Coverage Report

Created: 2025-07-07 10:01

/work/workdir/UnpackedTarball/cairo/src/cairo-rectangle.c
Line
Count
Source (jump to first uncovered line)
1
/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
2
/* cairo - a vector graphics library with display and print output
3
 *
4
 * Copyright © 2002 University of Southern California
5
 * Copyright © 2005 Red Hat, Inc.
6
 * Copyright © 2006 Red Hat, Inc.
7
 *
8
 * This library is free software; you can redistribute it and/or
9
 * modify it either under the terms of the GNU Lesser General Public
10
 * License version 2.1 as published by the Free Software Foundation
11
 * (the "LGPL") or, at your option, under the terms of the Mozilla
12
 * Public License Version 1.1 (the "MPL"). If you do not alter this
13
 * notice, a recipient may use your version of this file under either
14
 * the MPL or the LGPL.
15
 *
16
 * You should have received a copy of the LGPL along with this library
17
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
19
 * You should have received a copy of the MPL along with this library
20
 * in the file COPYING-MPL-1.1
21
 *
22
 * The contents of this file are subject to the Mozilla Public License
23
 * Version 1.1 (the "License"); you may not use this file except in
24
 * compliance with the License. You may obtain a copy of the License at
25
 * http://www.mozilla.org/MPL/
26
 *
27
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
28
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
29
 * the specific language governing rights and limitations.
30
 *
31
 * The Original Code is the cairo graphics library.
32
 *
33
 * The Initial Developer of the Original Code is University of Southern
34
 * California.
35
 *
36
 * Contributor(s):
37
 *  Carl D. Worth <cworth@cworth.org>
38
 */
39
40
#include "cairoint.h"
41
42
#include "cairo-box-inline.h"
43
44
const cairo_rectangle_int_t _cairo_empty_rectangle = { 0, 0, 0, 0 };
45
const cairo_rectangle_int_t _cairo_unbounded_rectangle = {
46
     CAIRO_RECT_INT_MIN, CAIRO_RECT_INT_MIN,
47
     CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN,
48
     CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN,
49
};
50
51
cairo_private void
52
_cairo_box_from_doubles (cairo_box_t *box,
53
       double *x1, double *y1,
54
       double *x2, double *y2)
55
0
{
56
0
    box->p1.x = _cairo_fixed_from_double (*x1);
57
0
    box->p1.y = _cairo_fixed_from_double (*y1);
58
0
    box->p2.x = _cairo_fixed_from_double (*x2);
59
0
    box->p2.y = _cairo_fixed_from_double (*y2);
60
0
}
61
62
cairo_private void
63
_cairo_box_to_doubles (const cairo_box_t *box,
64
           double *x1, double *y1,
65
           double *x2, double *y2)
66
0
{
67
0
    *x1 = _cairo_fixed_to_double (box->p1.x);
68
0
    *y1 = _cairo_fixed_to_double (box->p1.y);
69
0
    *x2 = _cairo_fixed_to_double (box->p2.x);
70
0
    *y2 = _cairo_fixed_to_double (box->p2.y);
71
0
}
72
73
void
74
_cairo_box_from_rectangle (cairo_box_t                 *box,
75
         const cairo_rectangle_int_t *rect)
76
1.09k
{
77
1.09k
    box->p1.x = _cairo_fixed_from_int (rect->x);
78
1.09k
    box->p1.y = _cairo_fixed_from_int (rect->y);
79
1.09k
    box->p2.x = _cairo_fixed_from_int (rect->x + rect->width);
80
1.09k
    box->p2.y = _cairo_fixed_from_int (rect->y + rect->height);
81
1.09k
}
82
83
void
84
_cairo_boxes_get_extents (const cairo_box_t *boxes,
85
        int num_boxes,
86
        cairo_box_t *extents)
87
14.5k
{
88
14.5k
    assert (num_boxes > 0);
89
14.5k
    *extents = *boxes;
90
14.5k
    while (--num_boxes)
91
0
  _cairo_box_add_box (extents, ++boxes);
92
14.5k
}
93
94
/* XXX We currently have a confusing mix of boxes and rectangles as
95
 * exemplified by this function.  A #cairo_box_t is a rectangular area
96
 * represented by the coordinates of the upper left and lower right
97
 * corners, expressed in fixed point numbers.  A #cairo_rectangle_int_t is
98
 * also a rectangular area, but represented by the upper left corner
99
 * and the width and the height, as integer numbers.
