/src/libreoffice/basegfx/source/curve/b2dcubicbezier.cxx
Line | Count | Source |
1 | | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | /* |
3 | | * This file is part of the LibreOffice project. |
4 | | * |
5 | | * This Source Code Form is subject to the terms of the Mozilla Public |
6 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
7 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. |
8 | | * |
9 | | * This file incorporates work covered by the following license notice: |
10 | | * |
11 | | * Licensed to the Apache Software Foundation (ASF) under one or more |
12 | | * contributor license agreements. See the NOTICE file distributed |
13 | | * with this work for additional information regarding copyright |
14 | | * ownership. The ASF licenses this file to you under the Apache |
15 | | * License, Version 2.0 (the "License"); you may not use this file |
16 | | * except in compliance with the License. You may obtain a copy of |
17 | | * the License at http://www.apache.org/licenses/LICENSE-2.0 . |
18 | | */ |
19 | | |
20 | | #include <basegfx/curve/b2dcubicbezier.hxx> |
21 | | #include <basegfx/range/b2drange.hxx> |
22 | | #include <basegfx/vector/b2dvector.hxx> |
23 | | #include <basegfx/polygon/b2dpolygon.hxx> |
24 | | #include <basegfx/matrix/b2dhommatrix.hxx> |
25 | | #include <basegfx/numeric/ftools.hxx> |
26 | | |
27 | | #include <osl/diagnose.h> |
28 | | |
29 | | #include <cassert> |
30 | | #include <cmath> |
31 | | #include <limits> |
32 | | |
33 | | constexpr double FACTOR_FOR_UNSHARPEN = 1.6; |
34 | | // #i37443# |
35 | | #ifdef DBG_UTIL |
36 | | const double fMultFactUnsharpen = FACTOR_FOR_UNSHARPEN; |
37 | | #endif |
38 | | |
39 | | namespace basegfx |
40 | | { |
41 | | namespace |
42 | | { |
43 | | void ImpSubDivAngle( |
44 | | const B2DPoint& rfPA, // start point |
45 | | const B2DPoint& rfEA, // edge on A |
46 | | const B2DPoint& rfEB, // edge on B |
47 | | const B2DPoint& rfPB, // end point |
48 | | B2DPolygon& rTarget, // target polygon |
49 | | double fAngleBound, // angle bound in [0.0 .. 2PI] |
50 | | bool bAllowUnsharpen, // #i37443# allow the criteria to get unsharp in recursions |
51 | | sal_uInt16 nMaxRecursionDepth) // endless loop protection |
52 | 11.7M | { |
53 | 11.7M | if(nMaxRecursionDepth) |
54 | 11.1M | { |
55 | | // do angle test |
56 | 11.1M | B2DVector aLeft(rfEA - rfPA); |
57 | 11.1M | B2DVector aRight(rfEB - rfPB); |
58 | | |
59 | | // #i72104# |
60 | 11.1M | if(aLeft.equalZero()) |
61 | 189k | { |
62 | 189k | aLeft = rfEB - rfPA; |
63 | 189k | } |
64 | | |
65 | 11.1M | if(aRight.equalZero()) |
66 | 186k | { |
67 | 186k | aRight = rfEA - rfPB; |
68 | 186k | } |
69 | | |
70 | 11.1M | const double fCurrentAngle(aLeft.angle(aRight)); |
71 | | |
72 | 11.1M | if(fabs(fCurrentAngle) > (M_PI - fAngleBound)) |
73 | 5.83M | { |
74 | | // end recursion |
75 | 5.83M | nMaxRecursionDepth = 0; |
76 | 5.83M | } |
77 | 5.31M | else |
78 | 5.31M | { |
79 | 5.31M | if(bAllowUnsharpen) |
80 | 5.31M | { |
81 | | // #i37443# unsharpen criteria |
82 | | #ifdef DBG_UTIL |
83 | | fAngleBound *= fMultFactUnsharpen; |
84 | | #else |
85 | 5.31M | fAngleBound *= FACTOR_FOR_UNSHARPEN; |
86 | 5.31M | #endif |
87 | 5.31M | } |
88 | 5.31M | } |
89 | 11.1M | } |
90 | | |
