS, or |
4293 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a gradient |
4294 | | * pattern. |
4295 | | * |
4296 | | * Since: 1.4 |
4297 | | **/ |
4298 | | cairo_status_t |
4299 | | cairo_pattern_get_color_stop_count (cairo_pattern_t *pattern, |
4300 | | int *count) |
4301 | 0 | { |
4302 | 0 | cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t*) pattern; |
4303 | |
|
4304 | 0 | if (pattern->status) |
4305 | 0 | return pattern->status; |
4306 | | |
4307 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR && |
4308 | 0 | pattern->type != CAIRO_PATTERN_TYPE_RADIAL) |
4309 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4310 | | |
4311 | 0 | if (count) |
4312 | 0 | *count = gradient->n_stops; |
4313 | |
|
4314 | 0 | return CAIRO_STATUS_SUCCESS; |
4315 | 0 | } |
4316 | | |
4317 | | /** |
4318 | | * cairo_pattern_get_linear_points: |
4319 | | * @pattern: a #cairo_pattern_t |
4320 | | * @x0: return value for the x coordinate of the first point, or %NULL |
4321 | | * @y0: return value for the y coordinate of the first point, or %NULL |
4322 | | * @x1: return value for the x coordinate of the second point, or %NULL |
4323 | | * @y1: return value for the y coordinate of the second point, or %NULL |
4324 | | * |
4325 | | * Gets the gradient endpoints for a linear gradient. |
4326 | | * |
4327 | | * Return value: %CAIRO_STATUS_SUCCESS, or |
4328 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a linear |
4329 | | * gradient pattern. |
4330 | | * |
4331 | | * Since: 1.4 |
4332 | | **/ |
4333 | | cairo_status_t |
4334 | | cairo_pattern_get_linear_points (cairo_pattern_t *pattern, |
4335 | | double *x0, double *y0, |
4336 | | double *x1, double *y1) |
4337 | 0 | { |
4338 | 0 | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t*) pattern; |
4339 | |
|
4340 | 0 | if (pattern->status) |
4341 | 0 | return pattern->status; |
4342 | | |
4343 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR) |
4344 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4345 | | |
4346 | 0 | if (x0) |
4347 | 0 | *x0 = linear->pd1.x; |
4348 | 0 | if (y0) |
4349 | 0 | *y0 = linear->pd1.y; |
4350 | 0 | if (x1) |
4351 | 0 | *x1 = linear->pd2.x; |
4352 | 0 | if (y1) |
4353 | 0 | *y1 = linear->pd2.y; |
4354 | |
|
4355 | 0 | return CAIRO_STATUS_SUCCESS; |
4356 | 0 | } |
4357 | | |
4358 | | /** |
4359 | | * cairo_pattern_get_radial_circles: |
4360 | | * @pattern: a #cairo_pattern_t |
4361 | | * @x0: return value for the x coordinate of the center of the first circle, or %NULL |
4362 | | * @y0: return value for the y coordinate of the center of the first circle, or %NULL |
4363 | | * @r0: return value for the radius of the first circle, or %NULL |
4364 | | * @x1: return value for the x coordinate of the center of the second circle, or %NULL |
4365 | | * @y1: return value for the y coordinate of the center of the second circle, or %NULL |
4366 | | * @r1: return value for the radius of the second circle, or %NULL |
4367 | | * |
4368 | | * Gets the gradient endpoint circles for a radial gradient, each |
4369 | | * specified as a center coordinate and a radius. |
4370 | | * |
4371 | | * Return value: %CAIRO_STATUS_SUCCESS, or |
4372 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a radial |
4373 | | * gradient pattern. |
4374 | | * |
4375 | | * Since: 1.4 |
4376 | | **/ |
4377 | | cairo_status_t |
4378 | | cairo_pattern_get_radial_circles (cairo_pattern_t *pattern, |
4379 | | double *x0, double *y0, double *r0, |
