Coverage Report

Created: 2025-07-07 10:01

/work/workdir/UnpackedTarball/lcms2/src/cmsopt.c
Line
Count
Source (jump to first uncovered line)
1
//---------------------------------------------------------------------------------
2
//
3
//  Little Color Management System
4
//  Copyright (c) 1998-2024 Marti Maria Saguer
5
//
6
// Permission is hereby granted, free of charge, to any person obtaining
7
// a copy of this software and associated documentation files (the "Software"),
8
// to deal in the Software without restriction, including without limitation
9
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
10
// and/or sell copies of the Software, and to permit persons to whom the Software
11
// is furnished to do so, subject to the following conditions:
12
//
13
// The above copyright notice and this permission notice shall be included in
14
// all copies or substantial portions of the Software.
15
//
16
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23
//
24
//---------------------------------------------------------------------------------
25
//
26
27
#include "lcms2_internal.h"
28
29
30
//----------------------------------------------------------------------------------
31
32
// Optimization for 8 bits, Shaper-CLUT (3 inputs only)
33
typedef struct {
34
35
    cmsContext ContextID;
36
37
    const cmsInterpParams* p;   // Tetrahedrical interpolation parameters. This is a not-owned pointer.
38
39
    cmsUInt16Number rx[256], ry[256], rz[256];
40
    cmsUInt32Number X0[256], Y0[256], Z0[256];  // Precomputed nodes and offsets for 8-bit input data
41
42
43
} Prelin8Data;
44
45
46
// Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
47
typedef struct {
48
49
    cmsContext ContextID;
50
51
    // Number of channels
52
    cmsUInt32Number nInputs;
53
    cmsUInt32Number nOutputs;
54
55
    _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS];       // The maximum number of input channels is known in advance
56
    cmsInterpParams*  ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
57
58
    _cmsInterpFn16 EvalCLUT;            // The evaluator for 3D grid
59
    const cmsInterpParams* CLUTparams;  // (not-owned pointer)
60
61
62
    _cmsInterpFn16* EvalCurveOut16;       // Points to an array of curve evaluators in 16 bits (not-owned pointer)
63
    cmsInterpParams**  ParamsCurveOut16;  // Points to an array of references to interpolation params (not-owned pointer)
64
65
66
} Prelin16Data;
67
68
69
// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
70
71
typedef cmsInt32Number cmsS1Fixed14Number;   // Note that this may hold more than 16 bits!
72
73
0
#define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
74
75
typedef struct {
76
77
    cmsContext ContextID;
78
79
    cmsS1Fixed14Number Shaper1R[256];  // from 0..255 to 1.14  (0.0...1.0)
80
    cmsS1Fixed14Number Shaper1G[256];
81
    cmsS1Fixed14Number Shaper1B[256];
82
83
    cmsS1Fixed14Number Mat[3][3];     // n.14 to n.14 (needs a saturation after that)
84
    cmsS1Fixed14Number Off[3];
85
86
    cmsUInt16Number Shaper2R[16385];    // 1.14 to 0..255
87
    cmsUInt16Number Shaper2G[16385];
88
    cmsUInt16Number Shaper2B[16385];
89
90
} MatShaper8Data;
91
92
// Curves, optimization is shared between 8 and 16 bits
93
typedef struct {
94
95
    cmsContext ContextID;
96
97
    cmsUInt32Number nCurves;      // Number of curves
98
    cmsUInt32Number nElements;    // Elements in curves
99
    cmsUInt16Number** Curves;     // Points to a dynamically  allocated array
100
101
} Curves16Data;
102
103
104
// Simple optimizations ----------------------------------------------------------------------------------------------------------
105
106
107
// Remove an element in linked chain
108
static
109
void _RemoveElement(cmsStage** head)
110
0
{
111
0
    cmsStage* mpe = *head;
112
0
    cmsStage* next = mpe ->Next;
113
0
    *head = next;
114
0
    cmsStageFree(mpe);
115
0
}
116
117
// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
118
static
119
cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
120
0
{
121
0
    cmsStage** pt = &Lut ->Elements;
122
0
    cmsBool AnyOpt = FALSE;
123
124
0
    while (*pt != NULL) {
125
126
0
        if ((*pt) ->Implements == UnaryOp) {
127
0
            _RemoveElement(pt);
128
0
            AnyOpt = TRUE;
129
0
        }
130
0
        else
131
0
            pt = &((*pt) -> Next);
132
0
    }
133
134
0
    return AnyOpt;
135
0
}
136
137
// Same, but only if two adjacent elements are found
138
static
139
cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
140
0
{
141
0
    cmsStage** pt1;
142
0
    cmsStage** pt2;
143
0
    cmsBool AnyOpt = FALSE;
144
145
0
    pt1 = &Lut ->Elements;
146
0
    if (*pt1 == NULL) return AnyOpt;
147
148
0
    while (*pt1 != NULL) {
149
150
0
        pt2 = &((*pt1) -> Next);
151
0
        if (*pt2 == NULL) return AnyOpt;
152
153
0
        if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
154
0
            _RemoveElement(pt2);
155
0
            _RemoveElement(pt1);
156
0
            AnyOpt = TRUE;
157
0
        }
158
0
        else
159
0
            pt1 = &((*pt1) -> Next);
160
0
    }
161
162
0
    return AnyOpt;
163
0
}
164
165
166
static
167
cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
168
0
{
169
0
       return fabs(b - a) < 0.00001f;
170
0
}
171
172
static
173
cmsBool  isFloatMatrixIdentity(const cmsMAT3* a)
174
0
{
175
0
       cmsMAT3 Identity;
176
0
       int i, j;
177
178
0
       _cmsMAT3identity(&Identity);
179
180
0
       for (i = 0; i < 3; i++)
181
0
              for (j = 0; j < 3; j++)
182
0
                     if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
183
184
0
       return TRUE;
185
0
}
186
187
// if two adjacent matrices are found, multiply them. 
188
static
189
cmsBool _MultiplyMatrix(cmsPipeline* Lut)
190
0
{
191
0
       cmsStage** pt1;
192
0
       cmsStage** pt2;
193
0
       cmsStage*  chain;
194
0
       cmsBool AnyOpt = FALSE;
195
196
0
       pt1 = &Lut->Elements;
197
0
       if (*pt1 == NULL) return AnyOpt;
198
199
0
       while (*pt1 != NULL) {
200
201
0
              pt2 = &((*pt1)->Next);
202
0
              if (*pt2 == NULL) return AnyOpt;
203
204
0
              if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
205
206
                     // Get both matrices
207
0
                     _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
208
0
                     _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
209
0
                     cmsMAT3 res;
210
                     
211
                     // Input offset and output offset should be zero to use this optimization
212
0
                     if (m1->Offset != NULL || m2 ->Offset != NULL || 
213
0
                            cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||                            
214
0
                            cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
215
0
                            return FALSE;
216
217
                     // Multiply both matrices to get the result
218
0
                     _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
219
220
                     // Get the next in chain after the matrices
221
0
                     chain = (*pt2)->Next;
222
223
                     // Remove both matrices
224
0
                     _RemoveElement(pt2);
225
0
                     _RemoveElement(pt1);
226
227
                     // Now what if the result is a plain identity?                     
228
0
                     if (!isFloatMatrixIdentity(&res)) {
229
230
                            // We can not get rid of full matrix                            
231
0
                            cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
232
0
                            if (Multmat == NULL) return FALSE;  // Should never happen
233
234
                            // Recover the chain
235
0
                            Multmat->Next = chain;
236
0
                            *pt1 = Multmat;
237
0
                     }
238
239
0
                     AnyOpt = TRUE;
240
0
              }
241
0
              else
242
0
                     pt1 = &((*pt1)->Next);
243
0
       }
244
245
0
       return AnyOpt;
246
0
}
247
248
249
// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
250
// by a v4 to v2 and vice-versa. The elements are then discarded.
