Coverage Report

Created: 2025-07-07 10:01

/work/workdir/UnpackedTarball/lcms2/src/cmsmtrx.c
Line
Count
Source (jump to first uncovered line)
1
//---------------------------------------------------------------------------------
2
//
3
//  Little Color Management System
4
//  Copyright (c) 1998-2024 Marti Maria Saguer
5
//
6
// Permission is hereby granted, free of charge, to any person obtaining
7
// a copy of this software and associated documentation files (the "Software"),
8
// to deal in the Software without restriction, including without limitation
9
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
10
// and/or sell copies of the Software, and to permit persons to whom the Software
11
// is furnished to do so, subject to the following conditions:
12
//
13
// The above copyright notice and this permission notice shall be included in
14
// all copies or substantial portions of the Software.
15
//
16
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23
//
24
//---------------------------------------------------------------------------------
25
//
26
27
#include "lcms2_internal.h"
28
29
30
#define DSWAP(x, y)     {cmsFloat64Number tmp = (x); (x)=(y); (y)=tmp;}
31
32
33
// Initiate a vector
34
void CMSEXPORT _cmsVEC3init(cmsVEC3* r, cmsFloat64Number x, cmsFloat64Number y, cmsFloat64Number z)
35
0
{
36
0
    r -> n[VX] = x;
37
0
    r -> n[VY] = y;
38
0
    r -> n[VZ] = z;
39
0
}
40
41
// Vector subtraction
42
void CMSEXPORT _cmsVEC3minus(cmsVEC3* r, const cmsVEC3* a, const cmsVEC3* b)
43
0
{
44
0
  r -> n[VX] = a -> n[VX] - b -> n[VX];
45
0
  r -> n[VY] = a -> n[VY] - b -> n[VY];
46
0
  r -> n[VZ] = a -> n[VZ] - b -> n[VZ];
47
0
}
48
49
// Vector cross product
50
void CMSEXPORT _cmsVEC3cross(cmsVEC3* r, const cmsVEC3* u, const cmsVEC3* v)
51
0
{
52
0
    r ->n[VX] = u->n[VY] * v->n[VZ] - v->n[VY] * u->n[VZ];
53
0
    r ->n[VY] = u->n[VZ] * v->n[VX] - v->n[VZ] * u->n[VX];
54
0
    r ->n[VZ] = u->n[VX] * v->n[VY] - v->n[VX] * u->n[VY];
55
0
}
56
57
// Vector dot product
58
cmsFloat64Number CMSEXPORT _cmsVEC3dot(const cmsVEC3* u, const cmsVEC3* v)
59
0
{
60
0
    return u->n[VX] * v->n[VX] + u->n[VY] * v->n[VY] + u->n[VZ] * v->n[VZ];
61
0
}
62
63
// Euclidean length
64
cmsFloat64Number CMSEXPORT _cmsVEC3length(const cmsVEC3* a)
65
0
{
66
0
    return sqrt(a ->n[VX] * a ->n[VX] +
67
0
                a ->n[VY] * a ->n[VY] +
68
0
                a ->n[VZ] * a ->n[VZ]);
69
0
}
70
71
// Euclidean distance
72
cmsFloat64Number CMSEXPORT _cmsVEC3distance(const cmsVEC3* a, const cmsVEC3* b)
73
0
{
74
0
    cmsFloat64Number d1 = a ->n[VX] - b ->n[VX];
75
0
    cmsFloat64Number d2 = a ->n[VY] - b ->n[VY];
76
0
    cmsFloat64Number d3 = a ->n[VZ] - b ->n[VZ];
77
78
0
    return sqrt(d1*d1 + d2*d2 + d3*d3);
79
0
}
80
81
82
83
// 3x3 Identity
84
void CMSEXPORT _cmsMAT3identity(cmsMAT3* a)
85
0
{
86
0
    _cmsVEC3init(&a-> v[0], 1.0, 0.0, 0.0);
87
0
    _cmsVEC3init(&a-> v[1], 0.0, 1.0, 0.0);
88
0
    _cmsVEC3init(&a-> v[2], 0.0, 0.0, 1.0);
89
0
}
90
91
static
92
cmsBool CloseEnough(cmsFloat64Number a, cmsFloat64Number b)
