Coverage Report

Created: 2025-07-07 10:01

/work/workdir/UnpackedTarball/cairo/src/cairo-polygon-intersect.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright © 2004 Carl Worth
3
 * Copyright © 2006 Red Hat, Inc.
4
 * Copyright © 2008 Chris Wilson
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it either under the terms of the GNU Lesser General Public
8
 * License version 2.1 as published by the Free Software Foundation
9
 * (the "LGPL") or, at your option, under the terms of the Mozilla
10
 * Public License Version 1.1 (the "MPL"). If you do not alter this
11
 * notice, a recipient may use your version of this file under either
12
 * the MPL or the LGPL.
13
 *
14
 * You should have received a copy of the LGPL along with this library
15
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
16
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
17
 * You should have received a copy of the MPL along with this library
18
 * in the file COPYING-MPL-1.1
19
 *
20
 * The contents of this file are subject to the Mozilla Public License
21
 * Version 1.1 (the "License"); you may not use this file except in
22
 * compliance with the License. You may obtain a copy of the License at
23
 * http://www.mozilla.org/MPL/
24
 *
25
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
26
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
27
 * the specific language governing rights and limitations.
28
 *
29
 * The Original Code is the cairo graphics library.
30
 *
31
 * The Initial Developer of the Original Code is Carl Worth
32
 *
33
 * Contributor(s):
34
 *  Carl D. Worth <cworth@cworth.org>
35
 *  Chris Wilson <chris@chris-wilson.co.uk>
36
 */
37
38
/* Provide definitions for standalone compilation */
39
#include "cairoint.h"
40
41
#include "cairo-error-private.h"
42
#include "cairo-freelist-private.h"
43
#include "cairo-combsort-inline.h"
44
45
46
typedef struct _cairo_bo_intersect_ordinate {
47
    int32_t ordinate;
48
    enum { EXCESS = -1, EXACT = 0, DEFAULT = 1 } approx;
49
} cairo_bo_intersect_ordinate_t;
50
51
typedef struct _cairo_bo_intersect_point {
52
    cairo_bo_intersect_ordinate_t x;
53
    cairo_bo_intersect_ordinate_t y;
54
} cairo_bo_intersect_point_t;
55
56
typedef struct _cairo_bo_edge cairo_bo_edge_t;
57
58
typedef struct _cairo_bo_deferred {
59
    cairo_bo_edge_t *other;
60
    int32_t top;
61
} cairo_bo_deferred_t;
62
63
struct _cairo_bo_edge {
64
    int a_or_b;
65
    cairo_edge_t edge;
66
    cairo_bo_edge_t *prev;
67
    cairo_bo_edge_t *next;
68
    cairo_bo_deferred_t deferred;
69
};
70
71
/* the parent is always given by index/2 */
72
0
#define PQ_PARENT_INDEX(i) ((i) >> 1)
73
0
#define PQ_FIRST_ENTRY 1
74
75
/* left and right children are index * 2 and (index * 2) +1 respectively */
76
0
#define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
77
78
typedef enum {
79
    CAIRO_BO_EVENT_TYPE_STOP = -1,
80
    CAIRO_BO_EVENT_TYPE_INTERSECTION,
81
    CAIRO_BO_EVENT_TYPE_START
82
} cairo_bo_event_type_t;
83
84
typedef struct _cairo_bo_event {
85
    cairo_bo_event_type_t type;
86
    cairo_bo_intersect_point_t point;
87
} cairo_bo_event_t;
88
89
typedef struct _cairo_bo_start_event {
90
    cairo_bo_event_type_t type;
91
    cairo_bo_intersect_point_t point;
92
    cairo_bo_edge_t edge;
93
} cairo_bo_start_event_t;
94
95
typedef struct _cairo_bo_queue_event {
96
    cairo_bo_event_type_t type;
97
    cairo_bo_intersect_point_t point;
98
    cairo_bo_edge_t *e1;
99
    cairo_bo_edge_t *e2;
100
} cairo_bo_queue_event_t;
101
102
typedef struct _pqueue {
103
    int size, max_size;
104
105
    cairo_bo_event_t **elements;
106
    cairo_bo_event_t *elements_embedded[1024];
107
} pqueue_t;
108
109
typedef struct _cairo_bo_event_queue {
110
    cairo_freepool_t pool;
111
    pqueue_t pqueue;
112
    cairo_bo_event_t **start_events;
113
} cairo_bo_event_queue_t;
114
115
typedef struct _cairo_bo_sweep_line {
116
    cairo_bo_edge_t *head;
117
    int32_t current_y;
118
    cairo_bo_edge_t *current_edge;
119
} cairo_bo_sweep_line_t;
120
121
static cairo_fixed_t
122
_line_compute_intersection_x_for_y (const cairo_line_t *line,
123
            cairo_fixed_t y)
124
0
{
125
0
    cairo_fixed_t x, dy;
126
127
0
    if (y == line->p1.y)
128
0
  return line->p1.x;
129
0
    if (y == line->p2.y)
130
0
  return line->p2.x;
131
132
0
    x = line->p1.x;
133
0
    dy = line->p2.y - line->p1.y;
134
0
    if (dy != 0) {
135
0
  x += _cairo_fixed_mul_div_floor (y - line->p1.y,
136
0
           line->p2.x - line->p1.x,
137
0
           dy);
138
0
    }
139
140
0
    return x;
141
0
}
142
143
static inline int
144
_cairo_bo_point32_compare (cairo_bo_intersect_point_t const *a,
145
         cairo_bo_intersect_point_t const *b)
146
0
{
147
0
    int cmp;
148
149
0
    cmp = a->y.ordinate - b->y.ordinate;
150
0
    if (cmp)
151
0
  return cmp;
152
153
0
    cmp = a->y.approx - b->y.approx;
154
0
    if (cmp)
155
0
  return cmp;
156
157
0
    return a->x.ordinate - b->x.ordinate;
158
0
}
159
160
/* Compare the slope of a to the slope of b, returning 1, 0, -1 if the
161
 * slope a is respectively greater than, equal to, or less than the
162
 * slope of b.
163
 *
164
 * For each edge, consider the direction vector formed from:
165
 *
166
 *  top -> bottom
167
 *
168
 * which is:
169
 *
170
 *  (dx, dy) = (line.p2.x - line.p1.x, line.p2.y - line.p1.y)
171
 *
172
 * We then define the slope of each edge as dx/dy, (which is the
173
 * inverse of the slope typically used in math instruction). We never
174
 * compute a slope directly as the value approaches infinity, but we
175
 * can derive a slope comparison without division as follows, (where
176
 * the ? represents our compare operator).
177
 *
178
 * 1.    slope(a) ? slope(b)
179
 * 2.     adx/ady ? bdx/bdy
180
 * 3. (adx * bdy) ? (bdx * ady)
181
 *
182
 * Note that from step 2 to step 3 there is no change needed in the
183
 * sign of the result since both ady and bdy are guaranteed to be
184
 * greater than or equal to 0.
185
 *
186
 * When using this slope comparison to sort edges, some care is needed
187
 * when interpreting the results. Since the slope compare operates on
188
 * distance vectors from top to bottom it gives a correct left to
189
 * right sort for edges that have a common top point, (such as two
190
 * edges with start events at the same location). On the other hand,
191
 * the sense of the result will be exactly reversed for two edges that
192
 * have a common stop point.