4380 | | double *x1, double *y1, double *r1) |
4381 | 0 | { |
4382 | 0 | cairo_radial_pattern_t *radial = (cairo_radial_pattern_t*) pattern; |
4383 | |
|
4384 | 0 | if (pattern->status) |
4385 | 0 | return pattern->status; |
4386 | | |
4387 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_RADIAL) |
4388 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4389 | | |
4390 | 0 | if (x0) |
4391 | 0 | *x0 = radial->cd1.center.x; |
4392 | 0 | if (y0) |
4393 | 0 | *y0 = radial->cd1.center.y; |
4394 | 0 | if (r0) |
4395 | 0 | *r0 = radial->cd1.radius; |
4396 | 0 | if (x1) |
4397 | 0 | *x1 = radial->cd2.center.x; |
4398 | 0 | if (y1) |
4399 | 0 | *y1 = radial->cd2.center.y; |
4400 | 0 | if (r1) |
4401 | 0 | *r1 = radial->cd2.radius; |
4402 | |
|
4403 | 0 | return CAIRO_STATUS_SUCCESS; |
4404 | 0 | } |
4405 | | |
4406 | | /** |
4407 | | * cairo_mesh_pattern_get_patch_count: |
4408 | | * @pattern: a #cairo_pattern_t |
4409 | | * @count: return value for the number patches, or %NULL |
4410 | | * |
4411 | | * Gets the number of patches specified in the given mesh pattern. |
4412 | | * |
4413 | | * The number only includes patches which have been finished by |
4414 | | * calling cairo_mesh_pattern_end_patch(). For example it will be 0 |
4415 | | * during the definition of the first patch. |
4416 | | * |
4417 | | * Return value: %CAIRO_STATUS_SUCCESS, or |
4418 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a mesh |
4419 | | * pattern. |
4420 | | * |
4421 | | * Since: 1.12 |
4422 | | **/ |
4423 | | cairo_status_t |
4424 | | cairo_mesh_pattern_get_patch_count (cairo_pattern_t *pattern, |
4425 | | unsigned int *count) |
4426 | 0 | { |
4427 | 0 | cairo_mesh_pattern_t *mesh = (cairo_mesh_pattern_t *) pattern; |
4428 | |
|
4429 | 0 | if (unlikely (pattern->status)) |
4430 | 0 | return pattern->status; |
4431 | | |
4432 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) |
4433 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4434 | | |
4435 | 0 | if (count) { |
4436 | 0 | *count = _cairo_array_num_elements (&mesh->patches); |
4437 | 0 | if (mesh->current_patch) |
4438 | 0 | *count -= 1; |
4439 | 0 | } |
4440 | |
|
4441 | 0 | return CAIRO_STATUS_SUCCESS; |
4442 | 0 | } |
4443 | | slim_hidden_def (cairo_mesh_pattern_get_patch_count); |
4444 | | |
4445 | | /** |
4446 | | * cairo_mesh_pattern_get_path: |
4447 | | * @pattern: a #cairo_pattern_t |
4448 | | * @patch_num: the patch number to return data for |
4449 | | * |
4450 | | * Gets path defining the patch @patch_num for a mesh |
4451 | | * pattern. |
4452 | | * |
4453 | | * @patch_num can range from 0 to n-1 where n is the number returned by |
4454 | | * cairo_mesh_pattern_get_patch_count(). |
4455 | | * |
4456 | | * Return value: the path defining the patch, or a path with status |
4457 | | * %CAIRO_STATUS_INVALID_INDEX if @patch_num or @point_num is not |
4458 | | * valid for @pattern. If @pattern is not a mesh pattern, a path with |
4459 | | * status %CAIRO_STATUS_PATTERN_TYPE_MISMATCH is returned. |
4460 | | * |
4461 | | * Since: 1.12 |
4462 | | **/ |
4463 | | cairo_path_t * |
4464 | | cairo_mesh_pattern_get_path (cairo_pattern_t *pattern, |
4465 | | unsigned int patch_num) |
4466 | 0 | { |
4467 | 0 | cairo_mesh_pattern_t *mesh = (cairo_mesh_pattern_t *) pattern; |
4468 | 0 | const cairo_mesh_patch_t *patch; |
4469 | 0 | cairo_path_t *path; |
4470 | 0 | cairo_path_data_t *data; |
4471 | 0 | unsigned int patch_count; |
4472 | 0 | int l, current_point; |
4473 | |
|
4474 | 0 | if (unlikely (pattern->status)) |
