Coverage Report

Created: 2025-07-07 10:01

/work/workdir/UnpackedTarball/lcms2/src/cmspcs.c
Line
Count
Source (jump to first uncovered line)
1
//---------------------------------------------------------------------------------
2
//
3
//  Little Color Management System
4
//  Copyright (c) 1998-2024 Marti Maria Saguer
5
//
6
// Permission is hereby granted, free of charge, to any person obtaining
7
// a copy of this software and associated documentation files (the "Software"),
8
// to deal in the Software without restriction, including without limitation
9
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
10
// and/or sell copies of the Software, and to permit persons to whom the Software
11
// is furnished to do so, subject to the following conditions:
12
//
13
// The above copyright notice and this permission notice shall be included in
14
// all copies or substantial portions of the Software.
15
//
16
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23
//
24
//---------------------------------------------------------------------------------
25
//
26
27
#include "lcms2_internal.h"
28
29
//      inter PCS conversions XYZ <-> CIE L* a* b*
30
/*
31
32
33
       CIE 15:2004 CIELab is defined as:
34
35
       L* = 116*f(Y/Yn) - 16                     0 <= L* <= 100
36
       a* = 500*[f(X/Xn) - f(Y/Yn)]
37
       b* = 200*[f(Y/Yn) - f(Z/Zn)]
38
39
       and
40
41
              f(t) = t^(1/3)                     1 >= t >  (24/116)^3
42
                     (841/108)*t + (16/116)      0 <= t <= (24/116)^3
43
44
45
       Reverse transform is:
46
47
       X = Xn*[a* / 500 + (L* + 16) / 116] ^ 3   if (X/Xn) > (24/116)
48
         = Xn*(a* / 500 + L* / 116) / 7.787      if (X/Xn) <= (24/116)
49
50
51
52
       PCS in Lab2 is encoded as:
53
54
              8 bit Lab PCS:
55
56
                     L*      0..100 into a 0..ff byte.
57
                     a*      t + 128 range is -128.0  +127.0
58
                     b*
59
60
             16 bit Lab PCS:
61
62
                     L*     0..100  into a 0..ff00 word.
63
                     a*     t + 128  range is  -128.0  +127.9961
64
                     b*
65
66
67
68
Interchange Space   Component     Actual Range        Encoded Range
69
CIE XYZ             X             0 -> 1.99997        0x0000 -> 0xffff
70
CIE XYZ             Y             0 -> 1.99997        0x0000 -> 0xffff
71
CIE XYZ             Z             0 -> 1.99997        0x0000 -> 0xffff
72
73
Version 2,3
74
-----------
75
76
CIELAB (16 bit)     L*            0 -> 100.0          0x0000 -> 0xff00
77
CIELAB (16 bit)     a*            -128.0 -> +127.996  0x0000 -> 0x8000 -> 0xffff
78
CIELAB (16 bit)     b*            -128.0 -> +127.996  0x0000 -> 0x8000 -> 0xffff
79
80
81
Version 4
82
---------
83
84
CIELAB (16 bit)     L*            0 -> 100.0          0x0000 -> 0xffff
85
CIELAB (16 bit)     a*            -128.0 -> +127      0x0000 -> 0x8080 -> 0xffff
86
CIELAB (16 bit)     b*            -128.0 -> +127      0x0000 -> 0x8080 -> 0xffff
87
88
*/
89
90
// Conversions
91
void CMSEXPORT cmsXYZ2xyY(cmsCIExyY* Dest, const cmsCIEXYZ* Source)
92
0
{
93
0
    cmsFloat64Number ISum;
94
95
0
    ISum = 1./(Source -> X + Source -> Y + Source -> Z);
96
97
0
    Dest -> x = (Source -> X) * ISum;
98
0
    Dest -> y = (Source -> Y) * ISum;
99
0
    Dest -> Y = Source -> Y;
100
0
}
101
102
void CMSEXPORT cmsxyY2XYZ(cmsCIEXYZ* Dest, const cmsCIExyY* Source)
103
0
{
104
0
    Dest -> X = (Source -> x / Source -> y) * Source -> Y;
105
0
    Dest -> Y = Source -> Y;
106
0
    Dest -> Z = ((1 - Source -> x - Source -> y) / Source -> y) * Source -> Y;
107
0
}
108
109
/*
110
       The break point (24/116)^3 = (6/29)^3 is a very small amount of tristimulus 
111
       primary (0.008856).  Generally, this only happens for 
112
       nearly ideal blacks and for some orange / amber colors in transmission mode.  
113
       For example, the Z value of the orange turn indicator lamp lens on an 
114
       automobile will often be below this value.  But the Z does not 
115
       contribute to the perceived color directly.