251
static
252
cmsBool PreOptimize(cmsPipeline* Lut)
253
0
{
254
0
    cmsBool AnyOpt = FALSE, Opt;
255
256
0
    do {
257
258
0
        Opt = FALSE;
259
260
        // Remove all identities
261
0
        Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
262
263
        // Remove XYZ2Lab followed by Lab2XYZ
264
0
        Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
265
266
        // Remove Lab2XYZ followed by XYZ2Lab
267
0
        Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
268
269
        // Remove V4 to V2 followed by V2 to V4
270
0
        Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
271
272
        // Remove V2 to V4 followed by V4 to V2
273
0
        Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
274
275
        // Remove float pcs Lab conversions
276
0
        Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
277
278
        // Remove float pcs Lab conversions
279
0
        Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
280
281
        // Simplify matrix. 
282
0
        Opt |= _MultiplyMatrix(Lut);
283
284
0
        if (Opt) AnyOpt = TRUE;
285
286
0
    } while (Opt);
287
288
0
    return AnyOpt;
289
0
}
290
291
static
292
void Eval16nop1D(CMSREGISTER const cmsUInt16Number Input[],
293
                 CMSREGISTER cmsUInt16Number Output[],
294
                 CMSREGISTER const struct _cms_interp_struc* p)
295
0
{
296
0
    Output[0] = Input[0];
297
298
0
    cmsUNUSED_PARAMETER(p);
299
0
}
300
301
static
302
void PrelinEval16(CMSREGISTER const cmsUInt16Number Input[],
303
                  CMSREGISTER cmsUInt16Number Output[],
304
                  CMSREGISTER const void* D)
305
0
{
306
0
    Prelin16Data* p16 = (Prelin16Data*) D;
307
0
    cmsUInt16Number  StageABC[MAX_INPUT_DIMENSIONS];
308
0
    cmsUInt16Number  StageDEF[cmsMAXCHANNELS];
309
0
    cmsUInt32Number i;
310
311
0
    for (i=0; i < p16 ->nInputs; i++) {
312
313
0
        p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
314
0
    }
315
316
0
    p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
317
318
0
    for (i=0; i < p16 ->nOutputs; i++) {
319
320
0
        p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
321
0
    }
322
0
}
323
324
325
static
326
void PrelinOpt16free(cmsContext ContextID, void* ptr)
327
0
{
328
0
    Prelin16Data* p16 = (Prelin16Data*) ptr;
329
330
0
    _cmsFree(ContextID, p16 ->EvalCurveOut16);
331
0
    _cmsFree(ContextID, p16 ->ParamsCurveOut16);
332
333
0
    _cmsFree(ContextID, p16);
334
0
}
335
336
static
337
void* Prelin16dup(cmsContext ContextID, const void* ptr)
338
0
{
339
0
    Prelin16Data* p16 = (Prelin16Data*) ptr;
340
0
    Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
341
342
0
    if (Duped == NULL) return NULL;
343
344
0
    Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
345
0
    Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
346
347
0
    return Duped;
348
0
}
349
350
351
static
352
Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
353
                               const cmsInterpParams* ColorMap,
354
                               cmsUInt32Number nInputs, cmsToneCurve** In,
355
                               cmsUInt32Number nOutputs, cmsToneCurve** Out )
356
0
{
357
0
    cmsUInt32Number i;
358
0
    Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
359
0
    if (p16 == NULL) return NULL;
360
361
0
    p16 ->nInputs = nInputs;
362
0
    p16 ->nOutputs = nOutputs;
363
364
365
0
    for (i=0; i < nInputs; i++) {
366
367
0
        if (In == NULL) {
368
0
            p16 -> ParamsCurveIn16[i] = NULL;
369
0
            p16 -> EvalCurveIn16[i] = Eval16nop1D;
370
371
0
        }
372
0
        else {
373
0
            p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
374
0
            p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
375
0
        }
376
0
    }
377
378
0
    p16 ->CLUTparams = ColorMap;
379
0
    p16 ->EvalCLUT   = ColorMap ->Interpolation.Lerp16;
380
381
382
0
    p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
383
0
    if (p16->EvalCurveOut16 == NULL)
384
0
    {
385
0
        _cmsFree(ContextID, p16);
386
0
        return NULL;
387
0
    }
388
389
0
    p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
390
0
    if (p16->ParamsCurveOut16 == NULL)
391
0
    {
392
393
0
        _cmsFree(ContextID, p16->EvalCurveOut16);
394
0
        _cmsFree(ContextID, p16);
395
0
        return NULL;
396
0
    }
397
398
0
    for (i=0; i < nOutputs; i++) {
399
400
0
        if (Out == NULL) {
401
0
            p16 ->ParamsCurveOut16[i] = NULL;
402
0
            p16 -> EvalCurveOut16[i] = Eval16nop1D;
403
0
        }
404
0
        else {
405
406
0
            p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
407
0
            p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
408
0
        }
409
0
    }
410
411
0
    return p16;
412
0
}
413
414
415
416
// Resampling ---------------------------------------------------------------------------------
417
418
0
#define PRELINEARIZATION_POINTS 4096
419
420
// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
421
// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
422
static
423
cmsInt32Number XFormSampler16(CMSREGISTER const cmsUInt16Number In[], 
424
                              CMSREGISTER cmsUInt16Number Out[], 
425
                              CMSREGISTER void* Cargo)
426
0
{
427
0
    cmsPipeline* Lut = (cmsPipeline*) Cargo;
428
0
    cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
429
0
    cmsUInt32Number i;
430
431
0
    _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
432
0
    _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
433
434
    // From 16 bit to floating point
435
0
    for (i=0; i < Lut ->InputChannels; i++)
436
0
        InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
437
438
    // Evaluate in floating point
439
0
    cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
440
441
    // Back to 16 bits representation
442
0
    for (i=0; i < Lut ->OutputChannels; i++)
443
0
        Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
444
445
    // Always succeed
446
0
    return TRUE;
447
0
}
448
449
// Try to see if the curves of a given MPE are linear
450
static
451
cmsBool AllCurvesAreLinear(cmsStage* mpe)
452
0
{
453
0
    cmsToneCurve** Curves;
454
0
    cmsUInt32Number i, n;
455
456
0
    Curves = _cmsStageGetPtrToCurveSet(mpe);
457
0
    if (Curves == NULL) return FALSE;
458
459
0
    n = cmsStageOutputChannels(mpe);
460
461
0
    for (i=0; i < n; i++) {
462
0
        if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
463
0
    }
464
465
0
    return TRUE;
466
0
}
467
468
// This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
469
// is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
470
static
471
cmsBool  PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
472
                  cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
473
0
{
474
0
    _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
475
0
    cmsInterpParams* p16  = Grid ->Params;
476
0
    cmsFloat64Number px, py, pz, pw;
477
0
    int        x0, y0, z0, w0;
478
0
    int        i, index;
479
480
0
    if (CLUT -> Type != cmsSigCLutElemType) {
481
0
        cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
482
0
        return FALSE;
483
0
    }
484
485
0
    if (nChannelsIn == 4) {
486
487
0
        px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
488
0
        py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
489
0
        pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
490
0
        pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
491
492
0
        x0 = (int) floor(px);
493
0
        y0 = (int) floor(py);
494
0
        z0 = (int) floor(pz);
495
0
        w0 = (int) floor(pw);
496
497
0
        if (((px - x0) != 0) ||
498
0
            ((py - y0) != 0) ||
499
0
            ((pz - z0) != 0) ||
500
0
            ((pw - w0) != 0)) return FALSE; // Not on exact node
501
502
0
        index = (int) p16 -> opta[3] * x0 +
503
0
                (int) p16 -> opta[2] * y0 +
504
0
                (int) p16 -> opta[1] * z0 +
505
0
                (int) p16 -> opta[0] * w0;
506
0
    }
507
0
    else
508
0
        if (nChannelsIn == 3) {
509
510
0
            px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
511
0
            py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
512
0
            pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
513
           
514
0
            x0 = (int) floor(px);
515
0
            y0 = (int) floor(py);
516
0
            z0 = (int) floor(pz);
517
           
518
0
            if (((px - x0) != 0) ||
519
0
                ((py - y0) != 0) ||
520
0
                ((pz - z0) != 0)) return FALSE;  // Not on exact node
521
522
0
            index = (int) p16 -> opta[2] * x0 +
523
0
                    (int) p16 -> opta[1] * y0 +
524
0
                    (int) p16 -> opta[0] * z0;
525
0
        }
526
0
        else
527
0
            if (nChannelsIn == 1) {
528
529
0
                px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
530
                
531
0
                x0 = (int) floor(px);
532
                
533
0
                if (((px - x0) != 0)) return FALSE; // Not on exact node
534
535
0
                index = (int) p16 -> opta[0] * x0;
536
0
            }
537
0
            else {
538
0
                cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
539
0
                return FALSE;
540
0
            }
541
542
0
    for (i = 0; i < (int) nChannelsOut; i++)
543
0
        Grid->Tab.T[index + i] = Value[i];
544
545
0
    return TRUE;
546
0
}
547
548
// Auxiliary, to see if two values are equal or very different
549
static
550
cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
551
0
{
552
0
    cmsUInt32Number i;
553
554
0
    for (i=0; i < n; i++) {
555
556
0
        if (abs(White1[i] - White2[i]) > 0xf000) return TRUE;  // Values are so extremely different that the fixup should be avoided
557
0
        if (White1[i] != White2[i]) return FALSE;
558
0
    }
559
0
    return TRUE;
560
0
}
561
562
563
// Locate the node for the white point and fix it to pure white in order to avoid scum dot.