4475 | 0 | return _cairo_path_create_in_error (pattern->status); |
4476 | | |
4477 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) |
4478 | 0 | return _cairo_path_create_in_error (_cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH)); |
4479 | | |
4480 | 0 | patch_count = _cairo_array_num_elements (&mesh->patches); |
4481 | 0 | if (mesh->current_patch) |
4482 | 0 | patch_count--; |
4483 | |
|
4484 | 0 | if (unlikely (patch_num >= patch_count)) |
4485 | 0 | return _cairo_path_create_in_error (_cairo_error (CAIRO_STATUS_INVALID_INDEX)); |
4486 | | |
4487 | 0 | patch = _cairo_array_index_const (&mesh->patches, patch_num); |
4488 | |
|
4489 | 0 | path = _cairo_malloc (sizeof (cairo_path_t)); |
4490 | 0 | if (path == NULL) |
4491 | 0 | return _cairo_path_create_in_error (_cairo_error (CAIRO_STATUS_NO_MEMORY)); |
4492 | | |
4493 | 0 | path->num_data = 18; |
4494 | 0 | path->data = _cairo_malloc_ab (path->num_data, |
4495 | 0 | sizeof (cairo_path_data_t)); |
4496 | 0 | if (path->data == NULL) { |
4497 | 0 | free (path); |
4498 | 0 | return _cairo_path_create_in_error (_cairo_error (CAIRO_STATUS_NO_MEMORY)); |
4499 | 0 | } |
4500 | | |
4501 | 0 | data = path->data; |
4502 | 0 | data[0].header.type = CAIRO_PATH_MOVE_TO; |
4503 | 0 | data[0].header.length = 2; |
4504 | 0 | data[1].point.x = patch->points[0][0].x; |
4505 | 0 | data[1].point.y = patch->points[0][0].y; |
4506 | 0 | data += data[0].header.length; |
4507 | |
|
4508 | 0 | current_point = 0; |
4509 | |
|
4510 | 0 | for (l = 0; l < 4; l++) { |
4511 | 0 | int i, j, k; |
4512 | |
|
4513 | 0 | data[0].header.type = CAIRO_PATH_CURVE_TO; |
4514 | 0 | data[0].header.length = 4; |
4515 | |
|
4516 | 0 | for (k = 1; k < 4; k++) { |
4517 | 0 | current_point = (current_point + 1) % 12; |
4518 | 0 | i = mesh_path_point_i[current_point]; |
4519 | 0 | j = mesh_path_point_j[current_point]; |
4520 | 0 | data[k].point.x = patch->points[i][j].x; |
4521 | 0 | data[k].point.y = patch->points[i][j].y; |
4522 | 0 | } |
4523 | |
|
4524 | 0 | data += data[0].header.length; |
4525 | 0 | } |
4526 | |
|
4527 | 0 | path->status = CAIRO_STATUS_SUCCESS; |
4528 | |
|
4529 | 0 | return path; |
4530 | 0 | } |
4531 | | slim_hidden_def (cairo_mesh_pattern_get_path); |
4532 | | |
4533 | | /** |
4534 | | * cairo_mesh_pattern_get_corner_color_rgba: |
4535 | | * @pattern: a #cairo_pattern_t |
4536 | | * @patch_num: the patch number to return data for |
4537 | | * @corner_num: the corner number to return data for |
4538 | | * @red: return value for red component of color, or %NULL |
4539 | | * @green: return value for green component of color, or %NULL |
4540 | | * @blue: return value for blue component of color, or %NULL |
4541 | | * @alpha: return value for alpha component of color, or %NULL |
4542 | | * |
4543 | | * Gets the color information in corner @corner_num of patch |
4544 | | * @patch_num for a mesh pattern. |
4545 | | * |
4546 | | * @patch_num can range from 0 to n-1 where n is the number returned by |
4547 | | * cairo_mesh_pattern_get_patch_count(). |
4548 | | * |
4549 | | * Valid values for @corner_num are from 0 to 3 and identify the |
4550 | | * corners as explained in cairo_pattern_create_mesh(). |
4551 | | * |
4552 | | * Return value: %CAIRO_STATUS_SUCCESS, or %CAIRO_STATUS_INVALID_INDEX |
4553 | | * if @patch_num or @corner_num is not valid for @pattern. If |
4554 | | * @pattern is not a mesh pattern, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH |
