/work/workdir/UnpackedTarball/lcms2/src/cmsmtrx.c
Line | Count | Source (jump to first uncovered line) |
1 | | //--------------------------------------------------------------------------------- |
2 | | // |
3 | | // Little Color Management System |
4 | | // Copyright (c) 1998-2024 Marti Maria Saguer |
5 | | // |
6 | | // Permission is hereby granted, free of charge, to any person obtaining |
7 | | // a copy of this software and associated documentation files (the "Software"), |
8 | | // to deal in the Software without restriction, including without limitation |
9 | | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
10 | | // and/or sell copies of the Software, and to permit persons to whom the Software |
11 | | // is furnished to do so, subject to the following conditions: |
12 | | // |
13 | | // The above copyright notice and this permission notice shall be included in |
14 | | // all copies or substantial portions of the Software. |
15 | | // |
16 | | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
17 | | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
18 | | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
19 | | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
20 | | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
21 | | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
22 | | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
23 | | // |
24 | | //--------------------------------------------------------------------------------- |
25 | | // |
26 | | |
27 | | #include "lcms2_internal.h" |
28 | | |
29 | | |
30 | | #define DSWAP(x, y) {cmsFloat64Number tmp = (x); (x)=(y); (y)=tmp;} |
31 | | |
32 | | |
33 | | // Initiate a vector |
34 | | void CMSEXPORT _cmsVEC3init(cmsVEC3* r, cmsFloat64Number x, cmsFloat64Number y, cmsFloat64Number z) |
35 | 0 | { |
36 | 0 | r -> n[VX] = x; |
37 | 0 | r -> n[VY] = y; |
38 | 0 | r -> n[VZ] = z; |
39 | 0 | } |
40 | | |
41 | | // Vector subtraction |
42 | | void CMSEXPORT _cmsVEC3minus(cmsVEC3* r, const cmsVEC3* a, const cmsVEC3* b) |
43 | 0 | { |
44 | 0 | r -> n[VX] = a -> n[VX] - b -> n[VX]; |
45 | 0 | r -> n[VY] = a -> n[VY] - b -> n[VY]; |
46 | 0 | r -> n[VZ] = a -> n[VZ] - b -> n[VZ]; |
47 | 0 | } |
48 | | |
49 | | // Vector cross product |
50 | | void CMSEXPORT _cmsVEC3cross(cmsVEC3* r, const cmsVEC3* u, const cmsVEC3* v) |
51 | 0 | { |
52 | 0 | r ->n[VX] = u->n[VY] * v->n[VZ] - v->n[VY] * u->n[VZ]; |
53 | 0 | r ->n[VY] = u->n[VZ] * v->n[VX] - v->n[VZ] * u->n[VX]; |
54 | 0 | r ->n[VZ] = u->n[VX] * v->n[VY] - v->n[VX] * u->n[VY]; |
55 | 0 | } |
56 | | |
57 | | // Vector dot product |
58 | | cmsFloat64Number CMSEXPORT _cmsVEC3dot(const cmsVEC3* u, const cmsVEC3* v) |
59 | 0 | { |
60 | 0 | return u->n[VX] * v->n[VX] + u->n[VY] * v->n[VY] + u->n[VZ] * v->n[VZ]; |
61 | 0 | } |
62 | | |
63 | | // Euclidean length |
64 | | cmsFloat64Number CMSEXPORT _cmsVEC3length(const cmsVEC3* a) |
65 | 0 | { |
66 | 0 | return sqrt(a ->n[VX] * a ->n[VX] + |
67 | 0 | a ->n[VY] * a ->n[VY] + |
68 | 0 | a ->n[VZ] * a ->n[VZ]); |
69 | 0 | } |
70 | | |
71 | | // Euclidean distance |
72 | | cmsFloat64Number CMSEXPORT _cmsVEC3distance(const cmsVEC3* a, const cmsVEC3* b) |
73 | 0 | { |
74 | 0 | cmsFloat64Number d1 = a ->n[VX] - b ->n[VX]; |
75 | 0 | cmsFloat64Number d2 = a ->n[VY] - b ->n[VY]; |
76 | 0 | cmsFloat64Number d3 = a ->n[VZ] - b ->n[VZ]; |
77 | |
|
78 | 0 | return sqrt(d1*d1 + d2*d2 + d3*d3); |
79 | 0 | } |
80 | | |
81 | | |
82 | | |
83 | | // 3x3 Identity |
84 | | void CMSEXPORT _cmsMAT3identity(cmsMAT3* a) |
85 | 0 | { |
86 | 0 | _cmsVEC3init(&a-> v[0], 1.0, 0.0, 0.0); |