116
*/
117
118
static
119
cmsFloat64Number f(cmsFloat64Number t)
120
0
{
121
0
    const cmsFloat64Number Limit = (24.0/116.0) * (24.0/116.0) * (24.0/116.0);
122
123
0
    if (t <= Limit)
124
0
        return (841.0/108.0) * t + (16.0/116.0);
125
0
    else
126
0
        return pow(t, 1.0/3.0);
127
0
}
128
129
static
130
cmsFloat64Number f_1(cmsFloat64Number t)
131
0
{
132
0
    const cmsFloat64Number Limit = (24.0/116.0);
133
134
0
    if (t <= Limit) {
135
0
        return (108.0/841.0) * (t - (16.0/116.0));
136
0
    }
137
138
0
    return t * t * t;
139
0
}
140
141
142
// Standard XYZ to Lab. it can handle negative XZY numbers in some cases
143
void CMSEXPORT cmsXYZ2Lab(const cmsCIEXYZ* WhitePoint, cmsCIELab* Lab, const cmsCIEXYZ* xyz)
144
0
{
145
0
    cmsFloat64Number fx, fy, fz;
146
147
0
    if (WhitePoint == NULL)
148
0
        WhitePoint = cmsD50_XYZ();
149
150
0
    fx = f(xyz->X / WhitePoint->X);
151
0
    fy = f(xyz->Y / WhitePoint->Y);
152
0
    fz = f(xyz->Z / WhitePoint->Z);
153
154
0
    Lab->L = 116.0*fy - 16.0;
155
0
    Lab->a = 500.0*(fx - fy);
156
0
    Lab->b = 200.0*(fy - fz);
157
0
}
158
159
160
// Standard XYZ to Lab. It can return negative XYZ in some cases
161
void CMSEXPORT cmsLab2XYZ(const cmsCIEXYZ* WhitePoint, cmsCIEXYZ* xyz,  const cmsCIELab* Lab)
162
0
{
163
0
    cmsFloat64Number x, y, z;
164
165
0
    if (WhitePoint == NULL)
166
0
        WhitePoint = cmsD50_XYZ();
167
168
0
    y = (Lab-> L + 16.0) / 116.0;
169
0
    x = y + 0.002 * Lab -> a;
170
0
    z = y - 0.005 * Lab -> b;
171
172
0
    xyz -> X = f_1(x) * WhitePoint -> X;
173
0
    xyz -> Y = f_1(y) * WhitePoint -> Y;
174
0
    xyz -> Z = f_1(z) * WhitePoint -> Z;
175
176
0
}
177
178
static
179
cmsFloat64Number L2float2(cmsUInt16Number v)
180
0
{
181
0
    return (cmsFloat64Number) v / 652.800;
182
0
}
183
184
// the a/b part
185
static
186
cmsFloat64Number ab2float2(cmsUInt16Number v)
187
0
{
188
0
    return ((cmsFloat64Number) v / 256.0) - 128.0;
189
0
}
190
191
static
192
cmsUInt16Number L2Fix2(cmsFloat64Number L)
193
0
{
194
0
    return _cmsQuickSaturateWord(L *  652.8);
195
0
}
196
197
static
198
cmsUInt16Number ab2Fix2(cmsFloat64Number ab)
199
0
{
200
0
    return _cmsQuickSaturateWord((ab + 128.0) * 256.0);
201
0
}
202
203
204
static
205
cmsFloat64Number L2float4(cmsUInt16Number v)
206
0
{
207
0
    return (cmsFloat64Number) v / 655.35;
208
0
}
209
210
// the a/b part
211
static
212
cmsFloat64Number ab2float4(cmsUInt16Number v)
213
0
{
214
0
    return ((cmsFloat64Number) v / 257.0) - 128.0;
215
0
}
216
217
218
void CMSEXPORT cmsLabEncoded2FloatV2(cmsCIELab* Lab, const cmsUInt16Number wLab[3])
219
0
{
220
0
        Lab->L = L2float2(wLab[0]);
221
0
        Lab->a = ab2float2(wLab[1]);
222
0
        Lab->b = ab2float2(wLab[2]);
223
0
}
224
225
226
void CMSEXPORT cmsLabEncoded2Float(cmsCIELab* Lab, const cmsUInt16Number wLab[3])
227
0
{
228
0
        Lab->L = L2float4(wLab[0]);
229
0
        Lab->a = ab2float4(wLab[1]);
230
0
        Lab->b = ab2float4(wLab[2]);
231
0
}
232
233
static
234
cmsFloat64Number Clamp_L_doubleV2(cmsFloat64Number L)
235
0
{
236
0
    const cmsFloat64Number L_max = (cmsFloat64Number) (0xFFFF * 100.0) / 0xFF00;
237
238
0
    if (L < 0) L = 0;
239
0
    if (L > L_max) L = L_max;
240
241
0
    return L;
242
0
}
243
244
245
static
246
cmsFloat64Number Clamp_ab_doubleV2(cmsFloat64Number ab)
247
0
{
248
0
    if (ab < MIN_ENCODEABLE_ab2) ab = MIN_ENCODEABLE_ab2;
249
0