4555 | | * is returned. |
4556 | | * |
4557 | | * Since: 1.12 |
4558 | | **/ |
4559 | | cairo_status_t |
4560 | | cairo_mesh_pattern_get_corner_color_rgba (cairo_pattern_t *pattern, |
4561 | | unsigned int patch_num, |
4562 | | unsigned int corner_num, |
4563 | | double *red, double *green, |
4564 | | double *blue, double *alpha) |
4565 | 0 | { |
4566 | 0 | cairo_mesh_pattern_t *mesh = (cairo_mesh_pattern_t *) pattern; |
4567 | 0 | unsigned int patch_count; |
4568 | 0 | const cairo_mesh_patch_t *patch; |
4569 | |
|
4570 | 0 | if (unlikely (pattern->status)) |
4571 | 0 | return pattern->status; |
4572 | | |
4573 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) |
4574 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4575 | | |
4576 | 0 | if (unlikely (corner_num > 3)) |
4577 | 0 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4578 | | |
4579 | 0 | patch_count = _cairo_array_num_elements (&mesh->patches); |
4580 | 0 | if (mesh->current_patch) |
4581 | 0 | patch_count--; |
4582 | |
|
4583 | 0 | if (unlikely (patch_num >= patch_count)) |
4584 | 0 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4585 | | |
4586 | 0 | patch = _cairo_array_index_const (&mesh->patches, patch_num); |
4587 | |
|
4588 | 0 | if (red) |
4589 | 0 | *red = patch->colors[corner_num].red; |
4590 | 0 | if (green) |
4591 | 0 | *green = patch->colors[corner_num].green; |
4592 | 0 | if (blue) |
4593 | 0 | *blue = patch->colors[corner_num].blue; |
4594 | 0 | if (alpha) |
4595 | 0 | *alpha = patch->colors[corner_num].alpha; |
4596 | |
|
4597 | 0 | return CAIRO_STATUS_SUCCESS; |
4598 | 0 | } |
4599 | | slim_hidden_def (cairo_mesh_pattern_get_corner_color_rgba); |
4600 | | |
4601 | | /** |
4602 | | * cairo_mesh_pattern_get_control_point: |
4603 | | * @pattern: a #cairo_pattern_t |
4604 | | * @patch_num: the patch number to return data for |
4605 | | * @point_num: the control point number to return data for |
4606 | | * @x: return value for the x coordinate of the control point, or %NULL |
4607 | | * @y: return value for the y coordinate of the control point, or %NULL |
4608 | | * |
4609 | | * Gets the control point @point_num of patch @patch_num for a mesh |
4610 | | * pattern. |
4611 | | * |
4612 | | * @patch_num can range from 0 to n-1 where n is the number returned by |
4613 | | * cairo_mesh_pattern_get_patch_count(). |
4614 | | * |
4615 | | * Valid values for @point_num are from 0 to 3 and identify the |
4616 | | * control points as explained in cairo_pattern_create_mesh(). |
4617 | | * |
4618 | | * Return value: %CAIRO_STATUS_SUCCESS, or %CAIRO_STATUS_INVALID_INDEX |
4619 | | * if @patch_num or @point_num is not valid for @pattern. If @pattern |
4620 | | * is not a mesh pattern, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH is |
4621 | | * returned. |
4622 | | * |
4623 | | * Since: 1.12 |
4624 | | **/ |
4625 | | cairo_status_t |
4626 | | cairo_mesh_pattern_get_control_point (cairo_pattern_t *pattern, |
4627 | | unsigned int patch_num, |
4628 | | unsigned int point_num, |
4629 | | double *x, double *y) |
4630 | 0 | { |
4631 | 0 | cairo_mesh_pattern_t *mesh = (cairo_mesh_pattern_t *) pattern; |
4632 | 0 | const cairo_mesh_patch_t *patch; |
4633 | 0 | unsigned int patch_count; |
4634 | 0 | int i, j; |
4635 | |
|
4636 | 0 | if (pattern->status) |
4637 | 0 | return pattern->status; |
4638 | | |
4639 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_MESH) |
4640 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4641 | | |