87 | 0 | _cmsVEC3init(&a-> v[1], 0.0, 1.0, 0.0); |
88 | 0 | _cmsVEC3init(&a-> v[2], 0.0, 0.0, 1.0); |
89 | 0 | } |
90 | | |
91 | | static |
92 | | cmsBool CloseEnough(cmsFloat64Number a, cmsFloat64Number b) |
93 | 0 | { |
94 | 0 | return fabs(b - a) < (1.0 / 65535.0); |
95 | 0 | } |
96 | | |
97 | | |
98 | | cmsBool CMSEXPORT _cmsMAT3isIdentity(const cmsMAT3* a) |
99 | 0 | { |
100 | 0 | cmsMAT3 Identity; |
101 | 0 | int i, j; |
102 | |
|
103 | 0 | _cmsMAT3identity(&Identity); |
104 | |
|
105 | 0 | for (i=0; i < 3; i++) |
106 | 0 | for (j=0; j < 3; j++) |
107 | 0 | if (!CloseEnough(a ->v[i].n[j], Identity.v[i].n[j])) return FALSE; |
108 | | |
109 | 0 | return TRUE; |
110 | 0 | } |
111 | | |
112 | | |
113 | | // Multiply two matrices |
114 | | void CMSEXPORT _cmsMAT3per(cmsMAT3* r, const cmsMAT3* a, const cmsMAT3* b) |
115 | 0 | { |
116 | 0 | #define ROWCOL(i, j) \ |
117 | 0 | a->v[i].n[0]*b->v[0].n[j] + a->v[i].n[1]*b->v[1].n[j] + a->v[i].n[2]*b->v[2].n[j] |
118 | |
|
119 | 0 | _cmsVEC3init(&r-> v[0], ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2)); |
120 | 0 | _cmsVEC3init(&r-> v[1], ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2)); |
121 | 0 | _cmsVEC3init(&r-> v[2], ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2)); |
122 | |
|
123 | 0 | #undef ROWCOL //(i, j) |
124 | 0 | } |
125 | | |
126 | | |
127 | | |
128 | | // Inverse of a matrix b = a^(-1) |
129 | | cmsBool CMSEXPORT _cmsMAT3inverse(const cmsMAT3* a, cmsMAT3* b) |
130 | 0 | { |
131 | 0 | cmsFloat64Number det, c0, c1, c2; |
132 | |
|
133 | 0 | c0 = a -> v[1].n[1]*a -> v[2].n[2] - a -> v[1].n[2]*a -> v[2].n[1]; |
134 | 0 | c1 = -a -> v[1].n[0]*a -> v[2].n[2] + a -> v[1].n[2]*a -> v[2].n[0]; |
135 | 0 | c2 = a -> v[1].n[0]*a -> v[2].n[1] - a -> v[1].n[1]*a -> v[2].n[0]; |
136 | |
|
137 | 0 | det = a -> v[0].n[0]*c0 + a -> v[0].n[1]*c1 + a -> v[0].n[2]*c2; |
138 | |
|
139 | 0 | if (fabs(det) < MATRIX_DET_TOLERANCE) return FALSE; // singular matrix; can't invert |
140 | | |
141 | 0 | b -> v[0].n[0] = c0/det; |
142 | 0 | b -> v[0].n[1] = (a -> v[0].n[2]*a -> v[2].n[1] - a -> v[0].n[1]*a -> v[2].n[2])/det; |
143 | 0 | b -> v[0].n[2] = (a -> v[0].n[1]*a -> v[1].n[2] - a -> v[0].n[2]*a -> v[1].n[1])/det; |
144 | 0 | b -> v[1].n[0] = c1/det; |
145 | 0 | b -> v[1].n[1] = (a -> v[0].n[0]*a -> v[2].n[2] - a -> v[0].n[2]*a -> v[2].n[0])/det; |
146 | 0 | b -> v[1].n[2] = (a -> v[0].n[2]*a -> v[1].n[0] - a -> v[0].n[0]*a -> v[1].n[2])/det; |
147 | 0 | b -> v[2].n[0] = c2/det; |
148 | 0 | b -> v[2].n[1] = (a -> v[0].n[1]*a -> v[2].n[0] - a -> v[0].n[0]*a -> v[2].n[1])/det; |
149 | 0 | b -> v[2].n[2] = (a -> v[0].n[0]*a -> v[1].n[1] - a -> v[0].n[1]*a -> v[1].n[0])/det; |
150 | |
|
151 | 0 | return TRUE; |
152 | 0 | } |
153 | | |
154 | | |
155 | | // Solve a system in the form Ax = b |
156 | | cmsBool CMSEXPORT _cmsMAT3solve(cmsVEC3* x, cmsMAT3* a, cmsVEC3* b) |
157 | 0 | { |
158 | 0 | cmsMAT3 m, a_1; |
159 | |
|
160 | 0 | memmove(&m, a, sizeof(cmsMAT3)); |
161 | |
|
162 | 0 | if (!_cmsMAT3inverse(&m, &a_1)) return FALSE; // Singular matrix |
163 | | |
164 | 0 | _cmsMAT3eval(x, &a_1, b); |
165 | 0 | return TRUE; |
166 | 0 | } |
167 | | |
168 | | // Evaluate a vector across a matrix |
169 | | void CMSEXPORT _cmsMAT3eval(cmsVEC3* r, const cmsMAT3* a, const cmsVEC3* v) |
170 | 0 | { |
171 | 0 | r->n[VX] = a->v[0].n[VX]*v->n[VX] + a->v[0].n[VY]*v->n[VY] + a->v[0].n[VZ]*v->n[VZ]; |
172 | 0 | r->n[VY] = a->v[1].n[VX]*v->n[VX] + a->v[1].n[VY]*v->n[VY] + a->v[1].n[VZ]*v->n[VZ]; |
173 | 0 | r->n[VZ] = a->v[2].n[VX]*v->n[VX] + a->v[2].n[VY]*v->n[VY] + a->v[2].n[VZ]*v->n[VZ]; |
174 | 0 | } |
175 | | |
176 | | |