193
 */
194
static inline int
195
_slope_compare (const cairo_bo_edge_t *a,
196
    const cairo_bo_edge_t *b)
197
0
{
198
    /* XXX: We're assuming here that dx and dy will still fit in 32
199
     * bits. That's not true in general as there could be overflow. We
200
     * should prevent that before the tessellation algorithm
201
     * begins.
202
     */
203
0
    int32_t adx = a->edge.line.p2.x - a->edge.line.p1.x;
204
0
    int32_t bdx = b->edge.line.p2.x - b->edge.line.p1.x;
205
206
    /* Since the dy's are all positive by construction we can fast
207
     * path several common cases.
208
     */
209
210
    /* First check for vertical lines. */
211
0
    if (adx == 0)
212
0
  return -bdx;
213
0
    if (bdx == 0)
214
0
  return adx;
215
216
    /* Then where the two edges point in different directions wrt x. */
217
0
    if ((adx ^ bdx) < 0)
218
0
  return adx;
219
220
    /* Finally we actually need to do the general comparison. */
221
0
    {
222
0
  int32_t ady = a->edge.line.p2.y - a->edge.line.p1.y;
223
0
  int32_t bdy = b->edge.line.p2.y - b->edge.line.p1.y;
224
0
  cairo_int64_t adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
225
0
  cairo_int64_t bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
226
227
0
  return _cairo_int64_cmp (adx_bdy, bdx_ady);
228
0
    }
229
0
}
230
231
/*
232
 * We need to compare the x-coordinates of a pair of lines for a particular y,
233
 * without loss of precision.
234
 *
235
 * The x-coordinate along an edge for a given y is:
236
 *   X = A_x + (Y - A_y) * A_dx / A_dy
237
 *
238
 * So the inequality we wish to test is:
239
 *   A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy,
240
 * where ∘ is our inequality operator.
241
 *
242
 * By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are
243
 * all positive, so we can rearrange it thus without causing a sign change:
244
 *   A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy
245
 *                                 - (Y - A_y) * A_dx * B_dy
246
 *
247
 * Given the assumption that all the deltas fit within 32 bits, we can compute
248
 * this comparison directly using 128 bit arithmetic. For certain, but common,
249
 * input we can reduce this down to a single 32 bit compare by inspecting the
250
 * deltas.
251
 *
252
 * (And put the burden of the work on developing fast 128 bit ops, which are
253
 * required throughout the tessellator.)
254
 *
255
 * See the similar discussion for _slope_compare().
256
 */
257
static int
258
edges_compare_x_for_y_general (const cairo_bo_edge_t *a,
259
             const cairo_bo_edge_t *b,
260
             int32_t y)
261
0
{
262
    /* XXX: We're assuming here that dx and dy will still fit in 32
263
     * bits. That's not true in general as there could be overflow. We
264
     * should prevent that before the tessellation algorithm
265
     * begins.
266
     */
267
0
    int32_t dx;
268
0
    int32_t adx, ady;
269
0
    int32_t bdx, bdy;
270
0
    enum {
271
0
       HAVE_NONE    = 0x0,
272
0
       HAVE_DX      = 0x1,
273
0
       HAVE_ADX     = 0x2,
274
0
       HAVE_DX_ADX  = HAVE_DX | HAVE_ADX,
275
0
       HAVE_BDX     = 0x4,
276
0
       HAVE_DX_BDX  = HAVE_DX | HAVE_BDX,
277
0
       HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX,
278
0
       HAVE_ALL     = HAVE_DX | HAVE_ADX | HAVE_BDX
279
0
    } have_dx_adx_bdx = HAVE_ALL;
280
281
    /* don't bother solving for abscissa if the edges' bounding boxes
282
     * can be used to order them. */
283
0
    {
284
0
           int32_t amin, amax;
285
0
           int32_t bmin, bmax;
286
0
           if (a->edge.line.p1.x < a->edge.line.p2.x) {
287
0
                   amin = a->edge.line.p1.x;
288
0
                   amax = a->edge.line.p2.x;
289
0
           } else {
290
0
                   amin = a->edge.line.p2.x;
291
0
                   amax = a->edge.line.p1.x;
292
0
           }
293
0
           if (b->edge.line.p1.x < b->edge.line.p2.x) {
294
0
                   bmin = b->edge.line.p1.x;
295
0
                   bmax = b->edge.line.p2.x;
296
0
           } else {
297
0
                   bmin = b->edge.line.p2.x;
298
0
                   bmax = b->edge.line.p1.x;
299
0
           }
300
0
           if (amax < bmin) return -1;
301
0
           if (amin > bmax) return +1;
302
0
    }
303
304
0
    ady = a->edge.line.p2.y - a->edge.line.p1.y;
305
0
    adx = a->edge.line.p2.x - a->edge.line.p1.x;
306
0
    if (adx == 0)
307
0
  have_dx_adx_bdx &= ~HAVE_ADX;
308
309
0
    bdy = b->edge.line.p2.y - b->edge.line.p1.y;
310
0
    bdx = b->edge.line.p2.x - b->edge.line.p1.x;
311
0
    if (bdx == 0)
312
0
  have_dx_adx_bdx &= ~HAVE_BDX;
313
314
0
    dx = a->edge.line.p1.x - b->edge.line.p1.x;
315
0
    if (dx == 0)
316
0
  have_dx_adx_bdx &= ~HAVE_DX;
317
318
0
#define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)
319
0
#define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->edge.line.p1.y)
320
0
#define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->edge.line.p1.y)
321
0
    switch (have_dx_adx_bdx) {
322
0
    default:
323
0
    case HAVE_NONE:
324
0
  return 0;
325
0
    case HAVE_DX:
326
  /* A_dy * B_dy * (A_x - B_x) ∘ 0 */
327
0
  return dx; /* ady * bdy is positive definite */
328
0
    case HAVE_ADX:
329
  /* 0 ∘  - (Y - A_y) * A_dx * B_dy */
330
0
  return adx; /* bdy * (y - a->top.y) is positive definite */
331
0
    case HAVE_BDX:
332
  /* 0 ∘ (Y - B_y) * B_dx * A_dy */
333
0
  return -bdx; /* ady * (y - b->top.y) is positive definite */
334
0
    case HAVE_ADX_BDX:
335
  /*  0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */
336
0
  if ((adx ^ bdx) < 0) {
337
0
      return adx;
338
0
  } else if (a->edge.line.p1.y == b->edge.line.p1.y) { /* common origin */
339
0
      cairo_int64_t adx_bdy, bdx_ady;
340
341
      /* ∴ A_dx * B_dy ∘ B_dx * A_dy */
342
343
0
      adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
344
0
      bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
345
346
0
      return _cairo_int64_cmp (adx_bdy, bdx_ady);
347
0
  } else
348
0
      return _cairo_int128_cmp (A, B);
349
0
    case HAVE_DX_ADX:
350
  /* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */
351
0
  if ((-adx ^ dx) < 0) {
352
0
      return dx;
353
0
  } else {
354
0
      cairo_int64_t ady_dx, dy_adx;
355
356
0
      ady_dx = _cairo_int32x32_64_mul (ady, dx);
357
0
      dy_adx = _cairo_int32x32_64_mul (a->edge.line.p1.y - y, adx);
358
359
0
      return _cairo_int64_cmp (ady_dx, dy_adx);
360
0
  }
361
0
    case HAVE_DX_BDX:
362
  /* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */
363
0
  if ((bdx ^ dx) < 0) {
364
0
      return dx;
365
0
  } else {
366
0
      cairo_int64_t bdy_dx, dy_bdx;
367
368
0
      bdy_dx = _cairo_int32x32_64_mul (bdy, dx);
369
0
      dy_bdx = _cairo_int32x32_64_mul (y - b->edge.line.p1.y, bdx);
370
371
0
      return _cairo_int64_cmp (bdy_dx, dy_bdx);
372
0
  }
373
0
    case HAVE_ALL:
374
  /* XXX try comparing (a->edge.line.p2.x - b->edge.line.p2.x) et al */
375
0
  return _cairo_int128_cmp (L, _cairo_int128_sub (B, A));
376
0
    }
377
0
#undef B
378
0
#undef A
379
0
#undef L
380
0
}
381
382
/*
383
 * We need to compare the x-coordinate of a line for a particular y wrt to a
384
 * given x, without loss of precision.