564
static
565
cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
566
0
{
567
0
    cmsUInt16Number *WhitePointIn, *WhitePointOut;
568
0
    cmsUInt16Number  WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
569
0
    cmsUInt32Number i, nOuts, nIns;
570
0
    cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
571
572
0
    if (!_cmsEndPointsBySpace(EntryColorSpace,
573
0
        &WhitePointIn, NULL, &nIns)) return FALSE;
574
575
0
    if (!_cmsEndPointsBySpace(ExitColorSpace,
576
0
        &WhitePointOut, NULL, &nOuts)) return FALSE;
577
578
    // It needs to be fixed?
579
0
    if (Lut ->InputChannels != nIns) return FALSE;
580
0
    if (Lut ->OutputChannels != nOuts) return FALSE;
581
582
0
    cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
583
584
0
    if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
585
586
    // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
587
0
    if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
588
0
        if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
589
0
            if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
590
0
                if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
591
0
                    return FALSE;
592
593
    // We need to interpolate white points of both, pre and post curves
594
0
    if (PreLin) {
595
596
0
        cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
597
598
0
        for (i=0; i < nIns; i++) {
599
0
            WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
600
0
        }
601
0
    }
602
0
    else {
603
0
        for (i=0; i < nIns; i++)
604
0
            WhiteIn[i] = WhitePointIn[i];
605
0
    }
606
607
    // If any post-linearization, we need to find how is represented white before the curve, do
608
    // a reverse interpolation in this case.
609
0
    if (PostLin) {
610
611
0
        cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
612
613
0
        for (i=0; i < nOuts; i++) {
614
615
0
            cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
616
0
            if (InversePostLin == NULL) {
617
0
                WhiteOut[i] = WhitePointOut[i];    
618
619
0
            } else {
620
621
0
                WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
622
0
                cmsFreeToneCurve(InversePostLin);
623
0
            }
624
0
        }
625
0
    }
626
0
    else {
627
0
        for (i=0; i < nOuts; i++)
628
0
            WhiteOut[i] = WhitePointOut[i];
629
0
    }
630
631
    // Ok, proceed with patching. May fail and we don't care if it fails
632
0
    PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
633
634
0
    return TRUE;
635
0
}
636
637
// -----------------------------------------------------------------------------------------------------------------------------------------------
638
// This function creates simple LUT from complex ones. The generated LUT has an optional set of
639
// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
640
// These curves have to exist in the original LUT in order to be used in the simplified output.
641
// Caller may also use the flags to allow this feature.
642
// LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
643
// This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
644
// -----------------------------------------------------------------------------------------------------------------------------------------------
645
646
static
647
cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
648
0
{
649
0
    cmsPipeline* Src = NULL;
650
0
    cmsPipeline* Dest = NULL;
651
0
    cmsStage* CLUT;
652
0
    cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
653
0
    cmsUInt32Number nGridPoints;
654
0
    cmsColorSpaceSignature ColorSpace, OutputColorSpace;
655
0
    cmsStage *NewPreLin = NULL;
656
0
    cmsStage *NewPostLin = NULL;
657
0
    _cmsStageCLutData* DataCLUT;
658
0
    cmsToneCurve** DataSetIn;
659
0
    cmsToneCurve** DataSetOut;
660
0
    Prelin16Data* p16;
661
662
    // This is a lossy optimization! does not apply in floating-point cases
663
0
    if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
664
665
0
    ColorSpace       = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
666
0
    OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
667
668
    // Color space must be specified
669
0
    if (ColorSpace == (cmsColorSpaceSignature)0 ||
670
0
        OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
671
672
0
    nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
673
674
    // For empty LUTs, 2 points are enough
675
0
    if (cmsPipelineStageCount(*Lut) == 0)
676
0
        nGridPoints = 2;
677
678
0
    Src = *Lut;
679
680
    // Allocate an empty LUT
681
0
    Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
682
0
    if (!Dest) return FALSE;
683
684
    // Prelinearization tables are kept unless indicated by flags
685
0
    if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
686
687
        // Get a pointer to the prelinearization element
688
0
        cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
689
690
        // Check if suitable
691
0
        if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
692
693
            // Maybe this is a linear tram, so we can avoid the whole stuff
694
0
            if (!AllCurvesAreLinear(PreLin)) {
695
696
                // All seems ok, proceed.
697
0
                NewPreLin = cmsStageDup(PreLin);
698
0
                if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
699
0
                    goto Error;
700
701
                // Remove prelinearization. Since we have duplicated the curve
702
                // in destination LUT, the sampling should be applied after this stage.
703
0
                cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
704
0
            }
705
0
        }
706
0
    }
707
708
    // Allocate the CLUT
709
0
    CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
710
0
    if (CLUT == NULL) goto Error;
711
712
    // Add the CLUT to the destination LUT
713
0
    if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
714
0
        goto Error;
715
0
    }
716
717
    // Postlinearization tables are kept unless indicated by flags
718
0
    if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
719
720
        // Get a pointer to the postlinearization if present
721
0
        cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
722
723
        // Check if suitable
724
0
        if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
725
726
            // Maybe this is a linear tram, so we can avoid the whole stuff
727
0
            if (!AllCurvesAreLinear(PostLin)) {
728
729
                // All seems ok, proceed.
730
0
                NewPostLin = cmsStageDup(PostLin);
731
0
                if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
732
0
                    goto Error;
733
734
                // In destination LUT, the sampling should be applied after this stage.
735
0
                cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
736
0
            }
737
0
        }
738
0
    }
739
740
    // Now its time to do the sampling. We have to ignore pre/post linearization
741
    // The source LUT without pre/post curves is passed as parameter.
742
0
    if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
743
0
Error:
744
        // Ops, something went wrong, Restore stages
745
0
        if (KeepPreLin != NULL) {
746
0
            if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
747
0
                _cmsAssert(0); // This never happens
748
0
            }
749
0
        }
750
0
        if (KeepPostLin != NULL) {
751
0
            if (!cmsPipelineInsertStage(Src, cmsAT_END,   KeepPostLin)) {
752
0
                _cmsAssert(0); // This never happens
753
0
            }
754
0
        }
755
0
        cmsPipelineFree(Dest);
756
0
        return FALSE;
757
0
    }
758
759
    // Done.