4642 | 0 | if (point_num > 3) |
4643 | 0 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4644 | | |
4645 | 0 | patch_count = _cairo_array_num_elements (&mesh->patches); |
4646 | 0 | if (mesh->current_patch) |
4647 | 0 | patch_count--; |
4648 | |
|
4649 | 0 | if (unlikely (patch_num >= patch_count)) |
4650 | 0 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4651 | | |
4652 | 0 | patch = _cairo_array_index_const (&mesh->patches, patch_num); |
4653 | |
|
4654 | 0 | i = mesh_control_point_i[point_num]; |
4655 | 0 | j = mesh_control_point_j[point_num]; |
4656 | |
|
4657 | 0 | if (x) |
4658 | 0 | *x = patch->points[i][j].x; |
4659 | 0 | if (y) |
4660 | 0 | *y = patch->points[i][j].y; |
4661 | |
|
4662 | 0 | return CAIRO_STATUS_SUCCESS; |
4663 | 0 | } |
4664 | | slim_hidden_def (cairo_mesh_pattern_get_control_point); |
4665 | | |
4666 | | void |
4667 | | _cairo_pattern_reset_static_data (void) |
4668 | 0 | { |
4669 | 0 | int i; |
4670 | |
|
4671 | 0 | for (i = 0; i < ARRAY_LENGTH (freed_pattern_pool); i++) |
4672 | 0 | _freed_pool_reset (&freed_pattern_pool[i]); |
4673 | 0 | } |
4674 | | |
4675 | | static void |
4676 | | _cairo_debug_print_surface_pattern (FILE *file, |
4677 | | const cairo_surface_pattern_t *pattern) |
4678 | 0 | { |
4679 | 0 | const char *s; |
4680 | 0 | switch (pattern->surface->type) { |
4681 | 0 | case CAIRO_SURFACE_TYPE_IMAGE: s = "image"; break; |
4682 | 0 | case CAIRO_SURFACE_TYPE_PDF: s = "pdf"; break; |
4683 | 0 | case CAIRO_SURFACE_TYPE_PS: s = "ps"; break; |
4684 | 0 | case CAIRO_SURFACE_TYPE_XLIB: s = "xlib"; break; |
4685 | 0 | case CAIRO_SURFACE_TYPE_XCB: s = "xcb"; break; |
4686 | 0 | case CAIRO_SURFACE_TYPE_GLITZ: s = "glitz"; break; |
4687 | 0 | case CAIRO_SURFACE_TYPE_QUARTZ: s = "quartz"; break; |
4688 | 0 | case CAIRO_SURFACE_TYPE_WIN32: s = "win32"; break; |
4689 | 0 | case CAIRO_SURFACE_TYPE_BEOS: s = "beos"; break; |
4690 | 0 | case CAIRO_SURFACE_TYPE_DIRECTFB: s = "directfb"; break; |
4691 | 0 | case CAIRO_SURFACE_TYPE_SVG: s = "svg"; break; |
4692 | 0 | case CAIRO_SURFACE_TYPE_OS2: s = "os2"; break; |
4693 | 0 | case CAIRO_SURFACE_TYPE_WIN32_PRINTING: s = "win32_printing"; break; |
4694 | 0 | case CAIRO_SURFACE_TYPE_QUARTZ_IMAGE: s = "quartz_image"; break; |
4695 | 0 | case CAIRO_SURFACE_TYPE_SCRIPT: s = "script"; break; |
4696 | 0 | case CAIRO_SURFACE_TYPE_QT: s = "qt"; break; |
4697 | 0 | case CAIRO_SURFACE_TYPE_RECORDING: s = "recording"; break; |
4698 | 0 | case CAIRO_SURFACE_TYPE_VG: s = "vg"; break; |
4699 | 0 | case CAIRO_SURFACE_TYPE_GL: s = "gl"; break; |
4700 | 0 | case CAIRO_SURFACE_TYPE_DRM: s = "drm"; break; |
4701 | 0 | case CAIRO_SURFACE_TYPE_TEE: s = "tee"; break; |
4702 | 0 | case CAIRO_SURFACE_TYPE_XML: s = "xml"; break; |
4703 | 0 | case CAIRO_SURFACE_TYPE_SKIA: s = "skia"; break; /* Deprecated */ |
4704 | 0 | case CAIRO_SURFACE_TYPE_SUBSURFACE: s = "subsurface"; break; |
4705 | 0 | case CAIRO_SURFACE_TYPE_COGL: s = "cogl"; break; |
4706 | 0 | default: s = "invalid"; ASSERT_NOT_REACHED; break; |
4707 | 0 | } |
4708 | 0 | fprintf (file, " surface type: %s\n", s); |
4709 | 0 | } |
4710 | | |
4711 | | static void |
4712 | | _cairo_debug_print_raster_source_pattern (FILE *file, |
4713 | | const cairo_raster_source_pattern_t *raster) |
4714 | 0 | { |
4715 | 0 | fprintf (file, " content: %x, size %dx%d\n", raster->content, raster->extents.width, raster->extents.height); |
4716 | 0 | } |
4717 | | |
4718 | | static void |
4719 | | _cairo_debug_print_linear_pattern (FILE *file, |