    if (ab > MAX_ENCODEABLE_ab2) ab = MAX_ENCODEABLE_ab2;
250
251
0
    return ab;
252
0
}
253
254
void CMSEXPORT cmsFloat2LabEncodedV2(cmsUInt16Number wLab[3], const cmsCIELab* fLab)
255
0
{
256
0
    cmsCIELab Lab;
257
258
0
    Lab.L = Clamp_L_doubleV2(fLab ->L);
259
0
    Lab.a = Clamp_ab_doubleV2(fLab ->a);
260
0
    Lab.b = Clamp_ab_doubleV2(fLab ->b);
261
262
0
    wLab[0] = L2Fix2(Lab.L);
263
0
    wLab[1] = ab2Fix2(Lab.a);
264
0
    wLab[2] = ab2Fix2(Lab.b);
265
0
}
266
267
268
static
269
cmsFloat64Number Clamp_L_doubleV4(cmsFloat64Number L)
270
0
{
271
0
    if (L < 0) L = 0;
272
0
    if (L > 100.0) L = 100.0;
273
274
0
    return L;
275
0
}
276
277
static
278
cmsFloat64Number Clamp_ab_doubleV4(cmsFloat64Number ab)
279
0
{
280
0
    if (ab < MIN_ENCODEABLE_ab4) ab = MIN_ENCODEABLE_ab4;
281
0
    if (ab > MAX_ENCODEABLE_ab4) ab = MAX_ENCODEABLE_ab4;
282
283
0
    return ab;
284
0
}
285
286
static
287
cmsUInt16Number L2Fix4(cmsFloat64Number L)
288
0
{
289
0
    return _cmsQuickSaturateWord(L *  655.35);
290
0
}
291
292
static
293
cmsUInt16Number ab2Fix4(cmsFloat64Number ab)
294
0
{
295
0
    return _cmsQuickSaturateWord((ab + 128.0) * 257.0);
296
0
}
297
298
void CMSEXPORT cmsFloat2LabEncoded(cmsUInt16Number wLab[3], const cmsCIELab* fLab)
299
0
{
300
0
    cmsCIELab Lab;
301
302
0
    Lab.L = Clamp_L_doubleV4(fLab ->L);
303
0
    Lab.a = Clamp_ab_doubleV4(fLab ->a);
304
0
    Lab.b = Clamp_ab_doubleV4(fLab ->b);
305
306
0
    wLab[0] = L2Fix4(Lab.L);
307
0
    wLab[1] = ab2Fix4(Lab.a);
308
0
    wLab[2] = ab2Fix4(Lab.b);
309
0
}
310
311
// Auxiliary: convert to Radians
312
static
313
cmsFloat64Number RADIANS(cmsFloat64Number deg)
314
0
{
315
0
    return (deg * M_PI) / 180.;
316
0
}
317
318
319
// Auxiliary: atan2 but operating in degrees and returning 0 if a==b==0
320
static
321
cmsFloat64Number atan2deg(cmsFloat64Number a, cmsFloat64Number b)
322
0
{
323
0
   cmsFloat64Number h;
324
325
0
   if (a == 0 && b == 0)
326
0
            h   = 0;
327
0
    else
328
0
            h = atan2(a, b);
329
330
0
    h *= (180. / M_PI);
331
332
0
    while (h > 360.)
333
0
        h -= 360.;
334
335
0
    while ( h < 0)
336
0
        h += 360.;
337
338
0
    return h;
339
0
}
340
341
342
// Auxiliary: Square
343
static
344
cmsFloat64Number Sqr(cmsFloat64Number v)
345
0
{
346
0
    return v *  v;
347
0
}
348
// From cylindrical coordinates. No check is performed, then negative values are allowed
349
void CMSEXPORT cmsLab2LCh(cmsCIELCh* LCh, const cmsCIELab* Lab)
350
0
{
351
0
    LCh -> L = Lab -> L;
352
0
    LCh -> C = pow(Sqr(Lab ->a) + Sqr(Lab ->b), 0.5);
353
0
    LCh -> h = atan2deg(Lab ->b, Lab ->a);
354
0
}
355
356
357
// To cylindrical coordinates. No check is performed, then negative values are allowed
358
void CMSEXPORT cmsLCh2Lab(cmsCIELab* Lab, const cmsCIELCh* LCh)
359
0
{
360
0
    cmsFloat64Number h = (LCh -> h * M_PI) / 180.0;
361
362
0
    Lab -> L = LCh -> L;
363
0
    Lab -> a = LCh -> C * cos(h);
364
0
    Lab -> b = LCh -> C * sin(h);
365
0
}
366
367
// In XYZ All 3 components are encoded using 1.15 fixed point
368
static
369
cmsUInt16Number XYZ2Fix(cmsFloat64Number d)
370
0
{
371
0
    return _cmsQuickSaturateWord(d * 32768.0);
372
0
}
373
374
void CMSEXPORT cmsFloat2XYZEncoded(cmsUInt16Number XYZ[3], const cmsCIEXYZ* fXYZ)
375
0
{
376
0
    cmsCIEXYZ xyz;
377
378
0
    xyz.X = fXYZ -> X;
379
0
    xyz.Y = fXYZ -> Y;
380
0
    xyz.Z = fXYZ -> Z;
381
382
    // Clamp to encodeable values.