385
 *
386
 * The x-coordinate along an edge for a given y is:
387
 *   X = A_x + (Y - A_y) * A_dx / A_dy
388
 *
389
 * So the inequality we wish to test is:
390
 *   A_x + (Y - A_y) * A_dx / A_dy ∘ X
391
 * where ∘ is our inequality operator.
392
 *
393
 * By construction, we know that A_dy (and (Y - A_y)) are
394
 * all positive, so we can rearrange it thus without causing a sign change:
395
 *   (Y - A_y) * A_dx ∘ (X - A_x) * A_dy
396
 *
397
 * Given the assumption that all the deltas fit within 32 bits, we can compute
398
 * this comparison directly using 64 bit arithmetic.
399
 *
400
 * See the similar discussion for _slope_compare() and
401
 * edges_compare_x_for_y_general().
402
 */
403
static int
404
edge_compare_for_y_against_x (const cairo_bo_edge_t *a,
405
            int32_t y,
406
            int32_t x)
407
0
{
408
0
    int32_t adx, ady;
409
0
    int32_t dx, dy;
410
0
    cairo_int64_t L, R;
411
412
0
    if (x < a->edge.line.p1.x && x < a->edge.line.p2.x)
413
0
  return 1;
414
0
    if (x > a->edge.line.p1.x && x > a->edge.line.p2.x)
415
0
  return -1;
416
417
0
    adx = a->edge.line.p2.x - a->edge.line.p1.x;
418
0
    dx = x - a->edge.line.p1.x;
419
420
0
    if (adx == 0)
421
0
  return -dx;
422
0
    if (dx == 0 || (adx ^ dx) < 0)
423
0
  return adx;
424
425
0
    dy = y - a->edge.line.p1.y;
426
0
    ady = a->edge.line.p2.y - a->edge.line.p1.y;
427
428
0
    L = _cairo_int32x32_64_mul (dy, adx);
429
0
    R = _cairo_int32x32_64_mul (dx, ady);
430
431
0
    return _cairo_int64_cmp (L, R);
432
0
}
433
434
static int
435
edges_compare_x_for_y (const cairo_bo_edge_t *a,
436
           const cairo_bo_edge_t *b,
437
           int32_t y)
438
0
{
439
    /* If the sweep-line is currently on an end-point of a line,
440
     * then we know its precise x value (and considering that we often need to
441
     * compare events at end-points, this happens frequently enough to warrant
442
     * special casing).
443
     */
444
0
    enum {
445
0
       HAVE_NEITHER = 0x0,
446
0
       HAVE_AX      = 0x1,
447
0
       HAVE_BX      = 0x2,
448
0
       HAVE_BOTH    = HAVE_AX | HAVE_BX
449
0
    } have_ax_bx = HAVE_BOTH;
450
0
    int32_t ax = 0, bx = 0;
451
452
0
    if (y == a->edge.line.p1.y)
453
0
  ax = a->edge.line.p1.x;
454
0
    else if (y == a->edge.line.p2.y)
455
0
  ax = a->edge.line.p2.x;
456
0
    else
457
0
  have_ax_bx &= ~HAVE_AX;
458
459
0
    if (y == b->edge.line.p1.y)
460
0
  bx = b->edge.line.p1.x;
461
0
    else if (y == b->edge.line.p2.y)
462
0
  bx = b->edge.line.p2.x;
463
0
    else
464
0
  have_ax_bx &= ~HAVE_BX;
465
466
0
    switch (have_ax_bx) {
467
0
    default:
468
0
    case HAVE_NEITHER:
469
0
  return edges_compare_x_for_y_general (a, b, y);
470
0
    case HAVE_AX:
471
0
  return -edge_compare_for_y_against_x (b, y, ax);
472
0
    case HAVE_BX:
473
0
  return edge_compare_for_y_against_x (a, y, bx);
474
0
    case HAVE_BOTH:
475
0
  return ax - bx;
476
0
    }
477
0
}
478
479
static inline int
480
_line_equal (const cairo_line_t *a, const cairo_line_t *b)
481
0
{
482
0
    return a->p1.x == b->p1.x && a->p1.y == b->p1.y &&
483
0
           a->p2.x == b->p2.x && a->p2.y == b->p2.y;
484
0
}
485
486
static int
487
_cairo_bo_sweep_line_compare_edges (cairo_bo_sweep_line_t *sweep_line,
488
            const cairo_bo_edge_t *a,
489
            const cairo_bo_edge_t *b)
490
0
{
491
0
    int cmp;
492
493
    /* compare the edges if not identical */
494
0
    if (! _line_equal (&a->edge.line, &b->edge.line)) {
495
0
  cmp = edges_compare_x_for_y (a, b, sweep_line->current_y);
496
0
  if (cmp)
497
0
      return cmp;
498
499
  /* The two edges intersect exactly at y, so fall back on slope
500
   * comparison. We know that this compare_edges function will be
501
   * called only when starting a new edge, (not when stopping an
502
   * edge), so we don't have to worry about conditionally inverting
503
   * the sense of _slope_compare. */
504
0
  cmp = _slope_compare (a, b);
505
0
  if (cmp)
506
0
      return cmp;
507
0
    }
508
509
    /* We've got two collinear edges now. */
510
0
    return b->edge.bottom - a->edge.bottom;
511
0
}
512
513
static inline cairo_int64_t
514
det32_64 (int32_t a, int32_t b,
515
    int32_t c, int32_t d)
516
0
{
517
    /* det = a * d - b * c */
518
0
    return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),
519
0
           _cairo_int32x32_64_mul (b, c));
520
0
}
521
522
static inline cairo_int128_t
523
det64x32_128 (cairo_int64_t a, int32_t       b,
524
        cairo_int64_t c, int32_t       d)
525
0
{
526
    /* det = a * d - b * c */
527
0
    return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),
528
0
            _cairo_int64x32_128_mul (c, b));
529
0
}
530
531
static inline cairo_bo_intersect_ordinate_t
532
round_to_nearest (cairo_quorem64_t d,
533
      cairo_int64_t    den)
534
0
{
535
0
    cairo_bo_intersect_ordinate_t ordinate;
536
0
    int32_t quo = d.quo;
537
0
    cairo_int64_t drem_2 = _cairo_int64_mul (d.rem, _cairo_int32_to_int64 (2));
538
539
    /* assert (! _cairo_int64_negative (den));*/
540
541
0
    if (_cairo_int64_lt (drem_2, _cairo_int64_negate (den))) {
542
0
  quo -= 1;
543
0
  drem_2 = _cairo_int64_negate (drem_2);
544
0
    } else if (_cairo_int64_le (den, drem_2)) {
545
0
  quo += 1;
546
0
  drem_2 = _cairo_int64_negate (drem_2);
547
0
    }
548
549
0
    ordinate.ordinate = quo;
550
0
    ordinate.approx = _cairo_int64_is_zero (drem_2) ? EXACT : _cairo_int64_negative (drem_2) ? EXCESS : DEFAULT;
551
552
0
    return ordinate;
553
0
}
554
555
/* Compute the intersection of two lines as defined by two edges. The
556
 * result is provided as a coordinate pair of 128-bit integers.