760
761
0
    if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
762
0
    if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
763
0
    cmsPipelineFree(Src);
764
765
0
    DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
766
767
0
    if (NewPreLin == NULL) DataSetIn = NULL;
768
0
    else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
769
770
0
    if (NewPostLin == NULL) DataSetOut = NULL;
771
0
    else  DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
772
773
774
0
    if (DataSetIn == NULL && DataSetOut == NULL) {
775
776
0
        _cmsPipelineSetOptimizationParameters(Dest, (_cmsPipelineEval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
777
0
    }
778
0
    else {
779
780
0
        p16 = PrelinOpt16alloc(Dest ->ContextID,
781
0
            DataCLUT ->Params,
782
0
            Dest ->InputChannels,
783
0
            DataSetIn,
784
0
            Dest ->OutputChannels,
785
0
            DataSetOut);
786
787
0
        _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
788
0
    }
789
790
791
    // Don't fix white on absolute colorimetric
792
0
    if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
793
0
        *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
794
795
0
    if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
796
797
0
        FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
798
0
    }
799
800
0
    *Lut = Dest;
801
0
    return TRUE;
802
803
0
    cmsUNUSED_PARAMETER(Intent);
804
0
}
805
806
807
// -----------------------------------------------------------------------------------------------------------------------------------------------
808
// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
809
// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
810
// for RGB transforms. See the paper for more details
811
// -----------------------------------------------------------------------------------------------------------------------------------------------
812
813
814
// Normalize endpoints by slope limiting max and min. This assures endpoints as well.
815
// Descending curves are handled as well.
816
static
817
void SlopeLimiting(cmsToneCurve* g)
818
0
{
819
0
    int BeginVal, EndVal;
820
0
    int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5);   // Cutoff at 2%
821
0
    int AtEnd   = (int) g ->nEntries - AtBegin - 1;                                  // And 98%
822
0
    cmsFloat64Number Val, Slope, beta;
823
0
    int i;
824
825
0
    if (cmsIsToneCurveDescending(g)) {
826
0
        BeginVal = 0xffff; EndVal = 0;
827
0
    }
828
0
    else {
829
0
        BeginVal = 0; EndVal = 0xffff;
830
0
    }
831
832
    // Compute slope and offset for begin of curve
833
0
    Val   = g ->Table16[AtBegin];
834
0
    Slope = (Val - BeginVal) / AtBegin;
835
0
    beta  = Val - Slope * AtBegin;
836
837
0
    for (i=0; i < AtBegin; i++)
838
0
        g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
839
840
    // Compute slope and offset for the end
841
0
    Val   = g ->Table16[AtEnd];
842
0
    Slope = (EndVal - Val) / AtBegin;   // AtBegin holds the X interval, which is same in both cases
843
0
    beta  = Val - Slope * AtEnd;
844
845
0
    for (i = AtEnd; i < (int) g ->nEntries; i++)
846
0
        g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
847
0
}
848
849
850
// Precomputes tables for 8-bit on input devicelink.
851
static
852
Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
853
0
{
854
0
    int i;
855
0
    cmsUInt16Number Input[3];
856
0
    cmsS15Fixed16Number v1, v2, v3;
857
0
    Prelin8Data* p8;
858
859
0
    p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
860
0
    if (p8 == NULL) return NULL;
861
862
    // Since this only works for 8 bit input, values comes always as x * 257,
863
    // we can safely take msb byte (x << 8 + x)
864
865
0
    for (i=0; i < 256; i++) {
866
867
0
        if (G != NULL) {
868
869
            // Get 16-bit representation
870
0
            Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
871
0
            Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
872
0
            Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
873
0
        }
874
0
        else {
875
0
            Input[0] = FROM_8_TO_16(i);
876
0
            Input[1] = FROM_8_TO_16(i);
877
0
            Input[2] = FROM_8_TO_16(i);
878
0
        }
879
880
881
        // Move to 0..1.0 in fixed domain
882
0
        v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
883
0
        v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
884
0
        v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
885
886
        // Store the precalculated table of nodes
887
0
        p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
888
0
        p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
889
0
        p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
890
891
        // Store the precalculated table of offsets
892
0
        p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
893
0
        p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
894
0
        p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
895
0
    }
896
897
0
    p8 ->ContextID = ContextID;
898
0
    p8 ->p = p;
899
900
0
    return p8;
901
0
}
902
903
static
904
void Prelin8free(cmsContext ContextID, void* ptr)
905
0
{
906
0
    _cmsFree(ContextID, ptr);
907
0
}
908
909
static
910
void* Prelin8dup(cmsContext ContextID, const void* ptr)
911
0
{
912
0
    return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
913
0
}
914
915
916
917
// A optimized interpolation for 8-bit input.
918
0
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
919
static CMS_NO_SANITIZE
920
void PrelinEval8(CMSREGISTER const cmsUInt16Number Input[],
921
                 CMSREGISTER cmsUInt16Number Output[],
922
                 CMSREGISTER const void* D)
923
0
{
924
925
0
    cmsUInt8Number         r, g, b;
926
0
    cmsS15Fixed16Number    rx, ry, rz;
927
0
    cmsS15Fixed16Number    c0, c1, c2, c3, Rest;
928
0
    int                    OutChan;
929
0
    CMSREGISTER cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
930
0
    Prelin8Data* p8 = (Prelin8Data*) D;
931
0
    CMSREGISTER const cmsInterpParams* p = p8 ->p;
932
0
    int                    TotalOut = (int) p -> nOutputs;
933
0
    const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
934
935
0
    r = (cmsUInt8Number) (Input[0] >> 8);
936
0
    g = (cmsUInt8Number) (Input[1] >> 8);
937
0
    b = (cmsUInt8Number) (Input[2] >> 8);
938
939
0
    X0 = (cmsS15Fixed16Number) p8->X0[r];
940
0
    Y0 = (cmsS15Fixed16Number) p8->Y0[g];
941
0
    Z0 = (cmsS15Fixed16Number) p8->Z0[b];
942
943
0
    rx = p8 ->rx[r];
944
0
    ry = p8 ->ry[g];
945
0
    rz = p8 ->rz[b];
946
947
0
    X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 :  p ->opta[2]);
948
0
    Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 :  p ->opta[1]);
949
0
    Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 :  p ->opta[0]);
950
951
952
    // These are the 6 Tetrahedral
953
0
    for (OutChan=0; OutChan < TotalOut; OutChan++) {
954
955
0
        c0 = DENS(X0, Y0, Z0);
956
957
0
        if (rx >= ry && ry >= rz)
958
0
        {
959
0
            c1 = DENS(X1, Y0, Z0) - c0;
960
0
            c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
961
0
            c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
962
0
        }
963
0
        else
964
0
            if (rx >= rz && rz >= ry)
965
0
            {
966
0
                c1 = DENS(X1, Y0, Z0) - c0;
967
0
                c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
968
0
                c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
969
0
            }
970
0
            else
971
0
                if (rz >= rx && rx >= ry)
972
0
                {
973
0
                    c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
974
0
                    c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
975
0
                    c3 = DENS(X0, Y0, Z1) - c0;
976
0
                }
977
0
                else
978
0
                    if (ry >= rx && rx >= rz)
979
0
                    {
980
0
                        c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
981
0
                        c2 = DENS(X0, Y1, Z0) - c0;
982
0
                        c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
983
0
                    }
984
0
                    else
985
0
                        if (ry >= rz && rz >= rx)
986
0
                        {
987
0
                            c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
988
0
                            c2 = DENS(X0, Y1, Z0) - c0;
989
0
                            c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
990
0
                        }
991
0
                        else
992
0
                            if (rz >= ry && ry >= rx)
993
0
                            {
994
0
                                c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
995
0
                                c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
996
0
                                c3 = DENS(X0, Y0, Z1) - c0;
997
0
                            }
998
0
                            else  {
999
0
                                c1 = c2 = c3 = 0;
1000
0
                            }
1001
1002
0
        Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
1003
0
        Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
1004
1005
0
    }
1006
0
}
1007
1008
#undef DENS
1009
1010
1011
// Curves that contain wide empty areas are not optimizeable
1012
static
1013
cmsBool IsDegenerated(const cmsToneCurve* g)
1014
0
{
1015
0
    cmsUInt32Number i, Zeros = 0, Poles = 0;
