Coverage Report

Created: 2025-07-07 10:01

/work/workdir/UnpackedTarball/libjpeg-turbo/src/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
21.6k
{
81
21.6k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
21.6k
  int ci, blkn, dctbl, actbl;
83
21.6k
  d_derived_tbl **pdtbl;
84
21.6k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
21.6k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
21.6k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
15.6k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
72.1k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
50.4k
    compptr = cinfo->cur_comp_info[ci];
96
50.4k
    dctbl = compptr->dc_tbl_no;
97
50.4k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
50.4k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
50.4k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
50.4k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
50.4k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
50.4k
    entropy->saved.last_dc_val[ci] = 0;
106
50.4k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
118k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
96.5k
    ci = cinfo->MCU_membership[blkn];
111
96.5k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
96.5k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
96.5k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
96.5k
    if (compptr->component_needed) {
117
96.5k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
96.5k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
96.5k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
96.5k
  }
124
125
  /* Initialize bitread state variables */
126
21.6k
  entropy->bitstate.bits_left = 0;
127
21.6k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
21.6k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
21.6k
  entropy->restarts_to_go = cinfo->restart_interval;
132
21.6k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
110k
{
146
110k
  JHUFF_TBL *htbl;
147
110k
  d_derived_tbl *dtbl;
148
110k
  int p, i, l, si, numsymbols;
149
110k
  int lookbits, ctr;
150
110k
  char huffsize[257];
151
110k
  unsigned int huffcode[257];
152
110k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
110k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
19
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
110k
  htbl =
162
110k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
110k
  if (htbl == NULL)
164
24
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
110k
  if (*pdtbl == NULL)
168
66.7k
    *pdtbl = (d_derived_tbl *)
169
66.7k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
66.7k
                                  sizeof(d_derived_tbl));
171
110k
  dtbl = *pdtbl;
172
110k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
110k
  p = 0;
177
1.88M
  for (l = 1; l <= 16; l++) {
178
1.76M
    i = (int)htbl->bits[l];
179
1.76M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
10.3M
    while (i--)
182
8.53M
      huffsize[p++] = (char)l;
183
1.76M
  }
184
110k
  huffsize[p] = 0;
185
110k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
110k
  code = 0;
191
110k
  si = huffsize[0];
192
110k
  p = 0;
193
1.35M
  while (huffsize[p]) {
194
9.77M
    while (((int)huffsize[p]) == si) {
195
8.52M
      huffcode[p++] = code;
196
8.52M
      code++;
197
8.52M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
1.24M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
46
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
1.24M
    code <<= 1;
204
1.24M
    si++;
205
1.24M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
110k
  p = 0;
210
1.87M
  for (l = 1; l <= 16; l++) {
211
1.76M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
1.09M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
1.09M
      p += htbl->bits[l];
217
1.09M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
1.09M
    } else {
219
673k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
673k
    }
221
1.76M
  }
222
110k
  dtbl->valoffset[17] = 0;
223
110k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
28.4M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
28.3M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
110k
  p = 0;
236
995k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
2.34M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
1.46M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
27.2M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
25.8M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
25.8M
        lookbits++;
244
25.8M
      }
245
1.46M
    }
246
884k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
110k
  if (isDC) {
255
690k
    for (i = 0; i < numsymbols; i++) {
256
633k
      int sym = htbl->huffval[i];
257
633k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
48
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
633k
    }
260
56.3k
  }
261
110k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
19.5M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
9.09M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
9.09M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
9.09M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
9.09M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
9.09M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
13.6M
    while (bits_left < MIN_GET_BITS) {
303
11.9M
      register int c;