557
 *
558
 * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or
559
 * %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel.
560
 */
561
static cairo_bool_t
562
intersect_lines (cairo_bo_edge_t    *a,
563
     cairo_bo_edge_t    *b,
564
     cairo_bo_intersect_point_t *intersection)
565
0
{
566
0
    cairo_int64_t a_det, b_det;
567
568
    /* XXX: We're assuming here that dx and dy will still fit in 32
569
     * bits. That's not true in general as there could be overflow. We
570
     * should prevent that before the tessellation algorithm begins.
571
     * What we're doing to mitigate this is to perform clamping in
572
     * cairo_bo_tessellate_polygon().
573
     */
574
0
    int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x;
575
0
    int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y;
576
577
0
    int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x;
578
0
    int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y;
579
580
0
    cairo_int64_t den_det;
581
0
    cairo_int64_t R;
582
0
    cairo_quorem64_t qr;
583
584
0
    den_det = det32_64 (dx1, dy1, dx2, dy2);
585
586
     /* Q: Can we determine that the lines do not intersect (within range)
587
      * much more cheaply than computing the intersection point i.e. by
588
      * avoiding the division?
589
      *
590
      *   X = ax + t * adx = bx + s * bdx;
591
      *   Y = ay + t * ady = by + s * bdy;
592
      *   ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx)
593
      *   => t * L = R
594
      *
595
      * Therefore we can reject any intersection (under the criteria for
596
      * valid intersection events) if:
597
      *   L^R < 0 => t < 0, or
598
      *   L<R => t > 1
599
      *
600
      * (where top/bottom must at least extend to the line endpoints).
601
      *
602
      * A similar substitution can be performed for s, yielding:
603
      *   s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by)
604
      */
605
0
    R = det32_64 (dx2, dy2,
606
0
      b->edge.line.p1.x - a->edge.line.p1.x,
607
0
      b->edge.line.p1.y - a->edge.line.p1.y);
608
0
  if (_cairo_int64_le (den_det, R))
609
0
      return FALSE;
610
611
0
    R = det32_64 (dy1, dx1,
612
0
      a->edge.line.p1.y - b->edge.line.p1.y,
613
0
      a->edge.line.p1.x - b->edge.line.p1.x);
614
0
  if (_cairo_int64_le (den_det, R))
615
0
      return FALSE;
616
617
    /* We now know that the two lines should intersect within range. */
618
619
0
    a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y,
620
0
          a->edge.line.p2.x, a->edge.line.p2.y);
621
0
    b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y,
622
0
          b->edge.line.p2.x, b->edge.line.p2.y);
623
624
    /* x = det (a_det, dx1, b_det, dx2) / den_det */
625
0
    qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1,
626
0
                   b_det, dx2),
627
0
           den_det);
628
0
    if (_cairo_int64_eq (qr.rem, den_det))
629
0
  return FALSE;
630
631
0
    intersection->x = round_to_nearest (qr, den_det);
632
633
    /* y = det (a_det, dy1, b_det, dy2) / den_det */
634
0
    qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1,
635
0
                   b_det, dy2),
636
0
           den_det);
637
0
    if (_cairo_int64_eq (qr.rem, den_det))
638
0
  return FALSE;
639
640
0
    intersection->y = round_to_nearest (qr, den_det);
641
642
0
    return TRUE;
643
0
}
644
645
static int
646
_cairo_bo_intersect_ordinate_32_compare (cairo_bo_intersect_ordinate_t  a,
647
           int32_t      b)
648
0
{
649
    /* First compare the quotient */
650
0
    if (a.ordinate > b)
651
0
  return +1;
652
0
    if (a.ordinate < b)
653
0
  return -1;
654
655
0
    return a.approx; /* == EXCESS ? -1 : a.approx == EXACT ? 0 : 1;*/
656
0
}
657
658
/* Does the given edge contain the given point. The point must already
659
 * be known to be contained within the line determined by the edge,
660
 * (most likely the point results from an intersection of this edge
661
 * with another).
662
 *
663
 * If we had exact arithmetic, then this function would simply be a
664
 * matter of examining whether the y value of the point lies within
665
 * the range of y values of the edge. But since intersection points
666
 * are not exact due to being rounded to the nearest integer within
667
 * the available precision, we must also examine the x value of the
668
 * point.
669
 *
670
 * The definition of "contains" here is that the given intersection
671
 * point will be seen by the sweep line after the start event for the
672
 * given edge and before the stop event for the edge. See the comments
673
 * in the implementation for more details.
674
 */
675
static cairo_bool_t
676
_cairo_bo_edge_contains_intersect_point (cairo_bo_edge_t    *edge,
677
           cairo_bo_intersect_point_t *point)
678
0
{
679
0
    return _cairo_bo_intersect_ordinate_32_compare (point->y,
680
0
                edge->edge.bottom) < 0;
681
0
}
682
683
/* Compute the intersection of two edges. The result is provided as a
684
 * coordinate pair of 128-bit integers.
685
 *
686
 * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection
687
 * that is within both edges, %CAIRO_BO_STATUS_NO_INTERSECTION if the
688
 * intersection of the lines defined by the edges occurs outside of
689
 * one or both edges, and %CAIRO_BO_STATUS_PARALLEL if the two edges
690
 * are exactly parallel.