383
0
    if (xyz.Y <= 0) {
384
385
0
        xyz.X = 0;
386
0
        xyz.Y = 0;
387
0
        xyz.Z = 0;
388
0
    }
389
390
0
    if (xyz.X > MAX_ENCODEABLE_XYZ)
391
0
        xyz.X = MAX_ENCODEABLE_XYZ;
392
393
0
    if (xyz.X < 0)
394
0
        xyz.X = 0;
395
396
0
    if (xyz.Y > MAX_ENCODEABLE_XYZ)
397
0
        xyz.Y = MAX_ENCODEABLE_XYZ;
398
399
0
    if (xyz.Y < 0)
400
0
        xyz.Y = 0;
401
402
0
    if (xyz.Z > MAX_ENCODEABLE_XYZ)
403
0
        xyz.Z = MAX_ENCODEABLE_XYZ;
404
405
0
    if (xyz.Z < 0)
406
0
        xyz.Z = 0;
407
408
409
0
    XYZ[0] = XYZ2Fix(xyz.X);
410
0
    XYZ[1] = XYZ2Fix(xyz.Y);
411
0
    XYZ[2] = XYZ2Fix(xyz.Z);
412
0
}
413
414
415
//  To convert from Fixed 1.15 point to cmsFloat64Number
416
static
417
cmsFloat64Number XYZ2float(cmsUInt16Number v)
418
0
{
419
0
    cmsS15Fixed16Number fix32;
420
421
    // From 1.15 to 15.16
422
0
    fix32 = v << 1;
423
424
    // From fixed 15.16 to cmsFloat64Number
425
0
    return _cms15Fixed16toDouble(fix32);
426
0
}
427
428
429
void CMSEXPORT cmsXYZEncoded2Float(cmsCIEXYZ* fXYZ, const cmsUInt16Number XYZ[3])
430
0
{
431
0
    fXYZ -> X = XYZ2float(XYZ[0]);
432
0
    fXYZ -> Y = XYZ2float(XYZ[1]);
433
0
    fXYZ -> Z = XYZ2float(XYZ[2]);
434
0
}
435
436
437
// Returns dE on two Lab values
438
cmsFloat64Number CMSEXPORT cmsDeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2)
439
0
{
440
0
    cmsFloat64Number dL, da, db;
441
442
0
    dL = fabs(Lab1 -> L - Lab2 -> L);
443
0
    da = fabs(Lab1 -> a - Lab2 -> a);
444
0
    db = fabs(Lab1 -> b - Lab2 -> b);
445
446
0
    return pow(Sqr(dL) + Sqr(da) + Sqr(db), 0.5);
447
0
}
448
449
450
// Return the CIE94 Delta E
451
cmsFloat64Number CMSEXPORT cmsCIE94DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2)
452
0
{
453
0
    cmsCIELCh LCh1, LCh2;
454
0
    cmsFloat64Number dE, dL, dC, dh, dhsq;
455
0
    cmsFloat64Number c12, sc, sh;
456
457
0
    dL = fabs(Lab1 ->L - Lab2 ->L);
458
459
0
    cmsLab2LCh(&LCh1, Lab1);
460
0
    cmsLab2LCh(&LCh2, Lab2);
461
462
0
    dC  = fabs(LCh1.C - LCh2.C);
463
0
    dE  = cmsDeltaE(Lab1, Lab2);
464
465
0
    dhsq = Sqr(dE) - Sqr(dL) - Sqr(dC);
466
0
    if (dhsq < 0)
467
0
        dh = 0;
468
0
    else
469
0
        dh = pow(dhsq, 0.5);
470
471
0
    c12 = sqrt(LCh1.C * LCh2.C);
472
473
0
    sc = 1.0 + (0.048 * c12);
474
0
    sh = 1.0 + (0.014 * c12);
475
476
0
    return sqrt(Sqr(dL)  + Sqr(dC) / Sqr(sc) + Sqr(dh) / Sqr(sh));
477
0
}
478
479
480
// Auxiliary
481
static
482
cmsFloat64Number ComputeLBFD(const cmsCIELab* Lab)
483
0
{
484
0
  cmsFloat64Number yt;
485
486
0
  if (Lab->L > 7.996969)
487
0
        yt = (Sqr((Lab->L+16)/116)*((Lab->L+16)/116))*100;
488
0
  else
489
0
        yt = 100 * (Lab->L / 903.3);
490
491
0
  return (54.6 * (M_LOG10E * (log(yt + 1.5))) - 9.6);
492
0
}
493
494
495
496
// bfd - gets BFD(1:1) difference between Lab1, Lab2
497
cmsFloat64Number CMSEXPORT cmsBFDdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2)
498
0
{
499
0
    cmsFloat64Number lbfd1,lbfd2,AveC,Aveh,dE,deltaL,
500
0
        deltaC,deltah,dc,t,g,dh,rh,rc,rt,bfd;
501
0
    cmsCIELCh LCh1, LCh2;
502
503
504
0
    lbfd1 = ComputeLBFD(Lab1);
505
0
    lbfd2 = ComputeLBFD(Lab2);
506
0
    deltaL = lbfd2 - lbfd1;
507
508
0
    cmsLab2LCh(&LCh1, Lab1);
509
0
    cmsLab2LCh(&LCh2, Lab2);
510
511
0
    deltaC = LCh2.C - LCh1.C;
512
0
    AveC = (LCh1.C+LCh2.C)/2;
513
0
    Aveh = (LCh1.h+LCh2.h)/2;
514
515
0
    dE = cmsDeltaE(Lab1, Lab2);
516
517
0
    if (Sqr(dE)>(Sqr(Lab2->L-Lab1->L)+Sqr(deltaC)))
518
0
        deltah = sqrt(Sqr(dE)-Sqr(Lab2->L-Lab1->L)-Sqr(deltaC));
519
0
    else
520
0
        deltah =0;
521
522
523
0
    dc   = 0.035 * AveC / (1 + 0.00365 * AveC)+0.521;
524
0
    g    = sqrt(Sqr(Sqr(AveC))/(Sqr(Sqr(AveC))+14000));
525
0