100
 *
101
 * This function converts a #cairo_box_t to a #cairo_rectangle_int_t by
102
 * increasing the area to the nearest integer coordinates.  We should
103
 * standardize on #cairo_rectangle_fixed_t and #cairo_rectangle_int_t, and
104
 * this function could be renamed to the more reasonable
105
 * _cairo_rectangle_fixed_round.
106
 */
107
108
void
109
_cairo_box_round_to_rectangle (const cairo_box_t     *box,
110
             cairo_rectangle_int_t *rectangle)
111
9.36M
{
112
9.36M
    rectangle->x = _cairo_fixed_integer_floor (box->p1.x);
113
9.36M
    rectangle->y = _cairo_fixed_integer_floor (box->p1.y);
114
9.36M
    rectangle->width = _cairo_fixed_integer_ceil (box->p2.x) - rectangle->x;
115
9.36M
    rectangle->height = _cairo_fixed_integer_ceil (box->p2.y) - rectangle->y;
116
9.36M
}
117
118
cairo_bool_t
119
_cairo_rectangle_intersect (cairo_rectangle_int_t *dst,
120
          const cairo_rectangle_int_t *src)
121
19.0M
{
122
19.0M
    int x1, y1, x2, y2;
123
124
19.0M
    x1 = MAX (dst->x, src->x);
125
19.0M
    y1 = MAX (dst->y, src->y);
126
    /* Beware the unsigned promotion, fortunately we have bits to spare
127
     * as (CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN) < UINT_MAX
128
     */
129
19.0M
    x2 = MIN (dst->x + (int) dst->width,  src->x + (int) src->width);
130
19.0M
    y2 = MIN (dst->y + (int) dst->height, src->y + (int) src->height);
131
132
19.0M
    if (x1 >= x2 || y1 >= y2) {
133
7.27M
  dst->x = 0;
134
7.27M
  dst->y = 0;
135
7.27M
  dst->width  = 0;
136
7.27M
  dst->height = 0;
137
138
7.27M
  return FALSE;
139
11.7M
    } else {
140
11.7M
  dst->x = x1;
141
11.7M
  dst->y = y1;
142
11.7M
  dst->width  = x2 - x1;
143
11.7M
  dst->height = y2 - y1;
144
145
11.7M
  return TRUE;
146
11.7M
    }
147
19.0M
}
148
149
/* Extends the dst rectangle to also contain src.
150
 * If one of the rectangles is empty, the result is undefined
151
 */
152
void
153
_cairo_rectangle_union (cairo_rectangle_int_t *dst,
154
      const cairo_rectangle_int_t *src)
155
0
{
156
0
    int x1, y1, x2, y2;
157
158
0
    x1 = MIN (dst->x, src->x);
159
0
    y1 = MIN (dst->y, src->y);
160
    /* Beware the unsigned promotion, fortunately we have bits to spare
161
     * as (CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN) < UINT_MAX
162
     */
163
0
    x2 = MAX (dst->x + (int) dst->width,  src->x + (int) src->width);
164
0
    y2 = MAX (dst->y + (int) dst->height, src->y + (int) src->height);
165
166
0
    dst->x = x1;
167
0
    dst->y = y1;
168
0
    dst->width  = x2 - x1;
169
0
    dst->height = y2 - y1;
170
0
}
171
172
0
#define P1x (line->p1.x)
173
0
#define P1y (line->p1.y)
174
0
#define P2x (line->p2.x)
175
0
#define P2y (line->p2.y)
176
0
#define B1x (box->p1.x)
177
0
#define B1y (box->p1.y)
178
0
#define B2x (box->p2.x)
179
0
#define B2y (box->p2.y)
180
181
/*
182
 * Check whether any part of line intersects box.  This function essentially
183
 * computes whether the ray starting at line->p1 in the direction of line->p2
184
 * intersects the box before it reaches p2.  Normally, this is done
185
 * by dividing by the lengths of the line projected onto each axis.  Because
186
 * we're in fixed point, this function does a bit more work to avoid having to
187
 * do the division -- we don't care about the actual intersection point, so
188
 * it's of no interest to us.