91 | 11.7M | if(nMaxRecursionDepth) |
92 | 5.31M | { |
93 | | // divide at 0.5 |
94 | 5.31M | const B2DPoint aS1L(average(rfPA, rfEA)); |
95 | 5.31M | const B2DPoint aS1C(average(rfEA, rfEB)); |
96 | 5.31M | const B2DPoint aS1R(average(rfEB, rfPB)); |
97 | 5.31M | const B2DPoint aS2L(average(aS1L, aS1C)); |
98 | 5.31M | const B2DPoint aS2R(average(aS1C, aS1R)); |
99 | 5.31M | const B2DPoint aS3C(average(aS2L, aS2R)); |
100 | | |
101 | | // left recursion |
102 | 5.31M | ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1); |
103 | | |
104 | | // right recursion |
105 | 5.31M | ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1); |
106 | 5.31M | } |
107 | 6.42M | else |
108 | 6.42M | { |
109 | 6.42M | rTarget.append(rfPB); |
110 | 6.42M | } |
111 | 11.7M | } |
112 | | |
113 | | void ImpSubDivAngleStart( |
114 | | const B2DPoint& rfPA, // start point |
115 | | const B2DPoint& rfEA, // edge on A |
116 | | const B2DPoint& rfEB, // edge on B |
117 | | const B2DPoint& rfPB, // end point |
118 | | B2DPolygon& rTarget, // target polygon |
119 | | const double& rfAngleBound) // angle bound in [0.0 .. 2PI] |
120 | 1.79M | { |
121 | 1.79M | sal_uInt16 nMaxRecursionDepth(8); |
122 | 1.79M | const B2DVector aLeft(rfEA - rfPA); |
123 | 1.79M | const B2DVector aRight(rfEB - rfPB); |
124 | 1.79M | bool bLeftEqualZero(aLeft.equalZero()); |
125 | 1.79M | bool bRightEqualZero(aRight.equalZero()); |
126 | 1.79M | bool bAllParallel(false); |
127 | | |
128 | 1.79M | if(bLeftEqualZero && bRightEqualZero) |
129 | 7 | { |
130 | 7 | nMaxRecursionDepth = 0; |
131 | 7 | } |
132 | 1.79M | else |
133 | 1.79M | { |
134 | 1.79M | const B2DVector aBase(rfPB - rfPA); |
135 | 1.79M | const bool bBaseEqualZero(aBase.equalZero()); // #i72104# |
136 | | |
137 | 1.79M | if(!bBaseEqualZero) |
138 | 1.79M | { |
139 | 1.79M | const bool bLeftParallel(bLeftEqualZero || areParallel(aLeft, aBase)); |
140 | 1.79M | const bool bRightParallel(bRightEqualZero || areParallel(aRight, aBase)); |
141 | | |
142 | 1.79M | if(bLeftParallel && bRightParallel) |
143 | 14.0k | { |
144 | 14.0k | bAllParallel = true; |
145 | | |
146 | 14.0k | if(!bLeftEqualZero) |
147 | 12.5k | { |
148 | 12.5k | double fFactor; |
149 | | |
150 | 12.5k | if(fabs(aBase.getX()) > fabs(aBase.getY())) |
151 | 9.48k | { |
152 | 9.48k | fFactor = aLeft.getX() / aBase.getX(); |
153 | 9.48k | } |
154 | 3.09k | else |
155 | 3.09k | { |
156 | 3.09k | fFactor = aLeft.getY() / aBase.getY(); |
157 | 3.09k | } |
158 | | |
159 | 12.5k | if(fFactor >= 0.0 && fFactor <= 1.0) |
160 | 9.95k | { |
161 | 9.95k | bLeftEqualZero = true; |
162 | 9.95k | } |
163 | 12.5k | } |
164 | | |
165 | 14.0k | if(!bRightEqualZero) |
166 | 12.5k | { |
167 | 12.5k | double fFactor; |
168 | | |
169 | 12.5k | if(fabs(aBase.getX()) > fabs(aBase.getY())) |
170 | 9.39k | { |
171 | 9.39k | fFactor = aRight.getX() / -aBase.getX(); |
172 | 9.39k | } |
173 | 3.15k | else |
174 | 3.15k | { |
175 | 3.15k | fFactor = aRight.getY() / -aBase.getY(); |
176 | 3.15k | } |
177 | | |
178 | 12.5k | if(fFactor >= 0.0 && fFactor <= 1.0) |
179 | 9.77k | { |
180 | 9.77k | bRightEqualZero = true; |
181 | 9.77k | } |
182 | 12.5k | } |
183 | | |
184 | 14.0k | if(bLeftEqualZero && bRightEqualZero) |
185 | 10.2k | { |