1016
0
    cmsUInt32Number nEntries = g ->nEntries;
1017
1018
0
    for (i=0; i < nEntries; i++) {
1019
1020
0
        if (g ->Table16[i] == 0x0000) Zeros++;
1021
0
        if (g ->Table16[i] == 0xffff) Poles++;
1022
0
    }
1023
1024
0
    if (Zeros == 1 && Poles == 1) return FALSE;  // For linear tables
1025
0
    if (Zeros > (nEntries / 20)) return TRUE;  // Degenerated, many zeros
1026
0
    if (Poles > (nEntries / 20)) return TRUE;  // Degenerated, many poles
1027
1028
0
    return FALSE;
1029
0
}
1030
1031
// --------------------------------------------------------------------------------------------------------------
1032
// We need xput over here
1033
1034
static
1035
cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1036
0
{
1037
0
    cmsPipeline* OriginalLut;
1038
0
    cmsUInt32Number nGridPoints;
1039
0
    cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1040
0
    cmsUInt32Number t, i;
1041
0
    cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1042
0
    cmsBool lIsSuitable, lIsLinear;
1043
0
    cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1044
0
    cmsStage* OptimizedCLUTmpe;
1045
0
    cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1046
0
    cmsStage* OptimizedPrelinMpe;
1047
0
    cmsToneCurve** OptimizedPrelinCurves;
1048
0
    _cmsStageCLutData* OptimizedPrelinCLUT;
1049
1050
1051
    // This is a lossy optimization! does not apply in floating-point cases
1052
0
    if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1053
1054
    // Only on chunky RGB
1055
0
    if (T_COLORSPACE(*InputFormat)  != PT_RGB) return FALSE;
1056
0
    if (T_PLANAR(*InputFormat)) return FALSE;
1057
1058
0
    if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1059
0
    if (T_PLANAR(*OutputFormat)) return FALSE;
1060
1061
    // On 16 bits, user has to specify the feature
1062
0
    if (!_cmsFormatterIs8bit(*InputFormat)) {
1063
0
        if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1064
0
    }
1065
1066
0
    OriginalLut = *Lut;
1067
   
1068
0
    ColorSpace       = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
1069
0
    OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
1070
1071
    // Color space must be specified
1072
0
    if (ColorSpace == (cmsColorSpaceSignature)0 ||
1073
0
        OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
1074
1075
0
    nGridPoints      = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
1076
1077
    // Empty gamma containers
1078
0
    memset(Trans, 0, sizeof(Trans));
1079
0
    memset(TransReverse, 0, sizeof(TransReverse));
1080
1081
    // If the last stage of the original lut are curves, and those curves are
1082
    // degenerated, it is likely the transform is squeezing and clipping
1083
    // the output from previous CLUT. We cannot optimize this case     
1084
0
    {
1085
0
        cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
1086
1087
0
        if (last == NULL) goto Error;
1088
0
        if (cmsStageType(last) == cmsSigCurveSetElemType) {
1089
1090
0
            _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
1091
0
            for (i = 0; i < Data->nCurves; i++) {
1092
0
                if (IsDegenerated(Data->TheCurves[i]))
1093
0
                    goto Error;
1094
0
            }
1095
0
        }
1096
0
    }
1097
1098
0
    for (t = 0; t < OriginalLut ->InputChannels; t++) {
1099
0
        Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
1100
0
        if (Trans[t] == NULL) goto Error;
1101
0
    }
1102
1103
    // Populate the curves
1104
0
    for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1105
1106
0
        v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1107
1108
        // Feed input with a gray ramp
1109
0
        for (t=0; t < OriginalLut ->InputChannels; t++)
1110
0
            In[t] = v;
1111
1112
        // Evaluate the gray value
1113
0
        cmsPipelineEvalFloat(In, Out, OriginalLut);
1114
1115
        // Store result in curve
1116
0
        for (t=0; t < OriginalLut ->InputChannels; t++)
1117
0
        {
1118
0
            if (Trans[t]->Table16 != NULL)
1119
0
                Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1120
0
        }
1121
0
    }
1122
1123
    // Slope-limit the obtained curves
1124
0
    for (t = 0; t < OriginalLut ->InputChannels; t++)
1125
0
        SlopeLimiting(Trans[t]);
1126
1127
    // Check for validity. lIsLinear is here for debug purposes
1128
0
    lIsSuitable = TRUE;
1129
0
    lIsLinear   = TRUE;
1130
0
    for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1131
1132
        // Exclude if already linear
1133
0
        if (!cmsIsToneCurveLinear(Trans[t]))
1134
0
            lIsLinear = FALSE;
1135
1136
        // Exclude if non-monotonic
1137
0
        if (!cmsIsToneCurveMonotonic(Trans[t]))
1138
0
            lIsSuitable = FALSE;
1139
1140
0
        if (IsDegenerated(Trans[t]))
1141
0
            lIsSuitable = FALSE;
1142
0
    }
1143
1144
    // If it is not suitable, just quit
1145
0
    if (!lIsSuitable) goto Error;
1146
1147
    // Invert curves if possible
1148
0
    for (t = 0; t < OriginalLut ->InputChannels; t++) {
1149
0
        TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1150
0
        if (TransReverse[t] == NULL) goto Error;
1151
0
    }
1152
1153
    // Now inset the reversed curves at the begin of transform
1154
0
    LutPlusCurves = cmsPipelineDup(OriginalLut);
1155
0
    if (LutPlusCurves == NULL) goto Error;
1156
1157
0
    if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1158
0
        goto Error;
1159
1160
    // Create the result LUT
1161
0
    OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1162
0
    if (OptimizedLUT == NULL) goto Error;
1163
1164
0
    OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1165
1166
    // Create and insert the curves at the beginning
1167
0
    if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1168
0
        goto Error;
1169
1170
    // Allocate the CLUT for result
1171
0
    OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1172
1173
    // Add the CLUT to the destination LUT
1174
0
    if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1175
0
        goto Error;
1176
1177
    // Resample the LUT
1178
0
    if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1179
1180
    // Free resources
1181
0
    for (t = 0; t < OriginalLut ->InputChannels; t++) {
1182
1183
0
        if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1184
0
        if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1185
0
    }
1186
1187
0
    cmsPipelineFree(LutPlusCurves);
1188
1189
1190
0
    OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1191
0
    OptimizedPrelinCLUT   = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1192
1193
    // Set the evaluator if 8-bit
1194
0
    if (_cmsFormatterIs8bit(*InputFormat)) {
1195
1196
0
        Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1197
0
                                                OptimizedPrelinCLUT ->Params,
1198
0
                                                OptimizedPrelinCurves);
1199
0
        if (p8 == NULL) return FALSE;
1200
1201
0
        _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1202
1203
0
    }
1204
0
    else
1205
0
    {
1206
0
        Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1207
0
            OptimizedPrelinCLUT ->Params,
1208
0
            3, OptimizedPrelinCurves, 3, NULL);
1209
0
        if (p16 == NULL) return FALSE;
1210
1211
0
        _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1212
1213
0
    }
1214
1215
    // Don't fix white on absolute colorimetric
1216
0
    if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1217
0
        *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1218
1219
0
    if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1220
1221
0
        if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1222
1223
0
            return FALSE;
1224
0
        }
1225
0
    }
1226
1227
    // And return the obtained LUT
1228
1229
0
    cmsPipelineFree(OriginalLut);
1230
0
    *Lut = OptimizedLUT;
1231
0
    return TRUE;
1232
1233
0
Error:
1234
1235
0
    for (t = 0; t < OriginalLut ->InputChannels; t++) {
1236
1237
0
        if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1238
0
        if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1239
0
    }
1240
1241
0
    if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1242
0
    if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1243
1244
0
    return FALSE;
1245
1246
0
    cmsUNUSED_PARAMETER(Intent);
1247
0
    cmsUNUSED_PARAMETER(lIsLinear);
1248
0
}
1249
1250
1251
// Curves optimizer ------------------------------------------------------------------------------------------------------------------
1252
1253
static
1254
void CurvesFree(cmsContext ContextID, void* ptr)
1255
0
{
1256
0
     Curves16Data* Data = (Curves16Data*) ptr;
1257
0
     cmsUInt32Number i;
1258
1259
0
     for (i=0; i < Data -> nCurves; i++) {
1260
1261
0
         _cmsFree(ContextID, Data ->Curves[i]);
1262
0
     }
1263
1264
0
     _cmsFree(ContextID, Data ->Curves);
1265
0
     _cmsFree(ContextID, ptr);
1266
0
}
1267
1268
static
1269
void* CurvesDup(cmsContext ContextID, const void* ptr)
1270
0
{
1271
0
    Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1272
0
    cmsUInt32Number i;
1273
1274
0
    if (Data == NULL) return NULL;
1275
1276
0
    Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1277
1278
0
    for (i=0; i < Data -> nCurves; i++) {
1279
0
        Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1280
0
    }
1281
1282
0
    return (void*) Data;
1283
0
}
1284
1285
// Precomputes tables for 8-bit on input devicelink.