4720 | | const cairo_linear_pattern_t *pattern) |
4721 | 0 | { |
4722 | 0 | } |
4723 | | |
4724 | | static void |
4725 | | _cairo_debug_print_radial_pattern (FILE *file, |
4726 | | const cairo_radial_pattern_t *pattern) |
4727 | 0 | { |
4728 | 0 | } |
4729 | | |
4730 | | static void |
4731 | | _cairo_debug_print_mesh_pattern (FILE *file, |
4732 | | const cairo_mesh_pattern_t *pattern) |
4733 | 0 | { |
4734 | 0 | } |
4735 | | |
4736 | | void |
4737 | | _cairo_debug_print_pattern (FILE *file, const cairo_pattern_t *pattern) |
4738 | 0 | { |
4739 | 0 | const char *s; |
4740 | 0 | switch (pattern->type) { |
4741 | 0 | case CAIRO_PATTERN_TYPE_SOLID: s = "solid"; break; |
4742 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: s = "surface"; break; |
4743 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: s = "linear"; break; |
4744 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: s = "radial"; break; |
4745 | 0 | case CAIRO_PATTERN_TYPE_MESH: s = "mesh"; break; |
4746 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: s = "raster"; break; |
4747 | 0 | default: s = "invalid"; ASSERT_NOT_REACHED; break; |
4748 | 0 | } |
4749 | | |
4750 | 0 | fprintf (file, "pattern: %s\n", s); |
4751 | 0 | if (pattern->type == CAIRO_PATTERN_TYPE_SOLID) |
4752 | 0 | return; |
4753 | | |
4754 | 0 | switch (pattern->extend) { |
4755 | 0 | case CAIRO_EXTEND_NONE: s = "none"; break; |
4756 | 0 | case CAIRO_EXTEND_REPEAT: s = "repeat"; break; |
4757 | 0 | case CAIRO_EXTEND_REFLECT: s = "reflect"; break; |
4758 | 0 | case CAIRO_EXTEND_PAD: s = "pad"; break; |
4759 | 0 | default: s = "invalid"; ASSERT_NOT_REACHED; break; |
4760 | 0 | } |
4761 | 0 | fprintf (file, " extend: %s\n", s); |
4762 | |
|
4763 | 0 | switch (pattern->filter) { |
4764 | 0 | case CAIRO_FILTER_FAST: s = "fast"; break; |
4765 | 0 | case CAIRO_FILTER_GOOD: s = "good"; break; |
4766 | 0 | case CAIRO_FILTER_BEST: s = "best"; break; |
4767 | 0 | case CAIRO_FILTER_NEAREST: s = "nearest"; break; |
4768 | 0 | case CAIRO_FILTER_BILINEAR: s = "bilinear"; break; |
4769 | 0 | case CAIRO_FILTER_GAUSSIAN: s = "gaussian"; break; |
4770 | 0 | default: s = "invalid"; ASSERT_NOT_REACHED; break; |
4771 | 0 | } |
4772 | 0 | fprintf (file, " filter: %s\n", s); |
4773 | 0 | fprintf (file, " matrix: [%g %g %g %g %g %g]\n", |
4774 | 0 | pattern->matrix.xx, pattern->matrix.yx, |
4775 | 0 | pattern->matrix.xy, pattern->matrix.yy, |
4776 | 0 | pattern->matrix.x0, pattern->matrix.y0); |
4777 | 0 | switch (pattern->type) { |
4778 | 0 | default: |
4779 | 0 | case CAIRO_PATTERN_TYPE_SOLID: |
4780 | 0 | break; |
4781 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
4782 | 0 | _cairo_debug_print_raster_source_pattern (file, (cairo_raster_source_pattern_t *)pattern); |
4783 | 0 | break; |
4784 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: |
4785 | 0 | _cairo_debug_print_surface_pattern (file, (cairo_surface_pattern_t *)pattern); |
4786 | 0 | break; |
4787 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
4788 | 0 | _cairo_debug_print_linear_pattern (file, (cairo_linear_pattern_t *)pattern); |
4789 | 0 | break; |
4790 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: |
4791 | 0 | _cairo_debug_print_radial_pattern (file, (cairo_radial_pattern_t *)pattern); |
4792 | 0 | break; |
4793 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
4794 | 0 | _cairo_debug_print_mesh_pattern (file, (cairo_mesh_pattern_t *)pattern); |
4795 | 0 | break; |
4796 | 0 | } |
4797 | 0 | } |