186 | 10.2k | nMaxRecursionDepth = 0; |
187 | 10.2k | } |
188 | 14.0k | } |
189 | 1.79M | } |
190 | 1.79M | } |
191 | | |
192 | 1.79M | if(nMaxRecursionDepth) |
193 | 1.78M | { |
194 | | // divide at 0.5 ad test both edges for angle criteria |
195 | 1.78M | const B2DPoint aS1L(average(rfPA, rfEA)); |
196 | 1.78M | const B2DPoint aS1C(average(rfEA, rfEB)); |
197 | 1.78M | const B2DPoint aS1R(average(rfEB, rfPB)); |
198 | 1.78M | const B2DPoint aS2L(average(aS1L, aS1C)); |
199 | 1.78M | const B2DPoint aS2R(average(aS1C, aS1R)); |
200 | 1.78M | const B2DPoint aS3C(average(aS2L, aS2R)); |
201 | | |
202 | | // test left |
203 | 1.78M | bool bAngleIsSmallerLeft(bAllParallel && bLeftEqualZero); |
204 | 1.78M | if(!bAngleIsSmallerLeft) |
205 | 1.78M | { |
206 | 1.78M | const B2DVector aLeftLeft(bLeftEqualZero ? aS2L - aS1L : aS1L - rfPA); // #i72104# |
207 | 1.78M | const B2DVector aRightLeft(aS2L - aS3C); |
208 | 1.78M | const double fCurrentAngleLeft(aLeftLeft.angle(aRightLeft)); |
209 | 1.78M | bAngleIsSmallerLeft = (fabs(fCurrentAngleLeft) > (M_PI - rfAngleBound)); |
210 | 1.78M | } |
211 | | |
212 | | // test right |
213 | 1.78M | bool bAngleIsSmallerRight(bAllParallel && bRightEqualZero); |
214 | 1.78M | if(!bAngleIsSmallerRight) |
215 | 1.78M | { |
216 | 1.78M | const B2DVector aLeftRight(aS2R - aS3C); |
217 | 1.78M | const B2DVector aRightRight(bRightEqualZero ? aS2R - aS1R : aS1R - rfPB); // #i72104# |
218 | 1.78M | const double fCurrentAngleRight(aLeftRight.angle(aRightRight)); |
219 | 1.78M | bAngleIsSmallerRight = (fabs(fCurrentAngleRight) > (M_PI - rfAngleBound)); |
220 | 1.78M | } |
221 | | |
222 | 1.78M | if(bAngleIsSmallerLeft && bAngleIsSmallerRight) |
223 | 1.04M | { |
224 | | // no recursion necessary at all |
225 | 1.04M | nMaxRecursionDepth = 0; |
226 | 1.04M | } |
227 | 742k | else |
228 | 742k | { |
229 | | // left |
230 | 742k | if(bAngleIsSmallerLeft) |
231 | 185k | { |
232 | 185k | rTarget.append(aS3C); |
233 | 185k | } |
234 | 557k | else |
235 | 557k | { |
236 | 557k | ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, rfAngleBound, true/*bAllowUnsharpen*/, nMaxRecursionDepth); |
237 | 557k | } |
238 | | |
239 | | // right |
240 | 742k | if(bAngleIsSmallerRight) |
241 | 192k | { |
242 | 192k | rTarget.append(rfPB); |
243 | 192k | } |
244 | 550k | else |
245 | 550k | { |
246 | 550k | ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, rfAngleBound, true/*bAllowUnsharpen*/, nMaxRecursionDepth); |
247 | 550k | } |
248 | 742k | } |
249 | 1.78M | } |
250 | | |
251 | 1.79M | if(!nMaxRecursionDepth) |
252 | 1.05M | { |
253 | 1.05M | rTarget.append(rfPB); |
254 | 1.05M | } |
255 | 1.79M | } |
256 | | |
257 | | void ImpSubDivDistance( |
258 | | const B2DPoint& rfPA, // start point |
259 | | const B2DPoint& rfEA, // edge on A |
260 | | const B2DPoint& rfEB, // edge on B |
261 | | const B2DPoint& rfPB, // end point |
262 | | B2DPolygon& rTarget, // target polygon |
263 | | double fDistanceBound2, // quadratic distance criteria |
264 | | double fLastDistanceError2, // the last quadratic distance error |
265 | | sal_uInt16 nMaxRecursionDepth) // endless loop protection |
266 | 3.90M | { |
267 | 3.90M | if(nMaxRecursionDepth) |
268 | 2.07M | { |
269 | | // decide if another recursion is needed. If not, set |