    t    = 0.627+(0.055*cos((Aveh-254)/(180/M_PI))-
526
0
           0.040*cos((2*Aveh-136)/(180/M_PI))+
527
0
           0.070*cos((3*Aveh-31)/(180/M_PI))+
528
0
           0.049*cos((4*Aveh+114)/(180/M_PI))-
529
0
           0.015*cos((5*Aveh-103)/(180/M_PI)));
530
531
0
    dh    = dc*(g*t+1-g);
532
0
    rh    = -0.260*cos((Aveh-308)/(180/M_PI))-
533
0
           0.379*cos((2*Aveh-160)/(180/M_PI))-
534
0
           0.636*cos((3*Aveh+254)/(180/M_PI))+
535
0
           0.226*cos((4*Aveh+140)/(180/M_PI))-
536
0
           0.194*cos((5*Aveh+280)/(180/M_PI));
537
538
0
    rc = sqrt((AveC*AveC*AveC*AveC*AveC*AveC)/((AveC*AveC*AveC*AveC*AveC*AveC)+70000000));
539
0
    rt = rh*rc;
540
541
0
    bfd = sqrt(Sqr(deltaL)+Sqr(deltaC/dc)+Sqr(deltah/dh)+(rt*(deltaC/dc)*(deltah/dh)));
542
543
0
    return bfd;
544
0
}
545
546
547
//  cmc - CMC(l:c) difference between Lab1, Lab2
548
cmsFloat64Number CMSEXPORT cmsCMCdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2, cmsFloat64Number l, cmsFloat64Number c)
549
0
{
550
0
  cmsFloat64Number dE,dL,dC,dh,sl,sc,sh,t,f,cmc;
551
0
  cmsCIELCh LCh1, LCh2;
552
553
0
  if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
554
555
0
  cmsLab2LCh(&LCh1, Lab1);
556
0
  cmsLab2LCh(&LCh2, Lab2);
557
558
559
0
  dL = Lab2->L-Lab1->L;
560
0
  dC = LCh2.C-LCh1.C;
561
562
0
  dE = cmsDeltaE(Lab1, Lab2);
563
564
0
  if (Sqr(dE)>(Sqr(dL)+Sqr(dC)))
565
0
            dh = sqrt(Sqr(dE)-Sqr(dL)-Sqr(dC));
566
0
  else
567
0
            dh =0;
568
569
0
  if ((LCh1.h > 164) && (LCh1.h < 345))
570
0
      t = 0.56 + fabs(0.2 * cos(((LCh1.h + 168)/(180/M_PI))));
571
0
  else
572
0
      t = 0.36 + fabs(0.4 * cos(((LCh1.h + 35 )/(180/M_PI))));
573
574
0
   sc  = 0.0638   * LCh1.C / (1 + 0.0131  * LCh1.C) + 0.638;
575
0
   sl  = 0.040975 * Lab1->L /(1 + 0.01765 * Lab1->L);
576
577
0
   if (Lab1->L<16)
578
0
         sl = 0.511;
579
580
0
   f   = sqrt((LCh1.C * LCh1.C * LCh1.C * LCh1.C)/((LCh1.C * LCh1.C * LCh1.C * LCh1.C)+1900));
581
0
   sh  = sc*(t*f+1-f);
582
0
   cmc = sqrt(Sqr(dL/(l*sl))+Sqr(dC/(c*sc))+Sqr(dh/sh));
583
584
0
   return cmc;
585
0
}
586
587
// dE2000 The weightings KL, KC and KH can be modified to reflect the relative
588
// importance of lightness, chroma and hue in different industrial applications
589
cmsFloat64Number CMSEXPORT cmsCIE2000DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2,
590
                                  cmsFloat64Number Kl, cmsFloat64Number Kc, cmsFloat64Number Kh)
591
0
{
592
0
    cmsFloat64Number L1  = Lab1->L;
593
0
    cmsFloat64Number a1  = Lab1->a;
594
0
    cmsFloat64Number b1  = Lab1->b;
595
0
    cmsFloat64Number C   = sqrt( Sqr(a1) + Sqr(b1) );
596
597
0
    cmsFloat64Number Ls = Lab2 ->L;
598
0
    cmsFloat64Number as = Lab2 ->a;
599
0
    cmsFloat64Number bs = Lab2 ->b;
600
0
    cmsFloat64Number Cs = sqrt( Sqr(as) + Sqr(bs) );
601
602
0
    cmsFloat64Number G = 0.5 * ( 1 - sqrt(pow((C + Cs) / 2 , 7.0) / (pow((C + Cs) / 2, 7.0) + pow(25.0, 7.0) ) ));
603
604
0
    cmsFloat64Number a_p = (1 + G ) * a1;
605
0
    cmsFloat64Number b_p = b1;
606
0
    cmsFloat64Number C_p = sqrt( Sqr(a_p) + Sqr(b_p));
607
0
    cmsFloat64Number h_p = atan2deg(b_p, a_p);
608
609
610
0
    cmsFloat64Number a_ps = (1 + G) * as;
611
0
    cmsFloat64Number b_ps = bs;
612
0
    cmsFloat64Number C_ps = sqrt(Sqr(a_ps) + Sqr(b_ps));
613
0
    cmsFloat64Number h_ps = atan2deg(b_ps, a_ps);
614
615
0
    cmsFloat64Number meanC_p =(C_p + C_ps) / 2;
616
617
0
    cmsFloat64Number hps_plus_hp  = h_ps + h_p;
618
0
    cmsFloat64Number hps_minus_hp = h_ps - h_p;
619
620
0
    cmsFloat64Number meanh_p = fabs(hps_minus_hp) <= 180.000001 ? (hps_plus_hp)/2 :
621
0
                            (hps_plus_hp) < 360 ? (hps_plus_hp + 360)/2 :
622
0
                                                 (hps_plus_hp - 360)/2;