691
 *
692
 * Note that when determining if a candidate intersection is "inside"
693
 * an edge, we consider both the infinitesimal shortening and the
694
 * infinitesimal tilt rules described by John Hobby. Specifically, if
695
 * the intersection is exactly the same as an edge point, it is
696
 * effectively outside (no intersection is returned). Also, if the
697
 * intersection point has the same
698
 */
699
static cairo_bool_t
700
_cairo_bo_edge_intersect (cairo_bo_edge_t *a,
701
        cairo_bo_edge_t *b,
702
        cairo_bo_intersect_point_t *intersection)
703
0
{
704
0
    if (! intersect_lines (a, b, intersection))
705
0
  return FALSE;
706
707
0
    if (! _cairo_bo_edge_contains_intersect_point (a, intersection))
708
0
  return FALSE;
709
710
0
    if (! _cairo_bo_edge_contains_intersect_point (b, intersection))
711
0
  return FALSE;
712
713
0
    return TRUE;
714
0
}
715
716
static inline int
717
cairo_bo_event_compare (const cairo_bo_event_t *a,
718
      const cairo_bo_event_t *b)
719
0
{
720
0
    int cmp;
721
722
0
    cmp = _cairo_bo_point32_compare (&a->point, &b->point);
723
0
    if (cmp)
724
0
  return cmp;
725
726
0
    cmp = a->type - b->type;
727
0
    if (cmp)
728
0
  return cmp;
729
730
0
    return a < b ? -1 : a == b ? 0 : 1;
731
0
}
732
733
static inline void
734
_pqueue_init (pqueue_t *pq)
735
0
{
736
0
    pq->max_size = ARRAY_LENGTH (pq->elements_embedded);
737
0
    pq->size = 0;
738
739
0
    pq->elements = pq->elements_embedded;
740
0
}
741
742
static inline void
743
_pqueue_fini (pqueue_t *pq)
744
0
{
745
0
    if (pq->elements != pq->elements_embedded)
746
0
  free (pq->elements);
747
0
}
748
749
static cairo_status_t
750
_pqueue_grow (pqueue_t *pq)
751
0
{
752
0
    cairo_bo_event_t **new_elements;
753
0
    pq->max_size *= 2;
754
755
0
    if (pq->elements == pq->elements_embedded) {
756
0
  new_elements = _cairo_malloc_ab (pq->max_size,
757
0
           sizeof (cairo_bo_event_t *));
758
0
  if (unlikely (new_elements == NULL))
759
0
      return _cairo_error (CAIRO_STATUS_NO_MEMORY);
760
761
0
  memcpy (new_elements, pq->elements_embedded,
762
0
    sizeof (pq->elements_embedded));
763
0
    } else {
764
0
  new_elements = _cairo_realloc_ab (pq->elements,
765
0
            pq->max_size,
766
0
            sizeof (cairo_bo_event_t *));
767
0
  if (unlikely (new_elements == NULL))
768
0
      return _cairo_error (CAIRO_STATUS_NO_MEMORY);
769
0
    }
770
771
0
    pq->elements = new_elements;
772
0
    return CAIRO_STATUS_SUCCESS;
773
0
}
774
775
static inline cairo_status_t
776
_pqueue_push (pqueue_t *pq, cairo_bo_event_t *event)
777
0
{
778
0
    cairo_bo_event_t **elements;
779
0
    int i, parent;
780
781
0
    if (unlikely (pq->size + 1 == pq->max_size)) {
782
0
  cairo_status_t status;
783
784
0
  status = _pqueue_grow (pq);
785
0
  if (unlikely (status))
786
0
      return status;
787
0
    }
788
789
0
    elements = pq->elements;
790
791
0
    for (i = ++pq->size;
792
0
   i != PQ_FIRST_ENTRY &&
793
0
   cairo_bo_event_compare (event,
794
0
         elements[parent = PQ_PARENT_INDEX (i)]) < 0;
795
0
   i = parent)
796
0
    {
797
0
  elements[i] = elements[parent];
798
0
    }
799
800
0
    elements[i] = event;
801
802
0
    return CAIRO_STATUS_SUCCESS;
803
0
}
804
805
static inline void
806
_pqueue_pop (pqueue_t *pq)
807
0
{
808
0
    cairo_bo_event_t **elements = pq->elements;
809
0
    cairo_bo_event_t *tail;
810
0
    int child, i;
811
812
0
    tail = elements[pq->size--];
813
0
    if (pq->size == 0) {
814
0
  elements[PQ_FIRST_ENTRY] = NULL;
815
0
  return;
816
0
    }
817
818
0
    for (i = PQ_FIRST_ENTRY;
819
0
   (child = PQ_LEFT_CHILD_INDEX (i)) <= pq->size;
820
0
   i = child)
821
0
    {
822
0
  if (child != pq->size &&
823
0
      cairo_bo_event_compare (elements[child+1],
824
0
            elements[child]) < 0)
825
0
  {
826
0
      child++;
827
0
  }
828
829
0
  if (cairo_bo_event_compare (elements[child], tail) >= 0)
830
0
      break;
831
832
0
  elements[i] = elements[child];
833
0
    }
834
0
    elements[i] = tail;
835
0
}
836
837
static inline cairo_status_t
838
_cairo_bo_event_queue_insert (cairo_bo_event_queue_t  *queue,
839
            cairo_bo_event_type_t  type,
840
            cairo_bo_edge_t   *e1,
841
            cairo_bo_edge_t   *e2,
842
            const cairo_bo_intersect_point_t  *point)
843
0
{
844
0
    cairo_bo_queue_event_t *event;
845
846
0
    event = _cairo_freepool_alloc (&queue->pool);
847
0
    if (unlikely (event == NULL))
848
0
  return _cairo_error (CAIRO_STATUS_NO_MEMORY);
849
850
0
    event->type = type;
851
0
    event->e1 = e1;
852
0
    event->e2 = e2;
853
0
    event->point = *point;
854
855
0
    return _pqueue_push (&queue->pqueue, (cairo_bo_event_t *) event);
856
0
}
857
858
static void
859
_cairo_bo_event_queue_delete (cairo_bo_event_queue_t *queue,
860
            cairo_bo_event_t       *event)
861
0
{
862
0
    _cairo_freepool_free (&queue->pool, event);
863
0
}
864
865
static cairo_bo_event_t *
866
_cairo_bo_event_dequeue (cairo_bo_event_queue_t *event_queue)
867
0
{
868
0
    cairo_bo_event_t *event, *cmp;
869
870
0
    event = event_queue->pqueue.elements[PQ_FIRST_ENTRY];
871
0
    cmp = *event_queue->start_events;
872
0
    if (event == NULL ||
873
0
  (cmp != NULL && cairo_bo_event_compare (cmp, event) < 0))
874
0
    {
875
0
  event = cmp;
876
0
  event_queue->start_events++;
877
0
    }
878
0
    else
879
0
    {
880
0
  _pqueue_pop (&event_queue->pqueue);
881
0
    }
882
883
0
    return event;
884
0
}
885
886
CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort,
887
      cairo_bo_event_t *,
888
      cairo_bo_event_compare)
889
890
static void
891
_cairo_bo_event_queue_init (cairo_bo_event_queue_t   *event_queue,
892
          cairo_bo_event_t    **start_events,
893