270 | | // nMaxRecursionDepth to zero |
271 | | |
272 | | // Perform bezier flatness test (lecture notes from R. Schaback, |
273 | | // Mathematics of Computer-Aided Design, Uni Goettingen, 2000) |
274 | | |
275 | | // ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)|| |
276 | | // 0<=j<=n |
277 | | |
278 | | // What is calculated here is an upper bound to the distance from |
279 | | // a line through b_0 and b_3 (rfPA and P4 in our notation) and the |
280 | | // curve. We can drop 0 and n from the running indices, since the |
281 | | // argument of max becomes zero for those cases. |
282 | 2.07M | const double fJ1x(rfEA.getX() - rfPA.getX() - 1.0/3.0*(rfPB.getX() - rfPA.getX())); |
283 | 2.07M | const double fJ1y(rfEA.getY() - rfPA.getY() - 1.0/3.0*(rfPB.getY() - rfPA.getY())); |
284 | 2.07M | const double fJ2x(rfEB.getX() - rfPA.getX() - 2.0/3.0*(rfPB.getX() - rfPA.getX())); |
285 | 2.07M | const double fJ2y(rfEB.getY() - rfPA.getY() - 2.0/3.0*(rfPB.getY() - rfPA.getY())); |
286 | 2.07M | const double fDistanceError2(std::max(fJ1x*fJ1x + fJ1y*fJ1y, fJ2x*fJ2x + fJ2y*fJ2y)); |
287 | | |
288 | | // stop if error measure does not improve anymore. This is a |
289 | | // safety guard against floating point inaccuracies. |
290 | | // stop if distance from line is guaranteed to be bounded by d |
291 | 2.07M | const bool bFurtherDivision(fLastDistanceError2 > fDistanceError2 && fDistanceError2 >= fDistanceBound2); |
292 | | |
293 | 2.07M | if(bFurtherDivision) |
294 | 1.94M | { |
295 | | // remember last error value |
296 | 1.94M | fLastDistanceError2 = fDistanceError2; |
297 | 1.94M | } |
298 | 123k | else |
299 | 123k | { |
300 | | // stop recursion |
301 | 123k | nMaxRecursionDepth = 0; |
302 | 123k | } |
303 | 2.07M | } |
304 | | |
305 | 3.90M | if(nMaxRecursionDepth) |
306 | 1.94M | { |
307 | | // divide at 0.5 |
308 | 1.94M | const B2DPoint aS1L(average(rfPA, rfEA)); |
309 | 1.94M | const B2DPoint aS1C(average(rfEA, rfEB)); |
310 | 1.94M | const B2DPoint aS1R(average(rfEB, rfPB)); |
311 | 1.94M | const B2DPoint aS2L(average(aS1L, aS1C)); |
312 | 1.94M | const B2DPoint aS2R(average(aS1C, aS1R)); |
313 | 1.94M | const B2DPoint aS3C(average(aS2L, aS2R)); |
314 | | |
315 | | // left recursion |
316 | 1.94M | ImpSubDivDistance(rfPA, aS1L, aS2L, aS3C, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1); |
317 | | |
318 | | // right recursion |
319 | 1.94M | ImpSubDivDistance(aS3C, aS2R, aS1R, rfPB, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1); |
320 | 1.94M | } |
321 | 1.95M | else |
322 | 1.95M | { |
323 | 1.95M | rTarget.append(rfPB); |
324 | 1.95M | } |
325 | 3.90M | } |
326 | | } // end of anonymous namespace |
327 | | } // end of namespace basegfx |
328 | | |
329 | | namespace basegfx |
330 | | { |
331 | 0 | B2DCubicBezier::B2DCubicBezier(const B2DCubicBezier&) = default; |
332 | | |
333 | 3.14M | B2DCubicBezier::B2DCubicBezier() = default; |
334 | | |
335 | | B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rControlPointA, const B2DPoint& rControlPointB, const B2DPoint& rEnd) |
336 | 0 | : maStartPoint(rStart), |
337 | 0 | maEndPoint(rEnd), |
338 | 0 | maControlPointA(rControlPointA), |
339 | 0 | maControlPointB(rControlPointB) |
340 | 0 | { |