623
624
0
    cmsFloat64Number delta_h = (hps_minus_hp) <= -180.000001 ?  (hps_minus_hp + 360) :
625
0
                            (hps_minus_hp) > 180 ? (hps_minus_hp - 360) :
626
0
                                                    (hps_minus_hp);
627
0
    cmsFloat64Number delta_L = (Ls - L1);
628
0
    cmsFloat64Number delta_C = (C_ps - C_p );
629
630
631
0
    cmsFloat64Number delta_H =2 * sqrt(C_ps*C_p) * sin(RADIANS(delta_h) / 2);
632
633
0
    cmsFloat64Number T = 1 - 0.17 * cos(RADIANS(meanh_p-30))
634
0
                 + 0.24 * cos(RADIANS(2*meanh_p))
635
0
                 + 0.32 * cos(RADIANS(3*meanh_p + 6))
636
0
                 - 0.2  * cos(RADIANS(4*meanh_p - 63));
637
638
0
    cmsFloat64Number Sl = 1 + (0.015 * Sqr((Ls + L1) /2- 50) )/ sqrt(20 + Sqr( (Ls+L1)/2 - 50) );
639
640
0
    cmsFloat64Number Sc = 1 + 0.045 * (C_p + C_ps)/2;
641
0
    cmsFloat64Number Sh = 1 + 0.015 * ((C_ps + C_p)/2) * T;
642
643
0
    cmsFloat64Number delta_ro = 30 * exp( -Sqr(((meanh_p - 275 ) / 25)));
644
645
0
    cmsFloat64Number Rc = 2 * sqrt(( pow(meanC_p, 7.0) )/( pow(meanC_p, 7.0) + pow(25.0, 7.0)));
646
647
0
    cmsFloat64Number Rt = -sin(2 * RADIANS(delta_ro)) * Rc;
648
649
0
    cmsFloat64Number deltaE00 = sqrt( Sqr(delta_L /(Sl * Kl)) +
650
0
                            Sqr(delta_C/(Sc * Kc))  +
651
0
                            Sqr(delta_H/(Sh * Kh))  +
652
0
                            Rt*(delta_C/(Sc * Kc)) * (delta_H / (Sh * Kh)));
653
654
0
    return deltaE00;
655
0
}
656
657
// This function returns a number of gridpoints to be used as LUT table. It assumes same number
658
// of gripdpoints in all dimensions. Flags may override the choice.
659
cmsUInt32Number CMSEXPORT _cmsReasonableGridpointsByColorspace(cmsColorSpaceSignature Colorspace, cmsUInt32Number dwFlags)
660
0
{
661
0
    cmsUInt32Number nChannels;
662
663
    // Already specified?
664
0
    if (dwFlags & 0x00FF0000) {
665
            // Yes, grab'em
666
0
            return (dwFlags >> 16) & 0xFF;
667
0
    }
668
669
0
    nChannels = cmsChannelsOf(Colorspace);
670
671
    // HighResPrecalc is maximum resolution
672
0
    if (dwFlags & cmsFLAGS_HIGHRESPRECALC) {
673
674
0
        if (nChannels > 4)
675
0
                return 7;       // 7 for Hifi
676
677
0
        if (nChannels == 4)     // 23 for CMYK
678
0
                return 23;
679
680
0
        return 49;      // 49 for RGB and others
681
0
    }
682
683
684
    // LowResPrecal is lower resolution
685
0
    if (dwFlags & cmsFLAGS_LOWRESPRECALC) {
686
687
0
        if (nChannels > 4)
688
0
                return 6;       // 6 for more than 4 channels
689
690
0
        if (nChannels == 1)
691
0
                return 33;      // For monochrome
692
693
0
        return 17;              // 17 for remaining
694
0
    }
695
696
    // Default values
697
0
    if (nChannels > 4)
698
0
                return 7;       // 7 for Hifi
699
700
0
    if (nChannels == 4)
701
0
                return 17;      // 17 for CMYK
702
703
0
    return 33;                  // 33 for RGB
704
0
}
705
706
707
cmsBool  _cmsEndPointsBySpace(cmsColorSpaceSignature Space,
708
                             cmsUInt16Number **White,
709
                             cmsUInt16Number **Black,
710
                             cmsUInt32Number *nOutputs)
711
0
{
712
       // Only most common spaces
713
714
0
       static cmsUInt16Number RGBblack[4]  = { 0, 0, 0 };
715
0
       static cmsUInt16Number RGBwhite[4]  = { 0xffff, 0xffff, 0xffff };
716
0
       static cmsUInt16Number CMYKblack[4] = { 0xffff, 0xffff, 0xffff, 0xffff };   // 400% of ink
717
0
       static cmsUInt16Number CMYKwhite[4] = { 0, 0, 0, 0 };
718
0
       static cmsUInt16Number LABblack[4]  = { 0, 0x8080, 0x8080 };               // V4 Lab encoding