93
0
{
94
0
    return fabs(b - a) < (1.0 / 65535.0);
95
0
}
96
97
98
cmsBool CMSEXPORT _cmsMAT3isIdentity(const cmsMAT3* a)
99
0
{
100
0
    cmsMAT3 Identity;
101
0
    int i, j;
102
103
0
    _cmsMAT3identity(&Identity);
104
105
0
    for (i=0; i < 3; i++)
106
0
        for (j=0; j < 3; j++)
107
0
            if (!CloseEnough(a ->v[i].n[j], Identity.v[i].n[j])) return FALSE;
108
109
0
    return TRUE;
110
0
}
111
112
113
// Multiply two matrices
114
void CMSEXPORT _cmsMAT3per(cmsMAT3* r, const cmsMAT3* a, const cmsMAT3* b)
115
0
{
116
0
#define ROWCOL(i, j) \
117
0
    a->v[i].n[0]*b->v[0].n[j] + a->v[i].n[1]*b->v[1].n[j] + a->v[i].n[2]*b->v[2].n[j]
118
119
0
    _cmsVEC3init(&r-> v[0], ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2));
120
0
    _cmsVEC3init(&r-> v[1], ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2));
121
0
    _cmsVEC3init(&r-> v[2], ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2));
122
123
0
#undef ROWCOL //(i, j)
124
0
}
125
126
127
128
// Inverse of a matrix b = a^(-1)
129
cmsBool  CMSEXPORT _cmsMAT3inverse(const cmsMAT3* a, cmsMAT3* b)
130
0
{
131
0
   cmsFloat64Number det, c0, c1, c2;
132
133
0
   c0 =  a -> v[1].n[1]*a -> v[2].n[2] - a -> v[1].n[2]*a -> v[2].n[1];
134
0
   c1 = -a -> v[1].n[0]*a -> v[2].n[2] + a -> v[1].n[2]*a -> v[2].n[0];
135
0
   c2 =  a -> v[1].n[0]*a -> v[2].n[1] - a -> v[1].n[1]*a -> v[2].n[0];
136
137
0
   det = a -> v[0].n[0]*c0 + a -> v[0].n[1]*c1 + a -> v[0].n[2]*c2;
138
139
0
   if (fabs(det) < MATRIX_DET_TOLERANCE) return FALSE;  // singular matrix; can't invert
140
141
0
   b -> v[0].n[0] = c0/det;
142
0
   b -> v[0].n[1] = (a -> v[0].n[2]*a -> v[2].n[1] - a -> v[0].n[1]*a -> v[2].n[2])/det;
143
0
   b -> v[0].n[2] = (a -> v[0].n[1]*a -> v[1].n[2] - a -> v[0].n[2]*a -> v[1].n[1])/det;
144
0
   b -> v[1].n[0] = c1/det;
145
0
   b -> v[1].n[1] = (a -> v[0].n[0]*a -> v[2].n[2] - a -> v[0].n[2]*a -> v[2].n[0])/det;
146
0
   b -> v[1].n[2] = (a -> v[0].n[2]*a -> v[1].n[0] - a -> v[0].n[0]*a -> v[1].n[2])/det;
147
0
   b -> v[2].n[0] = c2/det;
148
0
   b -> v[2].n[1] = (a -> v[0].n[1]*a -> v[2].n[0] - a -> v[0].n[0]*a -> v[2].n[1])/det;
149
0
   b -> v[2].n[2] = (a -> v[0].n[0]*a -> v[1].n[1] - a -> v[0].n[1]*a -> v[1].n[0])/det;
150
151
0
   return TRUE;
152
0
}
153
154
155
// Solve a system in the form Ax = b
156
cmsBool  CMSEXPORT _cmsMAT3solve(cmsVEC3* x, cmsMAT3* a, cmsVEC3* b)
157
0
{
158
0
    cmsMAT3 m, a_1;
159
160
0
    memmove(&m, a, sizeof(cmsMAT3));
161
162
0
    if (!_cmsMAT3inverse(&m, &a_1)) return FALSE;  // Singular matrix
163
164
0
    _cmsMAT3eval(x, &a_1, b);
165
0
    return TRUE;
166
0
}
167
168
// Evaluate a vector across a matrix
169
void CMSEXPORT _cmsMAT3eval(cmsVEC3* r, const cmsMAT3* a, const cmsVEC3* v)
170
0
{
171
0
    r->n[VX] = a->v[0].n[VX]*v->n[VX] + a->v[0].n[VY]*v->n[VY] + a->v[0].n[VZ]*v->n[VZ];
172
0
    r->n[VY] = a->v[1].n[VX]*v->n[VX] + a->v[1].n[VY]*v->n[VY] + a->v[1].n[VZ]*v->n[VZ];
173
0
    r->n[VZ] = a->v[2].n[VX]*v->n[VX] + a->v[2].n[VY]*v->n[VY] + a->v[2].n[VZ]*v->n[VZ];
174
0
}
175
176