1286
static
1287
Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
1288
0
{
1289
0
    cmsUInt32Number i, j;
1290
0
    Curves16Data* c16;
1291
1292
0
    c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1293
0
    if (c16 == NULL) return NULL;
1294
1295
0
    c16 ->nCurves = nCurves;
1296
0
    c16 ->nElements = nElements;
1297
1298
0
    c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1299
0
    if (c16->Curves == NULL) {
1300
0
        _cmsFree(ContextID, c16);
1301
0
        return NULL;
1302
0
    }
1303
1304
0
    for (i=0; i < nCurves; i++) {
1305
1306
0
        c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1307
1308
0
        if (c16->Curves[i] == NULL) {
1309
1310
0
            for (j=0; j < i; j++) {
1311
0
                _cmsFree(ContextID, c16->Curves[j]);
1312
0
            }
1313
0
            _cmsFree(ContextID, c16->Curves);
1314
0
            _cmsFree(ContextID, c16);
1315
0
            return NULL;
1316
0
        }
1317
1318
0
        if (nElements == 256U) {
1319
1320
0
            for (j=0; j < nElements; j++) {
1321
1322
0
                c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1323
0
            }
1324
0
        }
1325
0
        else {
1326
1327
0
            for (j=0; j < nElements; j++) {
1328
0
                c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1329
0
            }
1330
0
        }
1331
0
    }
1332
1333
0
    return c16;
1334
0
}
1335
1336
static
1337
void FastEvaluateCurves8(CMSREGISTER const cmsUInt16Number In[],
1338
                         CMSREGISTER cmsUInt16Number Out[],
1339
                         CMSREGISTER const void* D)
1340
0
{
1341
0
    Curves16Data* Data = (Curves16Data*) D;
1342
0
    int x;
1343
0
    cmsUInt32Number i;
1344
1345
0
    for (i=0; i < Data ->nCurves; i++) {
1346
1347
0
         x = (In[i] >> 8);
1348
0
         Out[i] = Data -> Curves[i][x];
1349
0
    }
1350
0
}
1351
1352
1353
static
1354
void FastEvaluateCurves16(CMSREGISTER const cmsUInt16Number In[],
1355
                          CMSREGISTER cmsUInt16Number Out[],
1356
                          CMSREGISTER const void* D)
1357
0
{
1358
0
    Curves16Data* Data = (Curves16Data*) D;
1359
0
    cmsUInt32Number i;
1360
1361
0
    for (i=0; i < Data ->nCurves; i++) {
1362
0
         Out[i] = Data -> Curves[i][In[i]];
1363
0
    }
1364
0
}
1365
1366
1367
static
1368
void FastIdentity16(CMSREGISTER const cmsUInt16Number In[],
1369
                    CMSREGISTER cmsUInt16Number Out[],
1370
                    CMSREGISTER const void* D)
1371
0
{
1372
0
    cmsPipeline* Lut = (cmsPipeline*) D;
1373
0
    cmsUInt32Number i;
1374
1375
0
    for (i=0; i < Lut ->InputChannels; i++) {
1376
0
         Out[i] = In[i];
1377
0
    }
1378
0
}
1379
1380
1381
// If the target LUT holds only curves, the optimization procedure is to join all those
1382
// curves together. That only works on curves and does not work on matrices.
1383
static
1384
cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1385
0
{
1386
0
    cmsToneCurve** GammaTables = NULL;
1387
0
    cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1388
0
    cmsUInt32Number i, j;
1389
0
    cmsPipeline* Src = *Lut;
1390
0
    cmsPipeline* Dest = NULL;
1391
0
    cmsStage* mpe;
1392
0
    cmsStage* ObtainedCurves = NULL;
1393
1394
1395
    // This is a lossy optimization! does not apply in floating-point cases
1396
0
    if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1397
1398
    //  Only curves in this LUT?
1399
0
    for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1400
0
         mpe != NULL;
1401
0
         mpe = cmsStageNext(mpe)) {
1402
0
            if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1403
0
    }
1404
1405
    // Allocate an empty LUT
1406
0
    Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1407
0
    if (Dest == NULL) return FALSE;
1408
1409
    // Create target curves
1410
0
    GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1411
0
    if (GammaTables == NULL) goto Error;
1412
1413
0
    for (i=0; i < Src ->InputChannels; i++) {
1414
0
        GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1415
0
        if (GammaTables[i] == NULL) goto Error;
1416
0
    }
1417
1418
    // Compute 16 bit result by using floating point
1419
0
    for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1420
1421
0
        for (j=0; j < Src ->InputChannels; j++)
1422
0
            InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1423
1424
0
        cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1425
1426
0
        for (j=0; j < Src ->InputChannels; j++)
1427
0
            GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1428
0
    }
1429
1430
0
    ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1431
0
    if (ObtainedCurves == NULL) goto Error;
1432
1433
0
    for (i=0; i < Src ->InputChannels; i++) {
1434
0
        cmsFreeToneCurve(GammaTables[i]);
1435
0
        GammaTables[i] = NULL;
1436
0
    }
1437
1438
0
    if (GammaTables != NULL) {
1439
0
        _cmsFree(Src->ContextID, GammaTables);
1440
0
        GammaTables = NULL;
1441
0
    }
1442
1443
    // Maybe the curves are linear at the end
1444
0
    if (!AllCurvesAreLinear(ObtainedCurves)) {
1445
0
       _cmsStageToneCurvesData* Data;
1446
1447
0
        if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1448
0
            goto Error;
1449
0
        Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1450
0
        ObtainedCurves = NULL;
1451
1452
        // If the curves are to be applied in 8 bits, we can save memory
1453
0
        if (_cmsFormatterIs8bit(*InputFormat)) {
1454
0
             Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1455
1456
0
             if (c16 == NULL) goto Error;
1457
0
             *dwFlags |= cmsFLAGS_NOCACHE;
1458
0
            _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1459
1460
0
        }
1461
0
        else {
1462
0
             Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1463
1464
0
             if (c16 == NULL) goto Error;
1465
0
             *dwFlags |= cmsFLAGS_NOCACHE;
1466
0
            _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1467
0
        }
1468
0
    }
1469
0
    else {
1470
1471
        // LUT optimizes to nothing. Set the identity LUT
1472
0
        cmsStageFree(ObtainedCurves);
1473
0
        ObtainedCurves = NULL;
1474
1475
0
        if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1476
0
            goto Error;
1477
1478
0
        *dwFlags |= cmsFLAGS_NOCACHE;
1479
0
        _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1480
0
    }
1481
1482
    // We are done.