719
0
       static cmsUInt16Number LABwhite[4]  = { 0xFFFF, 0x8080, 0x8080 };
720
0
       static cmsUInt16Number CMYblack[4]  = { 0xffff, 0xffff, 0xffff };
721
0
       static cmsUInt16Number CMYwhite[4]  = { 0, 0, 0 };
722
0
       static cmsUInt16Number Grayblack[4] = { 0 };
723
0
       static cmsUInt16Number GrayWhite[4] = { 0xffff };
724
725
0
       switch (Space) {
726
727
0
       case cmsSigGrayData: if (White)    *White = GrayWhite;
728
0
                           if (Black)    *Black = Grayblack;
729
0
                           if (nOutputs) *nOutputs = 1;
730
0
                           return TRUE;
731
732
0
       case cmsSigRgbData:  if (White)    *White = RGBwhite;
733
0
                           if (Black)    *Black = RGBblack;
734
0
                           if (nOutputs) *nOutputs = 3;
735
0
                           return TRUE;
736
737
0
       case cmsSigLabData:  if (White)    *White = LABwhite;
738
0
                           if (Black)    *Black = LABblack;
739
0
                           if (nOutputs) *nOutputs = 3;
740
0
                           return TRUE;
741
742
0
       case cmsSigCmykData: if (White)    *White = CMYKwhite;
743
0
                           if (Black)    *Black = CMYKblack;
744
0
                           if (nOutputs) *nOutputs = 4;
745
0
                           return TRUE;
746
747
0
       case cmsSigCmyData:  if (White)    *White = CMYwhite;
748
0
                           if (Black)    *Black = CMYblack;
749
0
                           if (nOutputs) *nOutputs = 3;
750
0
                           return TRUE;
751
752
0
       default:;
753
0
       }
754
755
0
  return FALSE;
756
0
}
757
758
759
760
// Several utilities -------------------------------------------------------
761
762
// Translate from our colorspace to ICC representation
763
764
cmsColorSpaceSignature CMSEXPORT _cmsICCcolorSpace(int OurNotation)
765
0
{
766
0
       switch (OurNotation) {
767
768
0
       case 1:
769
0
       case PT_GRAY: return cmsSigGrayData;
770
771
0
       case 2:
772
0
       case PT_RGB:  return cmsSigRgbData;
773
774
0
       case PT_CMY:  return cmsSigCmyData;
775
0
       case PT_CMYK: return cmsSigCmykData;
776
0
       case PT_YCbCr:return cmsSigYCbCrData;
777
0
       case PT_YUV:  return cmsSigLuvData;
778
0
       case PT_XYZ:  return cmsSigXYZData;
779
780
0
       case PT_LabV2:
781
0
       case PT_Lab:  return cmsSigLabData;
782
783
0
       case PT_YUVK: return cmsSigLuvKData;
784
0
       case PT_HSV:  return cmsSigHsvData;
785
0
       case PT_HLS:  return cmsSigHlsData;
786
0
       case PT_Yxy:  return cmsSigYxyData;
787
788
0
       case PT_MCH1: return cmsSigMCH1Data;
789
0
       case PT_MCH2: return cmsSigMCH2Data;
790
0
       case PT_MCH3: return cmsSigMCH3Data;
791
0
       case PT_MCH4: return cmsSigMCH4Data;
792
0
       case PT_MCH5: return cmsSigMCH5Data;
793
0
       case PT_MCH6: return cmsSigMCH6Data;
794
0
       case PT_MCH7: return cmsSigMCH7Data;
795
0
       case PT_MCH8: return cmsSigMCH8Data;
796
797
0
       case PT_MCH9:  return cmsSigMCH9Data;
798
0
       case PT_MCH10: return cmsSigMCHAData;
799
0
       case PT_MCH11: return cmsSigMCHBData;
800
0
       case PT_MCH12: return cmsSigMCHCData;
801
0
       case PT_MCH13: return cmsSigMCHDData;
802
0
       case PT_MCH14: return cmsSigMCHEData;
803
0
       case PT_MCH15: return cmsSigMCHFData;
804
805
0
       default:  return (cmsColorSpaceSignature) 0;
806
0
       }
807
0
}
808
809
810
int CMSEXPORT _cmsLCMScolorSpace(cmsColorSpaceSignature ProfileSpace)
811
0
{
812
0
    switch (ProfileSpace) {
813
814
0
    case cmsSigGrayData: return  PT_GRAY;
815
0
    case cmsSigRgbData:  return  PT_RGB;
816
0
    case cmsSigCmyData:  return  PT_CMY;
817
0