341 | 0 | } |
342 | | |
343 | | // assignment operator |
344 | 2.23M | B2DCubicBezier& B2DCubicBezier::operator=(const B2DCubicBezier&) = default; |
345 | | |
346 | | // compare operators |
347 | | bool B2DCubicBezier::operator==(const B2DCubicBezier& rBezier) const |
348 | 0 | { |
349 | 0 | return ( |
350 | 0 | maStartPoint == rBezier.maStartPoint |
351 | 0 | && maEndPoint == rBezier.maEndPoint |
352 | 0 | && maControlPointA == rBezier.maControlPointA |
353 | 0 | && maControlPointB == rBezier.maControlPointB |
354 | 0 | ); |
355 | 0 | } |
356 | | |
357 | | bool B2DCubicBezier::equal(const B2DCubicBezier& rBezier) const |
358 | 0 | { |
359 | 0 | return ( |
360 | 0 | maStartPoint.equal(rBezier.maStartPoint) |
361 | 0 | && maEndPoint.equal(rBezier.maEndPoint) |
362 | 0 | && maControlPointA.equal(rBezier.maControlPointA) |
363 | 0 | && maControlPointB.equal(rBezier.maControlPointB) |
364 | 0 | ); |
365 | 0 | } |
366 | | |
367 | | // test if vectors are used |
368 | | bool B2DCubicBezier::isBezier() const |
369 | 24.9M | { |
370 | 24.9M | return maControlPointA != maStartPoint || maControlPointB != maEndPoint; |
371 | 24.9M | } |
372 | | |
373 | | void B2DCubicBezier::testAndSolveTrivialBezier() |
374 | 2.40M | { |
375 | 2.40M | if(maControlPointA == maStartPoint && maControlPointB == maEndPoint) |
376 | 384k | return; |
377 | | |
378 | 2.01M | const B2DVector aEdge(maEndPoint - maStartPoint); |
379 | | |
380 | | // controls parallel to edge can be trivial. No edge -> not parallel -> control can |
381 | | // still not be trivial (e.g. ballon loop) |
382 | 2.01M | if(aEdge.equalZero()) |
383 | 3.38k | return; |
384 | | |
385 | | // get control vectors |
386 | 2.01M | const B2DVector aVecA(maControlPointA - maStartPoint); |
387 | 2.01M | const B2DVector aVecB(maControlPointB - maEndPoint); |
388 | | |
389 | | // check if trivial per se |
390 | 2.01M | bool bAIsTrivial(aVecA.equalZero()); |
391 | 2.01M | bool bBIsTrivial(aVecB.equalZero()); |
392 | | |
393 | | // #i102241# prepare inverse edge length to normalize cross values; |
394 | | // else the small compare value used in fTools::equalZero |
395 | | // will be length dependent and this detection will work as less |
396 | | // precise as longer the edge is. In principle, the length of the control |
397 | | // vector would need to be used too, but to be trivial it is assumed to |
398 | | // be of roughly equal length to the edge, so edge length can be used |
399 | | // for both. Only needed when one of both is not trivial per se. |
400 | 2.01M | const double fInverseEdgeLength(bAIsTrivial && bBIsTrivial |
401 | 2.01M | ? 1.0 |
402 | 2.01M | : 1.0 / aEdge.getLength()); |
403 | | |
404 | | // if A is not zero, check if it could be |
405 | 2.01M | if(!bAIsTrivial) |
406 | 1.98M | { |
407 | | // #i102241# parallel to edge? Check aVecA, aEdge. Use cross() which does what |
408 | | // we need here with the precision we need |
409 | 1.98M | const double fCross(aVecA.cross(aEdge) * fInverseEdgeLength); |
410 | | |
411 | 1.98M | if(fTools::equalZero(fCross)) |
412 | 167k | { |
413 | | // get scale to edge. Use bigger distance for numeric quality |
414 | 167k | const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY()) |
415 | 167k | ? aVecA.getX() / aEdge.getX() |