304
305
      /* Attempt to read a byte */
306
11.9M
      if (bytes_in_buffer == 0) {
307
26.7k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
26.7k
        next_input_byte = cinfo->src->next_input_byte;
310
26.7k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
26.7k
      }
312
11.9M
      bytes_in_buffer--;
313
11.9M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
11.9M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
1.04M
        do {
323
1.04M
          if (bytes_in_buffer == 0) {
324
2.59k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
2.59k
            next_input_byte = cinfo->src->next_input_byte;
327
2.59k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
2.59k
          }
329
1.04M
          bytes_in_buffer--;
330
1.04M
          c = *next_input_byte++;
331
1.04M
        } while (c == 0xFF);
332
333
189k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
144k
          c = 0xFF;
336
144k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
44.5k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
44.5k
          goto no_more_bytes;
348
44.5k
        }
349
189k
      }
350
351
      /* OK, load c into get_buffer */
352
11.9M
      get_buffer = (get_buffer << 8) | c;
353
11.9M
      bits_left += 8;
354
11.9M
    } /* end while */
355
7.39M
  } else {
356
7.43M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
7.43M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
2.95M
      if (!cinfo->entropy->insufficient_data) {
368
42.8k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
42.8k
        cinfo->entropy->insufficient_data = TRUE;
370
42.8k
      }
371
      /* Fill the buffer with zero bits */
372
2.95M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
2.95M
      bits_left = MIN_GET_BITS;
374
2.95M
    }
375
7.43M
  }
376
377
  /* Unload the local registers */
378
9.09M
  state->next_input_byte = next_input_byte;
379
9.09M
  state->bytes_in_buffer = bytes_in_buffer;
380
9.09M
  state->get_buffer = get_buffer;
381
9.09M
  state->bits_left = bits_left;
382
383
9.09M
  return TRUE;
384
9.09M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
1.62M
#define GET_BYTE { \
392
1.62M
  register int c0, c1; \
393
1.62M
  c0 = *buffer++; \
394
1.62M
  c1 = *buffer; \
395
1.62M
  /* Pre-execute most common case */ \
396
1.62M
  get_buffer = (get_buffer << 8) | c0; \
397
1.62M
  bits_left += 8; \
398
1.62M
  if (c0 == 0xFF) { \
399
373k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
373k
    buffer++; \
401
373k
    if (c1 != 0) { \
402
294k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
294k
      cinfo->unread_marker = c1; \
404
294k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
294k
      buffer -= 2; \
406
294k
      get_buffer &= ~0xFF; \
407
294k
    } \
408
373k
  } \
409
1.62M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
4.38M
  if (bits_left <= 16) { \
416
270k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
270k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
7.07M
{
440
7.07M
  register int l = min_bits;
441
7.07M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
7.07M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
7.07M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
28.9M
  while (code > htbl->maxcode[l]) {
453
21.9M
    code <<= 1;
454
21.9M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
21.9M
    code |= GET_BITS(1);
456
21.9M
    l++;
457
21.9M
  }
458
459
  /* Unload the local registers */
460
7.07M
  state->get_buffer = get_buffer;
461
7.07M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
7.07M
  if (l > 16) {
466
392k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
392k
    return 0;                   /* fake a zero as the safest result */
468
392k
  }
469
470
6.68M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
7.07M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
14.8M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
14.8M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
43.2k
{
514
43.2k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
43.2k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
43.2k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
43.2k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
43.2k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
157k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
113k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
43.2k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
43.2k
  if (cinfo->unread_marker == 0)
539
14.8k
    entropy->pub.insufficient_data = FALSE;
540
541
43.2k
  return TRUE;
542
43.2k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
747k
{
554
747k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
747k
  BITREAD_STATE_VARS;
556
747k
  int blkn;
557
747k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
747k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
747k
  state = entropy->saved;
563
564
2.31M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
1.57M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
1.57M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
1.57M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
1.57M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
1.57M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
1.57M
    if (s) {
575