189
 */
190
191
cairo_bool_t
192
_cairo_box_intersects_line_segment (const cairo_box_t *box, cairo_line_t *line)
193
0
{
194
0
    cairo_fixed_t t1=0, t2=0, t3=0, t4=0;
195
0
    cairo_int64_t t1y, t2y, t3x, t4x;
196
197
0
    cairo_fixed_t xlen, ylen;
198
199
0
    if (_cairo_box_contains_point (box, &line->p1) ||
200
0
  _cairo_box_contains_point (box, &line->p2))
201
0
  return TRUE;
202
203
0
    xlen = P2x - P1x;
204
0
    ylen = P2y - P1y;
205
206
0
    if (xlen) {
207
0
  if (xlen > 0) {
208
0
      t1 = B1x - P1x;
209
0
      t2 = B2x - P1x;
210
0
  } else {
211
0
      t1 = P1x - B2x;
212
0
      t2 = P1x - B1x;
213
0
      xlen = - xlen;
214
0
  }
215
216
0
  if ((t1 < 0 || t1 > xlen) &&
217
0
      (t2 < 0 || t2 > xlen))
218
0
      return FALSE;
219
0
    } else {
220
  /* Fully vertical line -- check that X is in bounds */
221
0
  if (P1x < B1x || P1x > B2x)
222
0
      return FALSE;
223
0
    }
224
225
0
    if (ylen) {
226
0
  if (ylen > 0) {
227
0
      t3 = B1y - P1y;
228
0
      t4 = B2y - P1y;
229
0
  } else {
230
0
      t3 = P1y - B2y;
231
0
      t4 = P1y - B1y;
232
0
      ylen = - ylen;
233
0
  }
234
235
0
  if ((t3 < 0 || t3 > ylen) &&
236
0
      (t4 < 0 || t4 > ylen))
237
0
      return FALSE;
238
0
    } else {
239
  /* Fully horizontal line -- check Y */
240
0
  if (P1y < B1y || P1y > B2y)
241
0
      return FALSE;
242
0
    }
243
244
    /* If we had a horizontal or vertical line, then it's already been checked */
245
0
    if (P1x == P2x || P1y == P2y)
246
0
  return TRUE;
247
248
    /* Check overlap.  Note that t1 < t2 and t3 < t4 here. */
249
0
    t1y = _cairo_int32x32_64_mul (t1, ylen);
250
0
    t2y = _cairo_int32x32_64_mul (t2, ylen);
251
0
    t3x = _cairo_int32x32_64_mul (t3, xlen);
252
0
    t4x = _cairo_int32x32_64_mul (t4, xlen);
253
254
0
    if (_cairo_int64_lt(t1y, t4x) &&
255
0
  _cairo_int64_lt(t3x, t2y))
256
0
  return TRUE;
257
258
0
    return FALSE;
259
0
}
260
261
static cairo_status_t
262
_cairo_box_add_spline_point (void *closure,
263
           const cairo_point_t *point,
264
           const cairo_slope_t *tangent)
265
16.8k
{
266
16.8k
    _cairo_box_add_point (closure, point);
267
268
16.8k
    return CAIRO_STATUS_SUCCESS;
269
16.8k
}
270
271
/* assumes a has been previously added */
272
void
273
_cairo_box_add_curve_to (cairo_box_t *extents,
274
       const cairo_point_t *a,
275
       const cairo_point_t *b,
276
       const cairo_point_t *c,
277
       const cairo_point_t *d)
278
67.3k
{
279
67.3k
    _cairo_box_add_point (extents, d);
280
67.3k
    if (!_cairo_box_contains_point (extents, b) ||
281
67.3k
  !_cairo_box_contains_point (extents, c))
282
4.75k
    {
283
4.75k
  cairo_status_t status;
284
285
4.75k
  status = _cairo_spline_bound (_cairo_box_add_spline_point,
286
4.75k
              extents, a, b, c, d);
287
4.75k
  assert (status == CAIRO_STATUS_SUCCESS);
288
4.75k
    }
289
67.3k
}
290
291
void
292
_cairo_rectangle_int_from_double (cairo_rectangle_int_t *recti,
293
          const cairo_rectangle_t *rectf)
294
0
{
295
0
  recti->x = floor (rectf->x);
296
0
  recti->y = floor (rectf->y);
297
0
  recti->width  = ceil (rectf->x + rectf->width) - floor (rectf->x);
298
0
  recti->height = ceil (rectf->y + rectf->height) - floor (rectf->y);
299
0
}