          int         num_events)
894
0
{
895
0
    _cairo_bo_event_queue_sort (start_events, num_events);
896
0
    start_events[num_events] = NULL;
897
898
0
    event_queue->start_events = start_events;
899
900
0
    _cairo_freepool_init (&event_queue->pool,
901
0
        sizeof (cairo_bo_queue_event_t));
902
0
    _pqueue_init (&event_queue->pqueue);
903
0
    event_queue->pqueue.elements[PQ_FIRST_ENTRY] = NULL;
904
0
}
905
906
static cairo_status_t
907
event_queue_insert_stop (cairo_bo_event_queue_t *event_queue,
908
       cairo_bo_edge_t    *edge)
909
0
{
910
0
    cairo_bo_intersect_point_t point;
911
912
0
    point.y.ordinate = edge->edge.bottom;
913
0
    point.y.approx   = EXACT;
914
0
    point.x.ordinate = _line_compute_intersection_x_for_y (&edge->edge.line,
915
0
                 point.y.ordinate);
916
0
    point.x.approx   = EXACT;
917
918
0
    return _cairo_bo_event_queue_insert (event_queue,
919
0
           CAIRO_BO_EVENT_TYPE_STOP,
920
0
           edge, NULL,
921
0
           &point);
922
0
}
923
924
static void
925
_cairo_bo_event_queue_fini (cairo_bo_event_queue_t *event_queue)
926
0
{
927
0
    _pqueue_fini (&event_queue->pqueue);
928
0
    _cairo_freepool_fini (&event_queue->pool);
929
0
}
930
931
static inline cairo_status_t
932
event_queue_insert_if_intersect_below_current_y (cairo_bo_event_queue_t *event_queue,
933
             cairo_bo_edge_t  *left,
934
             cairo_bo_edge_t *right)
935
0
{
936
0
    cairo_bo_intersect_point_t intersection;
937
938
0
    if (_line_equal (&left->edge.line, &right->edge.line))
939
0
  return CAIRO_STATUS_SUCCESS;
940
941
    /* The names "left" and "right" here are correct descriptions of
942
     * the order of the two edges within the active edge list. So if a
943
     * slope comparison also puts left less than right, then we know
944
     * that the intersection of these two segments has already
945
     * occurred before the current sweep line position. */
946
0
    if (_slope_compare (left, right) <= 0)
947
0
  return CAIRO_STATUS_SUCCESS;
948
949
0
    if (! _cairo_bo_edge_intersect (left, right, &intersection))
950
0
  return CAIRO_STATUS_SUCCESS;
951
952
0
    return _cairo_bo_event_queue_insert (event_queue,
953
0
           CAIRO_BO_EVENT_TYPE_INTERSECTION,
954
0
           left, right,
955
0
           &intersection);
956
0
}
957
958
static void
959
_cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line)
960
0
{
961
0
    sweep_line->head = NULL;
962
0
    sweep_line->current_y = INT32_MIN;
963
0
    sweep_line->current_edge = NULL;
964
0
}
965
966
static cairo_status_t
967
sweep_line_insert (cairo_bo_sweep_line_t  *sweep_line,
968
       cairo_bo_edge_t    *edge)
969
0
{
970
0
    if (sweep_line->current_edge != NULL) {
971
0
  cairo_bo_edge_t *prev, *next;
972
0
  int cmp;
973
974
0
  cmp = _cairo_bo_sweep_line_compare_edges (sweep_line,
975
0
              sweep_line->current_edge,
976
0
              edge);
977
0
  if (cmp < 0) {
978
0
      prev = sweep_line->current_edge;
979
0
      next = prev->next;
980
0
      while (next != NULL &&
981
0
       _cairo_bo_sweep_line_compare_edges (sweep_line,
982
0
                   next, edge) < 0)
983
0
      {
984
0
    prev = next, next = prev->next;
985
0
      }
986
987
0
      prev->next = edge;
988
0
      edge->prev = prev;
989
0
      edge->next = next;
990
0
      if (next != NULL)
991
0
    next->prev = edge;
992
0
  } else if (cmp > 0) {
993
0
      next = sweep_line->current_edge;
994
0
      prev = next->prev;
995
0
      while (prev != NULL &&
996
0
       _cairo_bo_sweep_line_compare_edges (sweep_line,
997
0
                   prev, edge) > 0)
998
0
      {
999
0
    next = prev, prev = next->prev;
1000
0
      }
1001
1002
0
      next->prev = edge;
1003
0
      edge->next = next;
1004
0
      edge->prev = prev;
1005
0
      if (prev != NULL)
1006
0
    prev->next = edge;
1007
0
      else
1008
0
    sweep_line->head = edge;
1009
0
  } else {
1010
0
      prev = sweep_line->current_edge;
1011
0
      edge->prev = prev;
1012
0
      edge->next = prev->next;
1013
0
      if (prev->next != NULL)
1014
0
    prev->next->prev = edge;
1015
0
      prev->next = edge;
1016
0
  }
1017
0
    } else {
1018
0
  sweep_line->head = edge;
1019
0
    }
1020
1021
0
    sweep_line->current_edge = edge;
1022
1023
0
    return CAIRO_STATUS_SUCCESS;
1024
0
}
1025
1026
static void
1027
_cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t  *sweep_line,
1028
           cairo_bo_edge_t  *edge)
1029
0
{
1030
0
    if (edge->prev != NULL)
1031
0
  edge->prev->next = edge->next;
1032
0
    else
1033
0
  sweep_line->head = edge->next;
1034
1035
0
    if (edge->next != NULL)
1036
0
  edge->next->prev = edge->prev;
1037
1038
0
    if (sweep_line->current_edge == edge)
1039
0
  sweep_line->current_edge = edge->prev ? edge->prev : edge->next;
1040
0
}
1041
1042
static void
1043
_cairo_bo_sweep_line_swap (cairo_bo_sweep_line_t  *sweep_line,
1044
         cairo_bo_edge_t    *left,
1045
         cairo_bo_edge_t    *right)
1046
0
{
1047
0
    if (left->prev != NULL)
1048
0
  left->prev->next = right;
1049
0
    else
1050
0
  sweep_line->head = right;
1051
1052
0
    if (right->next != NULL)
1053
0
  right->next->prev = left;
1054
1055
0
    left->next = right->next;
1056
0
    right->next = left;
1057
1058
0
    right->prev = left->prev;
1059
0
    left->prev = right;
1060
0
}
1061
1062
static inline cairo_bool_t
1063
edges_colinear (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b)
1064
0
{
1065
0
    if (_line_equal (&a->edge.line, &b->edge.line))
1066
0
  return TRUE;
1067
1068
0
    if (_slope_compare (a, b))
1069
0
  return FALSE;
1070
1071
    /* The choice of y is not truly arbitrary since we must guarantee that it
1072
     * is greater than the start of either line.