1483
0
    cmsPipelineFree(Src);
1484
0
    *Lut = Dest;
1485
0
    return TRUE;
1486
1487
0
Error:
1488
1489
0
    if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1490
0
    if (GammaTables != NULL) {
1491
0
        for (i=0; i < Src ->InputChannels; i++) {
1492
0
            if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1493
0
        }
1494
1495
0
        _cmsFree(Src ->ContextID, GammaTables);
1496
0
    }
1497
1498
0
    if (Dest != NULL) cmsPipelineFree(Dest);
1499
0
    return FALSE;
1500
1501
0
    cmsUNUSED_PARAMETER(Intent);
1502
0
    cmsUNUSED_PARAMETER(InputFormat);
1503
0
    cmsUNUSED_PARAMETER(OutputFormat);
1504
0
    cmsUNUSED_PARAMETER(dwFlags);
1505
0
}
1506
1507
// -------------------------------------------------------------------------------------------------------------------------------------
1508
// LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1509
1510
1511
static
1512
void  FreeMatShaper(cmsContext ContextID, void* Data)
1513
0
{
1514
0
    if (Data != NULL) _cmsFree(ContextID, Data);
1515
0
}
1516
1517
static
1518
void* DupMatShaper(cmsContext ContextID, const void* Data)
1519
0
{
1520
0
    return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1521
0
}
1522
1523
1524
// A fast matrix-shaper evaluator for 8 bits. This is a bit tricky since I'm using 1.14 signed fixed point
1525
// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1526
// in total about 50K, and the performance boost is huge!
1527
static CMS_NO_SANITIZE
1528
void MatShaperEval16(CMSREGISTER const cmsUInt16Number In[],
1529
                     CMSREGISTER cmsUInt16Number Out[],
1530
                     CMSREGISTER const void* D)
1531
0
{
1532
0
    MatShaper8Data* p = (MatShaper8Data*) D;
1533
0
    cmsS1Fixed14Number l1, l2, l3, r, g, b;
1534
0
    cmsUInt32Number ri, gi, bi;
1535
1536
    // In this case (and only in this case!) we can use this simplification since
1537
    // In[] is assured to come from a 8 bit number. (a << 8 | a)
1538
0
    ri = In[0] & 0xFFU;
1539
0
    gi = In[1] & 0xFFU;
1540
0
    bi = In[2] & 0xFFU;
1541
1542
    // Across first shaper, which also converts to 1.14 fixed point
1543
0
    r = p->Shaper1R[ri];
1544
0
    g = p->Shaper1G[gi];
1545
0
    b = p->Shaper1B[bi];
1546
1547
    // Evaluate the matrix in 1.14 fixed point
1548
0
    l1 =  (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1549
0
    l2 =  (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1550
0
    l3 =  (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1551
1552
    // Now we have to clip to 0..1.0 range
1553
0
    ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
1554
0
    gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
1555
0
    bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
1556
1557
    // And across second shaper,
1558
0
    Out[0] = p->Shaper2R[ri];
1559
0
    Out[1] = p->Shaper2G[gi];
1560
0
    Out[2] = p->Shaper2B[bi];
1561
1562
0
}
1563
1564
// This table converts from 8 bits to 1.14 after applying the curve
1565
static
1566
void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1567
0
{
1568
0
    int i;
1569
0
    cmsFloat32Number R, y;
1570
1571
0
    for (i=0; i < 256; i++) {
1572
1573
0
        R   = (cmsFloat32Number) (i / 255.0);
1574
0
        y   = cmsEvalToneCurveFloat(Curve, R);
1575
1576
0
        if (y < 131072.0)
1577
0
            Table[i] = DOUBLE_TO_1FIXED14(y);
1578
0
        else
1579
0
            Table[i] = 0x7fffffff;
1580
0
    }
1581
0
}
1582
1583
// This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1584
static
1585
void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1586
0
{
1587
0
    int i;
1588
0
    cmsFloat32Number R, Val;
1589
1590
0
    for (i=0; i < 16385; i++) {
1591
1592
0
        R   = (cmsFloat32Number) (i / 16384.0);
1593
0
        Val = cmsEvalToneCurveFloat(Curve, R);    // Val comes 0..1.0
1594
1595
0
        if (Val < 0)
1596
0
            Val = 0;
1597
1598
0
        if (Val > 1.0)
1599
0
            Val = 1.0;
1600
1601
0
        if (Is8BitsOutput) {
1602
1603
            // If 8 bits output, we can optimize further by computing the / 257 part.
1604
            // first we compute the resulting byte and then we store the byte times
1605
            // 257. This quantization allows to round very quick by doing a >> 8, but
1606
            // since the low byte is always equal to msb, we can do a & 0xff and this works!
1607
0
            cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1608
0
            cmsUInt8Number  b = FROM_16_TO_8(w);
1609
1610
0
            Table[i] = FROM_8_TO_16(b);
1611
0
        }
1612
0
        else Table[i]  = _cmsQuickSaturateWord(Val * 65535.0);
1613
0
    }
1614
0
}
1615
1616
// Compute the matrix-shaper structure
1617
static
1618
cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1619
0
{
1620
0
    MatShaper8Data* p;
1621
0
    int i, j;
1622
0
    cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1623
1624
    // Allocate a big chuck of memory to store precomputed tables
1625
0
    p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1626
0
    if (p == NULL) return FALSE;
1627
1628
0
    p -> ContextID = Dest -> ContextID;
1629
1630
    // Precompute tables
1631
0
    FillFirstShaper(p ->Shaper1R, Curve1[0]);
1632
0
    FillFirstShaper(p ->Shaper1G, Curve1[1]);
1633
0
    FillFirstShaper(p ->Shaper1B, Curve1[2]);
1634
1635
0
    FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1636
0
    FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1637
0
    FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1638
1639
    // Convert matrix to nFixed14. Note that those values may take more than 16 bits 
1640
0
    for (i=0; i < 3; i++) {
1641
0
        for (j=0; j < 3; j++) {
1642
0
            p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1643
0
        }
1644
0
    }
1645
1646
0
    for (i=0; i < 3; i++) {
1647
1648
0
        if (Off == NULL) {
1649
0
            p ->Off[i] = 0;
1650
0
        }
1651
0
        else {
1652
0
            p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1653
0
        }
1654
0
    }
1655
1656
    // Mark as optimized for faster formatter
1657
0
    if (Is8Bits)
1658
0
        *OutputFormat |= OPTIMIZED_SH(1);
1659
1660
    // Fill function pointers
1661
0
    _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1662
0
    return TRUE;
1663
0
}
1664
1665
//  8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1666
static
1667
cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1668
0
{
1669
0
       cmsStage* Curve1, *Curve2;
1670
0
       cmsStage* Matrix1, *Matrix2;
1671
0
       cmsMAT3 res;
1672
0
       cmsBool IdentityMat;
1673
0
       cmsPipeline* Dest, *Src;
1674
0
       cmsFloat64Number* Offset;
1675
1676
       // Only works on RGB to RGB
1677
0
       if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1678
1679
       // Only works on 8 bit input
1680
0
       if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1681
1682
       // Seems suitable, proceed
1683
0
       Src = *Lut;
1684
1685
       // Check for:
1686
       // 
1687
       //    shaper-matrix-matrix-shaper 
1688
       //    shaper-matrix-shaper
1689
       // 
1690
       // Both of those constructs are possible (first because abs. colorimetric). 
1691
       // additionally, In the first case, the input matrix offset should be zero.