740k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
740k
      r = GET_BITS(s);
577
740k
      s = HUFF_EXTEND(r, s);
578
740k
    }
579
580
1.57M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
1.57M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
1.57M
      s += state.last_dc_val[ci];
592
1.57M
      state.last_dc_val[ci] = s;
593
1.57M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
1.57M
        (*block)[0] = (JCOEF)s;
596
1.57M
      }
597
1.57M
    }
598
599
1.57M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
14.2M
      for (k = 1; k < DCTSIZE2; k++) {
604
13.9M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
13.9M
        r = s >> 4;
607
13.9M
        s &= 15;
608
609
13.9M
        if (s) {
610
12.6M
          k += r;
611
12.6M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
12.6M
          r = GET_BITS(s);
613
12.6M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
12.6M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
12.6M
        } else {
620
1.30M
          if (r != 15)
621
1.28M
            break;
622
15.1k
          k += 15;
623
15.1k
        }
624
13.9M
      }
625
626
1.57M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
56
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
56
    }
647
1.57M
  }
648
649
  /* Completed MCU, so update state */
650
747k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
747k
  entropy->saved = state;
652
747k
  return TRUE;
653
747k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
802k
{
665
802k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
802k
  BITREAD_STATE_VARS;
667
802k
  JOCTET *buffer;
668
802k
  int blkn;
669
802k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
802k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
802k
  buffer = (JOCTET *)br_state.next_input_byte;
675
802k
  state = entropy->saved;
676
677
1.61M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
816k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
816k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
816k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
816k
    register int s, k, r, l;
682
683
816k
    HUFF_DECODE_FAST(s, l, dctbl);
684
816k
    if (s) {
685
101k
      FILL_BIT_BUFFER_FAST
686
101k
      r = GET_BITS(s);
687
101k
      s = HUFF_EXTEND(r, s);
688
101k
    }
689
690
816k
    if (entropy->dc_needed[blkn]) {
691
816k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
816k
      s += state.last_dc_val[ci];
696
816k
      state.last_dc_val[ci] = s;
697
816k
      if (block)
698
816k
        (*block)[0] = (JCOEF)s;
699
816k
    }
700
701
816k
    if (entropy->ac_needed[blkn] && block) {
702
703
2.15M
      for (k = 1; k < DCTSIZE2; k++) {
704
2.13M
        HUFF_DECODE_FAST(s, l, actbl);
705
2.13M
        r = s >> 4;
706
2.13M
        s &= 15;
707
708
2.13M
        if (s) {
709
1.33M
          k += r;
710
1.33M
          FILL_BIT_BUFFER_FAST
711
1.33M
          r = GET_BITS(s);
712
1.33M
          s = HUFF_EXTEND(r, s);
713
1.33M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
1.33M
        } else {
715
796k
          if (r != 15) break;
716
3.74k
          k += 15;
717
3.74k
        }
718
2.13M
      }
719
720
816k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
816k
  }
738
739
802k
  if (cinfo->unread_marker != 0) {
740
42.1k
    cinfo->unread_marker = 0;
741
42.1k
    return FALSE;
742
42.1k
  }
743
744
760k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
760k
  br_state.next_input_byte = buffer;
746
760k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
760k
  entropy->saved = state;
748
760k
  return TRUE;
749
802k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
46.6M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
46.6M
{
772
46.6M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
46.6M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
46.6M
  if (cinfo->restart_interval) {
777
2.03M
    if (entropy->restarts_to_go == 0)
778
43.2k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
2.03M
    usefast = 0;
781
2.03M
  }
782
783
46.6M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
46.6M
      cinfo->unread_marker != 0)
785
45.8M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
46.6M
  if (!entropy->pub.insufficient_data) {
791
792
1.50M
    if (usefast) {
793
802k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
802k
    } else {
795
747k
use_slow:
796
747k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
747k
    }
798
799
1.50M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
46.6M
  if (cinfo->restart_interval)
803
2.03M
    entropy->restarts_to_go--;
804
805
46.6M
  return TRUE;
806
46.6M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
18.2k
{
816
18.2k
  huff_entropy_ptr entropy;
817
18.2k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
18.2k
  std_huff_tables((j_common_ptr)cinfo);
824
825
18.2k
  entropy = (huff_entropy_ptr)
826
18.2k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
18.2k
                                sizeof(huff_entropy_decoder));
828
18.2k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
18.2k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
18.2k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
91.3k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
73.1k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
73.1k
  }
836
18.2k
}