1073
     */
1074
0
    if (a->edge.line.p1.y == b->edge.line.p1.y) {
1075
0
  return a->edge.line.p1.x == b->edge.line.p1.x;
1076
0
    } else if (a->edge.line.p1.y < b->edge.line.p1.y) {
1077
0
  return edge_compare_for_y_against_x (b,
1078
0
               a->edge.line.p1.y,
1079
0
               a->edge.line.p1.x) == 0;
1080
0
    } else {
1081
0
  return edge_compare_for_y_against_x (a,
1082
0
               b->edge.line.p1.y,
1083
0
               b->edge.line.p1.x) == 0;
1084
0
    }
1085
0
}
1086
1087
static void
1088
edges_end (cairo_bo_edge_t  *left,
1089
     int32_t     bot,
1090
     cairo_polygon_t  *polygon)
1091
0
{
1092
0
    cairo_bo_deferred_t *l = &left->deferred;
1093
0
    cairo_bo_edge_t *right = l->other;
1094
1095
0
    assert(right->deferred.other == NULL);
1096
0
    if (likely (l->top < bot)) {
1097
0
  _cairo_polygon_add_line (polygon, &left->edge.line, l->top, bot, 1);
1098
0
  _cairo_polygon_add_line (polygon, &right->edge.line, l->top, bot, -1);
1099
0
    }
1100
1101
0
    l->other = NULL;
1102
0
}
1103
1104
static inline void
1105
edges_start_or_continue (cairo_bo_edge_t  *left,
1106
       cairo_bo_edge_t  *right,
1107
       int       top,
1108
       cairo_polygon_t  *polygon)
1109
0
{
1110
0
    assert (right != NULL);
1111
0
    assert (right->deferred.other == NULL);
1112
1113
0
    if (left->deferred.other == right)
1114
0
  return;
1115
1116
0
    if (left->deferred.other != NULL) {
1117
0
  if (edges_colinear (left->deferred.other, right)) {
1118
0
      cairo_bo_edge_t *old = left->deferred.other;
1119
1120
      /* continuation on right, extend right to cover both */
1121
0
      assert (old->deferred.other == NULL);
1122
0
      assert (old->edge.line.p2.y > old->edge.line.p1.y);
1123
1124
0
      if (old->edge.line.p1.y < right->edge.line.p1.y)
1125
0
    right->edge.line.p1 = old->edge.line.p1;
1126
0
      if (old->edge.line.p2.y > right->edge.line.p2.y)
1127
0
    right->edge.line.p2 = old->edge.line.p2;
1128
0
      left->deferred.other = right;
1129
0
      return;
1130
0
  }
1131
1132
0
  edges_end (left, top, polygon);
1133
0
    }
1134
1135
0
    if (! edges_colinear (left, right)) {
1136
0
  left->deferred.top = top;
1137
0
  left->deferred.other = right;
1138
0
    }
1139
0
}
1140
1141
0
#define is_zero(w) ((w)[0] == 0 || (w)[1] == 0)
1142
1143
static inline void
1144
active_edges (cairo_bo_edge_t   *left,
1145
        int32_t      top,
1146
        cairo_polygon_t         *polygon)
1147
0
{
1148
0
  cairo_bo_edge_t *right;
1149
0
  int winding[2] = {0, 0};
1150
1151
  /* Yes, this is naive. Consider this a placeholder. */
1152
1153
0
  while (left != NULL) {
1154
0
      assert (is_zero (winding));
1155
1156
0
      do {
1157
0
    winding[left->a_or_b] += left->edge.dir;
1158
0
    if (! is_zero (winding))
1159
0
        break;
1160
1161
0
    if unlikely ((left->deferred.other))
1162
0
        edges_end (left, top, polygon);
1163
1164
0
    left = left->next;
1165
0
    if (! left)
1166
0
        return;
1167
0
      } while (1);
1168
1169
0
      right = left->next;
1170
0
      do {
1171
0
    if unlikely ((right->deferred.other))
1172
0
        edges_end (right, top, polygon);
1173
1174
0
    winding[right->a_or_b] += right->edge.dir;
1175
0
    if (is_zero (winding)) {
1176
0
        if (right->next == NULL ||
1177
0
      ! edges_colinear (right, right->next))
1178
0
      break;
1179
0
    }
1180
1181
0
    right = right->next;
1182
0
      } while (1);
1183
1184
0
      edges_start_or_continue (left, right, top, polygon);
1185
1186
0
      left = right->next;
1187
0
  }
1188
0
}
1189
1190
static cairo_status_t
1191
intersection_sweep (cairo_bo_event_t   **start_events,
1192
        int      num_events,
1193
        cairo_polygon_t *polygon)
1194
0
{
1195
0
    cairo_status_t status = CAIRO_STATUS_SUCCESS; /* silence compiler */
1196
0
    cairo_bo_event_queue_t event_queue;
1197
0
    cairo_bo_sweep_line_t sweep_line;
1198
0
    cairo_bo_event_t *event;
1199
0
    cairo_bo_edge_t *left, *right;
1200
0
    cairo_bo_edge_t *e1, *e2;
1201
1202
0
    _cairo_bo_event_queue_init (&event_queue, start_events, num_events);
1203
0
    _cairo_bo_sweep_line_init (&sweep_line);
1204
1205
0
    while ((event = _cairo_bo_event_dequeue (&event_queue))) {
1206
0
  if (event->point.y.ordinate != sweep_line.current_y) {
1207
0
      active_edges (sweep_line.head,
1208
0
        sweep_line.current_y,
1209
0
        polygon);
1210
0
      sweep_line.current_y = event->point.y.ordinate;
1211
0
  }
1212
1213
0
  switch (event->type) {
1214
0
  case CAIRO_BO_EVENT_TYPE_START:
1215
0
      e1 = &((cairo_bo_start_event_t *) event)->edge;
1216
1217
0
      status = sweep_line_insert (&sweep_line, e1);
1218
0
      if (unlikely (status))
1219
0
    goto unwind;
1220
1221
0
      status = event_queue_insert_stop (&event_queue, e1);
1222
0
      if (unlikely (status))
1223
0
    goto unwind;
1224
1225
0
      left = e1->prev;
1226
0
      right = e1->next;
1227
1228
0
      if (left != NULL) {
1229
0
    status = event_queue_insert_if_intersect_below_current_y (&event_queue, left, e1);
1230
0
    if (unlikely (status))
1231
0
        goto unwind;
1232
0
      }
1233
1234
0
      if (right != NULL) {
1235
0
    status = event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right);
1236
0
    if (unlikely (status))
1237
0
        goto unwind;
1238
0
      }
1239
1240
0
      break;
1241
1242
0
  case CAIRO_BO_EVENT_TYPE_STOP:
1243
0
      e1 = ((cairo_bo_queue_event_t *) event)->e1;
1244
0
      _cairo_bo_event_queue_delete (&event_queue, event);
1245
1246
0
      if (e1->deferred.other)
1247
0
    edges_end (e1, sweep_line.current_y, polygon);
1248
1249
0
      left = e1->prev;
1250
0
      right = e1->next;
1251
1252
0
      _cairo_bo_sweep_line_delete (&sweep_line, e1);
1253
1254
0
      if (left != NULL && right != NULL) {
1255
0
    status = event_queue_insert_if_intersect_below_current_y (&event_queue, left, right);
1256
0
    if (unlikely (status))
1257
0
        goto unwind;
1258
0
      }
1259
1260
0
      break;
1261
1262
0
  case CAIRO_BO_EVENT_TYPE_INTERSECTION:
1263
0
      e1 = ((cairo_bo_queue_event_t *) event)->e1;
1264
0
      e2 = ((cairo_bo_queue_event_t *) event)->e2;
1265
0
      _cairo_bo_event_queue_delete (&event_queue, event);
1266
1267
      /* skip this intersection if its edges are not adjacent */
1268
0
      if (e2 != e1->next)
1269
0
    break;
1270