416 | 167k | : aVecA.getY() / aEdge.getY()); |
417 | | |
418 | | // relative end point of vector in edge range? |
419 | 167k | if (fTools::betweenOrEqualEither(fScale, 0.0, 1.0)) |
420 | 163k | { |
421 | 163k | bAIsTrivial = true; |
422 | 163k | } |
423 | 167k | } |
424 | 1.98M | } |
425 | | |
426 | | // if B is not zero, check if it could be, but only if A is already trivial; |
427 | | // else solve to trivial will not be possible for whole edge |
428 | 2.01M | if(bAIsTrivial && !bBIsTrivial) |
429 | 169k | { |
430 | | // parallel to edge? Check aVecB, aEdge |
431 | 169k | const double fCross(aVecB.cross(aEdge) * fInverseEdgeLength); |
432 | | |
433 | 169k | if(fTools::equalZero(fCross)) |
434 | 162k | { |
435 | | // get scale to edge. Use bigger distance for numeric quality |
436 | 162k | const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY()) |
437 | 162k | ? aVecB.getX() / aEdge.getX() |
438 | 162k | : aVecB.getY() / aEdge.getY()); |
439 | | |
440 | | // end point of vector in edge range? Caution: controlB is directed AGAINST edge |
441 | 162k | if (fTools::betweenOrEqualEither(fScale, -1.0, 0.0)) |
442 | 160k | { |
443 | 160k | bBIsTrivial = true; |
444 | 160k | } |
445 | 162k | } |
446 | 169k | } |
447 | | |
448 | | // if both are/can be reduced, do it. |
449 | | // Not possible if only one is/can be reduced (!) |
450 | 2.01M | if(bAIsTrivial && bBIsTrivial) |
451 | 188k | { |
452 | 188k | maControlPointA = maStartPoint; |
453 | 188k | maControlPointB = maEndPoint; |
454 | 188k | } |
455 | 2.01M | } |
456 | | |
457 | | namespace { |
458 | | double impGetLength(const B2DCubicBezier& rEdge, double fDeviation, sal_uInt32 nRecursionWatch) |
459 | 0 | { |
460 | 0 | const double fEdgeLength(rEdge.getEdgeLength()); |
461 | 0 | const double fControlPolygonLength(rEdge.getControlPolygonLength()); |
462 | 0 | const double fCurrentDeviation(fTools::equalZero(fControlPolygonLength) ? 0.0 : 1.0 - (fEdgeLength / fControlPolygonLength)); |
463 | |
|
464 | 0 | if(!nRecursionWatch || fTools:: lessOrEqual(fCurrentDeviation, fDeviation)) |
465 | 0 | { |
466 | 0 | return (fEdgeLength + fControlPolygonLength) * 0.5; |
467 | 0 | } |
468 | 0 | else |
469 | 0 | { |
470 | 0 | B2DCubicBezier aLeft, aRight; |
471 | 0 | const double fNewDeviation(fDeviation * 0.5); |
472 | 0 | const sal_uInt32 nNewRecursionWatch(nRecursionWatch - 1); |
473 | |
|
474 | 0 | rEdge.split(0.5, &aLeft, &aRight); |
475 | |
|
476 | 0 | return impGetLength(aLeft, fNewDeviation, nNewRecursionWatch) |
477 | 0 | + impGetLength(aRight, fNewDeviation, nNewRecursionWatch); |
478 | 0 | } |
479 | 0 | } |
480 | | } |
481 | | |
482 | | double B2DCubicBezier::getLength(double fDeviation) const |
483 | 0 | { |
484 | 0 | if(isBezier()) |
485 | 0 | { |
486 | 0 | if(fDeviation < 0.00000001) |
487 | 0 | { |
488 | 0 | fDeviation = 0.00000001; |
489 | 0 | } |
490 | |
|
491 | 0 | return impGetLength(*this, fDeviation, 6); |
492 | 0 | } |
493 | 0 | else |
494 | 0 | { |
495 | 0 | return B2DVector(getEndPoint() - getStartPoint()).getLength(); |
496 | 0 | } |
497 | 0 | } |
498 | | |
499 | | double B2DCubicBezier::getEdgeLength() const |
500 | 0 | { |
501 | 0 | const B2DVector aEdge(maEndPoint - maStartPoint); |
502 | 0 | return aEdge.getLength(); |