1692
1693
0
       IdentityMat = FALSE;
1694
0
       if (cmsPipelineCheckAndRetreiveStages(Src, 4,
1695
0
              cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1696
0
              &Curve1, &Matrix1, &Matrix2, &Curve2)) {
1697
1698
              // Get both matrices
1699
0
              _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1700
0
              _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
1701
1702
              // Only RGB to RGB
1703
0
              if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3 ||
1704
0
                  Matrix2->InputChannels != 3 || Matrix2->OutputChannels != 3) return FALSE;
1705
1706
              // Input offset should be zero
1707
0
              if (Data1->Offset != NULL) return FALSE;
1708
1709
              // Multiply both matrices to get the result
1710
0
              _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1711
1712
              // Only 2nd matrix has offset, or it is zero 
1713
0
              Offset = Data2->Offset;
1714
1715
              // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1716
0
              if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1717
1718
                     // We can get rid of full matrix
1719
0
                     IdentityMat = TRUE;
1720
0
              }
1721
1722
0
       }
1723
0
       else {
1724
1725
0
              if (cmsPipelineCheckAndRetreiveStages(Src, 3,
1726
0
                     cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1727
0
                     &Curve1, &Matrix1, &Curve2)) {
1728
1729
0
                     _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1730
1731
0
                     if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3) return FALSE;
1732
1733
                     // Copy the matrix to our result
1734
0
                     memcpy(&res, Data->Double, sizeof(res));
1735
1736
                     // Preserve the Odffset (may be NULL as a zero offset)
1737
0
                     Offset = Data->Offset;
1738
1739
0
                     if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1740
1741
                            // We can get rid of full matrix
1742
0
                            IdentityMat = TRUE;
1743
0
                     }
1744
0
              }
1745
0
              else
1746
0
                     return FALSE; // Not optimizeable this time
1747
1748
0
       }
1749
1750
      // Allocate an empty LUT
1751
0
    Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1752
0
    if (!Dest) return FALSE;
1753
1754
    // Assamble the new LUT
1755
0
    if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1756
0
        goto Error;
1757
1758
0
    if (!IdentityMat) {
1759
1760
0
           if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1761
0
                  goto Error;
1762
0
    }
1763
1764
0
    if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1765
0
        goto Error;
1766
1767
    // If identity on matrix, we can further optimize the curves, so call the join curves routine
1768
0
    if (IdentityMat) {
1769
1770
0
        OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1771
0
    }
1772
0
    else {
1773
0
        _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1774
0
        _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1775
1776
        // In this particular optimization, cache does not help as it takes more time to deal with
1777
        // the cache than with the pixel handling
1778
0
        *dwFlags |= cmsFLAGS_NOCACHE;
1779
1780
        // Setup the optimizarion routines
1781
0
        SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1782
0
    }
1783
1784
0
    cmsPipelineFree(Src);
1785
0
    *Lut = Dest;
1786
0
    return TRUE;
1787
0
Error:
1788
    // Leave Src unchanged
1789
0
    cmsPipelineFree(Dest);
1790
0
    return FALSE;
1791
0
}
1792
1793
1794
// -------------------------------------------------------------------------------------------------------------------------------------
1795
// Optimization plug-ins
1796
1797
// List of optimizations
1798
typedef struct _cmsOptimizationCollection_st {
1799
1800
    _cmsOPToptimizeFn  OptimizePtr;
1801
1802
    struct _cmsOptimizationCollection_st *Next;
1803
1804
} _cmsOptimizationCollection;
1805
1806
1807
// The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1808
static _cmsOptimizationCollection DefaultOptimization[] = {
1809
1810
    { OptimizeByJoiningCurves,            &DefaultOptimization[1] },
1811
    { OptimizeMatrixShaper,               &DefaultOptimization[2] },
1812
    { OptimizeByComputingLinearization,   &DefaultOptimization[3] },
1813
    { OptimizeByResampling,               NULL }
1814
};
1815
1816
// The linked list head
1817
_cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1818
1819
1820
// Duplicates the zone of memory used by the plug-in in the new context
1821
static
1822
void DupPluginOptimizationList(struct _cmsContext_struct* ctx, 
1823
                               const struct _cmsContext_struct* src)
1824
0
{
1825
0
   _cmsOptimizationPluginChunkType newHead = { NULL };
1826
0
   _cmsOptimizationCollection*  entry;
1827
0
   _cmsOptimizationCollection*  Anterior = NULL;
1828
0
   _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1829
1830
0
    _cmsAssert(ctx != NULL);
1831
0
    _cmsAssert(head != NULL);
1832
1833
    // Walk the list copying all nodes
1834
0
   for (entry = head->OptimizationCollection;
1835
0
        entry != NULL;
1836
0
        entry = entry ->Next) {
1837
1838
0
            _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1839
   
1840
0
            if (newEntry == NULL) 
1841
0
                return;
1842
1843
            // We want to keep the linked list order, so this is a little bit tricky
1844
0
            newEntry -> Next = NULL;
1845
0
            if (Anterior)
1846
0
                Anterior -> Next = newEntry;
1847
     
1848
0
            Anterior = newEntry;
1849
1850
0
            if (newHead.OptimizationCollection == NULL)
1851
0
                newHead.OptimizationCollection = newEntry;
1852
0
    }
1853
1854
0
  ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1855
0
}
1856
1857
void  _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx, 
1858
                                         const struct _cmsContext_struct* src)
1859
0
{
1860
0
  if (src != NULL) {
1861
1862
        // Copy all linked list
1863
0
       DupPluginOptimizationList(ctx, src);
1864
0
    }
1865
0
    else {
1866
0
        static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1867
0
        ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1868
0
    }
1869
0
}
1870
1871
1872
// Register new ways to optimize
1873
cmsBool  _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1874
0
{
1875
0
    cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1876
0
    _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1877
0
    _cmsOptimizationCollection* fl;
1878
1879
0
    if (Data == NULL) {
1880
1881
0
        ctx->OptimizationCollection = NULL;
1882
0
        return TRUE;
1883
0
    }
1884
1885
    // Optimizer callback is required
1886
0
    if (Plugin ->OptimizePtr == NULL) return FALSE;
1887
1888
0
    fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1889
0
    if (fl == NULL) return FALSE;
1890
1891
    // Copy the parameters
1892
0
    fl ->OptimizePtr = Plugin ->OptimizePtr;
1893
1894
    // Keep linked list
1895
0
    fl ->Next = ctx->OptimizationCollection;
1896
1897
    // Set the head
1898
0
    ctx ->OptimizationCollection = fl;
1899
1900
    // All is ok
1901
0
    return TRUE;
1902
0
}
1903
1904
// The entry point for LUT optimization
1905
cmsBool CMSEXPORT _cmsOptimizePipeline(cmsContext ContextID,
1906
                             cmsPipeline**    PtrLut,
1907
                             cmsUInt32Number  Intent,
1908
                             cmsUInt32Number* InputFormat,
1909
                             cmsUInt32Number* OutputFormat,
1910
                             cmsUInt32Number* dwFlags)
1911
0
{
1912
0
    _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1913
0
    _cmsOptimizationCollection* Opts;
1914
0
    cmsBool AnySuccess = FALSE;
1915
0
    cmsStage* mpe;
1916
1917
    // A CLUT is being asked, so force this specific optimization
1918
0
    if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1919
1920
0
        PreOptimize(*PtrLut);
1921
0
        return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1922
0
    }
1923
1924
    // Anything to optimize?
1925
0
    if ((*PtrLut) ->Elements == NULL) {
1926
0
        _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1927
0
        return TRUE;
1928
0
    }
1929
1930
    // Named color pipelines cannot be optimized 
1931
0
    for (mpe = cmsPipelineGetPtrToFirstStage(*PtrLut);
1932
0
        mpe != NULL;
1933
0
        mpe = cmsStageNext(mpe)) {        
1934
0
            if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
1935
0
    }
1936
1937
    // Try to get rid of identities and trivial conversions.
1938
0
    AnySuccess = PreOptimize(*PtrLut);
1939
1940
    // After removal do we end with an identity?
1941
0
    if ((*PtrLut) ->Elements == NULL) {
1942
0
        _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1943
0
        return TRUE;
1944
0
    }
1945
1946
    // Do not optimize, keep all precision
1947
0
    if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1948
0
        return FALSE;
1949
1950
    // Try plug-in optimizations 
1951
0
    for (Opts = ctx->OptimizationCollection;
1952
0
         Opts != NULL;
1953
0
         Opts = Opts ->Next) {
1954
1955
            // If one schema succeeded, we are done
1956
0
            if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1957
1958
0
                return TRUE;    // Optimized!
1959
0
            }
1960
0
    }
1961
1962
   // Try built-in optimizations 
1963
0
    for (Opts = DefaultOptimization;
1964
0
         Opts != NULL;
1965
0
         Opts = Opts ->Next) {
1966
1967
0
            if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1968
1969
0
                return TRUE;  
1970
0
            }
1971
0
    }
1972
1973
    // Only simple optimizations succeeded
1974
0
    return AnySuccess;
1975
0
}
1976
1977
1978