1271
0
      if (e1->deferred.other)
1272
0
    edges_end (e1, sweep_line.current_y, polygon);
1273
0
      if (e2->deferred.other)
1274
0
    edges_end (e2, sweep_line.current_y, polygon);
1275
1276
0
      left = e1->prev;
1277
0
      right = e2->next;
1278
1279
0
      _cairo_bo_sweep_line_swap (&sweep_line, e1, e2);
1280
1281
      /* after the swap e2 is left of e1 */
1282
1283
0
      if (left != NULL) {
1284
0
    status = event_queue_insert_if_intersect_below_current_y (&event_queue, left, e2);
1285
0
    if (unlikely (status))
1286
0
        goto unwind;
1287
0
      }
1288
1289
0
      if (right != NULL) {
1290
0
    status = event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right);
1291
0
    if (unlikely (status))
1292
0
        goto unwind;
1293
0
      }
1294
1295
0
      break;
1296
0
  }
1297
0
    }
1298
1299
0
 unwind:
1300
0
    _cairo_bo_event_queue_fini (&event_queue);
1301
1302
0
    return status;
1303
0
}
1304
1305
cairo_status_t
1306
_cairo_polygon_intersect (cairo_polygon_t *a, int winding_a,
1307
        cairo_polygon_t *b, int winding_b)
1308
0
{
1309
0
    cairo_status_t status;
1310
0
    cairo_bo_start_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_start_event_t)];
1311
0
    cairo_bo_start_event_t *events;
1312
0
    cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
1313
0
    cairo_bo_event_t **event_ptrs;
1314
0
    int num_events;
1315
0
    int i, j;
1316
1317
    /* XXX lazy */
1318
0
    if (winding_a != CAIRO_FILL_RULE_WINDING) {
1319
0
  status = _cairo_polygon_reduce (a, winding_a);
1320
0
  if (unlikely (status))
1321
0
      return status;
1322
0
    }
1323
1324
0
    if (winding_b != CAIRO_FILL_RULE_WINDING) {
1325
0
  status = _cairo_polygon_reduce (b, winding_b);
1326
0
  if (unlikely (status))
1327
0
      return status;
1328
0
    }
1329
1330
0
    if (unlikely (0 == a->num_edges))
1331
0
  return CAIRO_STATUS_SUCCESS;
1332
1333
0
    if (unlikely (0 == b->num_edges)) {
1334
0
  a->num_edges = 0;
1335
0
  return CAIRO_STATUS_SUCCESS;
1336
0
    }
1337
1338
0
    events = stack_events;
1339
0
    event_ptrs = stack_event_ptrs;
1340
0
    num_events = a->num_edges + b->num_edges;
1341
0
    if (num_events > ARRAY_LENGTH (stack_events)) {
1342
0
  events = _cairo_malloc_ab_plus_c (num_events,
1343
0
            sizeof (cairo_bo_start_event_t) +
1344
0
            sizeof (cairo_bo_event_t *),
1345
0
            sizeof (cairo_bo_event_t *));
1346
0
  if (unlikely (events == NULL))
1347
0
      return _cairo_error (CAIRO_STATUS_NO_MEMORY);
1348
1349
0
  event_ptrs = (cairo_bo_event_t **) (events + num_events);
1350
0
    }
1351
1352
0
    j = 0;
1353
0
    for (i = 0; i < a->num_edges; i++) {
1354
0
  event_ptrs[j] = (cairo_bo_event_t *) &events[j];
1355
1356
0
  events[j].type = CAIRO_BO_EVENT_TYPE_START;
1357
0
  events[j].point.y.ordinate = a->edges[i].top;
1358
0
  events[j].point.y.approx = EXACT;
1359
0
  events[j].point.x.ordinate =
1360
0
      _line_compute_intersection_x_for_y (&a->edges[i].line,
1361
0
            events[j].point.y.ordinate);
1362
0
  events[j].point.x.approx = EXACT;
1363
1364
0
  events[j].edge.a_or_b = 0;
1365
0
  events[j].edge.edge = a->edges[i];
1366
0
  events[j].edge.deferred.other = NULL;
1367
0
  events[j].edge.prev = NULL;
1368
0
  events[j].edge.next = NULL;
1369
0
  j++;
1370
0
    }
1371
1372
0
    for (i = 0; i < b->num_edges; i++) {
1373
0
  event_ptrs[j] = (cairo_bo_event_t *) &events[j];
1374
1375
0
  events[j].type = CAIRO_BO_EVENT_TYPE_START;
1376
0
  events[j].point.y.ordinate = b->edges[i].top;
1377
0
  events[j].point.y.approx = EXACT;
1378
0
  events[j].point.x.ordinate =
1379
0
      _line_compute_intersection_x_for_y (&b->edges[i].line,
1380
0
            events[j].point.y.ordinate);
1381
0
  events[j].point.x.approx = EXACT;
1382
1383
0
  events[j].edge.a_or_b = 1;
1384
0
  events[j].edge.edge = b->edges[i];
1385
0
  events[j].edge.deferred.other = NULL;
1386
0
  events[j].edge.prev = NULL;
1387
0
  events[j].edge.next = NULL;
1388
0
  j++;
1389
0
    }
1390
0
    assert (j == num_events);
1391
1392
#if 0
1393
    {
1394
  FILE *file = fopen ("clip_a.txt", "w");
1395
  _cairo_debug_print_polygon (file, a);
1396
  fclose (file);
1397
    }
1398
    {
1399
  FILE *file = fopen ("clip_b.txt", "w");
1400
  _cairo_debug_print_polygon (file, b);
1401
  fclose (file);
1402
    }
1403
#endif
1404
1405
0
    a->num_edges = 0;
1406
0
    status = intersection_sweep (event_ptrs, num_events, a);
1407
0
    if (events != stack_events)
1408
0
  free (events);
1409
1410
#if 0
1411
    {
1412
  FILE *file = fopen ("clip_result.txt", "w");
1413
  _cairo_debug_print_polygon (file, a);
1414
  fclose (file);
1415
    }
1416
#endif
1417
1418
0
    return status;
1419
0
}
1420
1421
cairo_status_t
1422
_cairo_polygon_intersect_with_boxes (cairo_polygon_t *polygon,
1423
             cairo_fill_rule_t *winding,
1424
             cairo_box_t *boxes,
1425
             int num_boxes)
1426
0
{
1427
0
    cairo_polygon_t b;
1428
0
    cairo_status_t status;
1429
0
    int n;
1430
1431
0
    if (num_boxes == 0) {
1432
0
  polygon->num_edges = 0;
1433
0
  return CAIRO_STATUS_SUCCESS;
1434
0
    }
1435
1436
0
    for (n = 0; n < num_boxes; n++) {
1437
0
  if (polygon->extents.p1.x >= boxes[n].p1.x &&
1438
0
      polygon->extents.p2.x <= boxes[n].p2.x &&
1439
0
      polygon->extents.p1.y >= boxes[n].p1.y &&
1440
0
      polygon->extents.p2.y <= boxes[n].p2.y)
1441
0
  {
1442
0
      return CAIRO_STATUS_SUCCESS;
1443
0
  }
1444
0
    }
1445
1446
0
    _cairo_polygon_init (&b, NULL, 0);
1447
0
    for (n = 0; n < num_boxes; n++) {
1448
0
  if (boxes[n].p2.x > polygon->extents.p1.x &&
1449
0
      boxes[n].p1.x < polygon->extents.p2.x &&
1450
0
      boxes[n].p2.y > polygon->extents.p1.y &&
1451
0
      boxes[n].p1.y < polygon->extents.p2.y)
1452
0
  {
1453
0
      cairo_point_t p1, p2;
1454
1455
0
      p1.y = boxes[n].p1.y;
1456
0
      p2.y = boxes[n].p2.y;
1457
1458
0
      p2.x = p1.x = boxes[n].p1.x;
1459
0
      _cairo_polygon_add_external_edge (&b, &p1, &p2);
1460
1461
0
      p2.x = p1.x = boxes[n].p2.x;
1462
0
      _cairo_polygon_add_external_edge (&b, &p2, &p1);
1463
0
  }
1464
0
    }
1465
1466
0
    status = _cairo_polygon_intersect (polygon, *winding,
1467
0
               &b, CAIRO_FILL_RULE_WINDING);
1468
0
    _cairo_polygon_fini (&b);
1469
1470
0
    *winding = CAIRO_FILL_RULE_WINDING;
1471
0
    return status;
1472
0
}