    case cmsSigCmykData: return  PT_CMYK;
818
0
    case cmsSigYCbCrData:return  PT_YCbCr;
819
0
    case cmsSigLuvData:  return  PT_YUV;
820
0
    case cmsSigXYZData:  return  PT_XYZ;
821
0
    case cmsSigLabData:  return  PT_Lab;
822
0
    case cmsSigLuvKData: return  PT_YUVK;
823
0
    case cmsSigHsvData:  return  PT_HSV;
824
0
    case cmsSigHlsData:  return  PT_HLS;
825
0
    case cmsSigYxyData:  return  PT_Yxy;
826
827
0
    case cmsSig1colorData:
828
0
    case cmsSigMCH1Data: return PT_MCH1;
829
830
0
    case cmsSig2colorData:
831
0
    case cmsSigMCH2Data: return PT_MCH2;
832
833
0
    case cmsSig3colorData:
834
0
    case cmsSigMCH3Data: return PT_MCH3;
835
836
0
    case cmsSig4colorData:
837
0
    case cmsSigMCH4Data: return PT_MCH4;
838
839
0
    case cmsSig5colorData:
840
0
    case cmsSigMCH5Data: return PT_MCH5;
841
842
0
    case cmsSig6colorData:
843
0
    case cmsSigMCH6Data: return PT_MCH6;
844
845
0
    case cmsSigMCH7Data:
846
0
    case cmsSig7colorData:return PT_MCH7;
847
848
0
    case cmsSigMCH8Data:
849
0
    case cmsSig8colorData:return PT_MCH8;
850
851
0
    case cmsSigMCH9Data:
852
0
    case cmsSig9colorData:return PT_MCH9;
853
854
0
    case cmsSigMCHAData:
855
0
    case cmsSig10colorData:return PT_MCH10;
856
857
0
    case cmsSigMCHBData:
858
0
    case cmsSig11colorData:return PT_MCH11;
859
860
0
    case cmsSigMCHCData:
861
0
    case cmsSig12colorData:return PT_MCH12;
862
863
0
    case cmsSigMCHDData:
864
0
    case cmsSig13colorData:return PT_MCH13;
865
866
0
    case cmsSigMCHEData:
867
0
    case cmsSig14colorData:return PT_MCH14;
868
869
0
    case cmsSigMCHFData:
870
0
    case cmsSig15colorData:return PT_MCH15;
871
872
0
    default:  return (cmsColorSpaceSignature) 0;
873
0
    }
874
0
}
875
876
877
cmsInt32Number CMSEXPORT cmsChannelsOfColorSpace(cmsColorSpaceSignature ColorSpace)
878
0
{
879
0
    switch (ColorSpace) {
880
881
0
    case cmsSigMCH1Data:
882
0
    case cmsSig1colorData:
883
0
    case cmsSigGrayData: return 1;
884
885
0
    case cmsSigMCH2Data:
886
0
    case cmsSig2colorData:  return 2;
887
888
0
    case cmsSigXYZData:
889
0
    case cmsSigLabData:
890
0
    case cmsSigLuvData:
891
0
    case cmsSigYCbCrData:
892
0
    case cmsSigYxyData:
893
0
    case cmsSigRgbData:
894
0
    case cmsSigHsvData:
895
0
    case cmsSigHlsData:
896
0
    case cmsSigCmyData:
897
0
    case cmsSigMCH3Data:
898
0
    case cmsSig3colorData:  return 3;
899
900
0
    case cmsSigLuvKData:
901
0
    case cmsSigCmykData:
902
0
    case cmsSigMCH4Data:
903
0
    case cmsSig4colorData:  return 4;
904
905
0
    case cmsSigMCH5Data:
906
0
    case cmsSig5colorData:  return 5;
907
908
0
    case cmsSigMCH6Data:
909
0
    case cmsSig6colorData:  return 6;
910
911
0
    case cmsSigMCH7Data:
912
0
    case cmsSig7colorData:  return  7;
913
914
0
    case cmsSigMCH8Data:
915
0
    case cmsSig8colorData:  return  8;
916
917
0
    case cmsSigMCH9Data:
918
0
    case cmsSig9colorData:  return  9;
919
920
0
    case cmsSigMCHAData:
921
0
    case cmsSig10colorData: return 10;
922
923
0
    case cmsSigMCHBData:
924
0
    case cmsSig11colorData: return 11;
925
926
0
    case cmsSigMCHCData:
927
0
    case cmsSig12colorData: return 12;
928
929
0
    case cmsSigMCHDData:
930
0
    case cmsSig13colorData: return 13;
931
932
0
    case cmsSigMCHEData:
933
0
    case cmsSig14colorData: return 14;
934
935
0
    case cmsSigMCHFData:
936
0
    case cmsSig15colorData: return 15;
937
938
0
    default: return -1;
939
0
    }
940
0
}
941
942
/**
943
* DEPRECATED: Provided for compatibility only
944
*/
945
cmsUInt32Number CMSEXPORT cmsChannelsOf(cmsColorSpaceSignature ColorSpace)
946
0
{
947
0
    int n = cmsChannelsOfColorSpace(ColorSpace);
948
0
    if (n < 0) return 3;
949
0
    return (cmsUInt32Number)n;
950
0
}