503 | 0 | } |
504 | | |
505 | | double B2DCubicBezier::getControlPolygonLength() const |
506 | 0 | { |
507 | 0 | const B2DVector aVectorA(maControlPointA - maStartPoint); |
508 | 0 | const B2DVector aVectorB(maEndPoint - maControlPointB); |
509 | |
|
510 | 0 | if(!aVectorA.equalZero() || !aVectorB.equalZero()) |
511 | 0 | { |
512 | 0 | const B2DVector aTop(maControlPointB - maControlPointA); |
513 | 0 | return (aVectorA.getLength() + aVectorB.getLength() + aTop.getLength()); |
514 | 0 | } |
515 | 0 | else |
516 | 0 | { |
517 | 0 | return getEdgeLength(); |
518 | 0 | } |
519 | 0 | } |
520 | | |
521 | | void B2DCubicBezier::adaptiveSubdivideByAngle(B2DPolygon& rTarget, double fAngleBound) const |
522 | 1.79M | { |
523 | 1.79M | if(isBezier()) |
524 | 1.79M | { |
525 | | // use support method #i37443# and allow unsharpen the criteria |
526 | 1.79M | ImpSubDivAngleStart(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget, |
527 | 1.79M | deg2rad(fAngleBound)); |
528 | 1.79M | } |
529 | 0 | else |
530 | 0 | { |
531 | 0 | rTarget.append(getEndPoint()); |
532 | 0 | } |
533 | 1.79M | } |
534 | | |
535 | | B2DVector B2DCubicBezier::getTangent(double t) const |
536 | 5.54M | { |
537 | 5.54M | if(t <= 0.0) |
538 | 2.84M | { |
539 | | // tangent in start point |
540 | 2.84M | B2DVector aTangent(getControlPointA() - getStartPoint()); |
541 | | |
542 | 2.84M | if(!aTangent.equalZero()) |
543 | 814k | { |
544 | 814k | return aTangent; |
545 | 814k | } |
546 | | |
547 | | // start point and control vector are the same, fallback |
548 | | // to implicit start vector to control point B |
549 | 2.03M | aTangent = (getControlPointB() - getStartPoint()) * 0.3; |
550 | | |
551 | 2.03M | if(!aTangent.equalZero()) |
552 | 2.03M | { |
553 | 2.03M | return aTangent; |
554 | 2.03M | } |
555 | | |
556 | | // not a bezier at all, return edge vector |
557 | 1.73k | return (getEndPoint() - getStartPoint()) * 0.3; |
558 | 2.03M | } |
559 | 2.69M | else if(fTools::moreOrEqual(t, 1.0)) |
560 | 2.69M | { |
561 | | // tangent in end point |
562 | 2.69M | B2DVector aTangent(getEndPoint() - getControlPointB()); |
563 | | |
564 | 2.69M | if(!aTangent.equalZero()) |
565 | 671k | { |
566 | 671k | return aTangent; |
567 | 671k | } |
568 | | |
569 | | // end point and control vector are the same, fallback |
570 | | // to implicit start vector from control point A |
571 | 2.02M | aTangent = (getEndPoint() - getControlPointA()) * 0.3; |
572 | | |
573 | 2.02M | if(!aTangent.equalZero()) |
574 | 2.02M | { |
575 | 2.02M | return aTangent; |
576 | 2.02M | } |
577 | | |
578 | | // not a bezier at all, return edge vector |
579 | 1.64k | return (getEndPoint() - getStartPoint()) * 0.3; |
580 | 2.02M | } |
581 | 0 | else |
582 | 0 | { |
583 | | // t is in ]0.0 .. 1.0[. Split and extract |
584 | 0 | B2DCubicBezier aRight; |
585 | 0 | split(t, nullptr, &aRight); |
586 | |
|
587 | 0 | return aRight.getControlPointA() - aRight.getStartPoint(); |
588 | 0 | } |
589 | 5.54M | } |
590 | | |
591 | | // #i37443# adaptive subdivide by nCount subdivisions |
592 | | void B2DCubicBezier::adaptiveSubdivideByCount(B2DPolygon& rTarget, sal_uInt32 nCount) const |
593 | 0 | { |
594 | 0 | const double fLenFact(1.0 / static_cast< double >(nCount + 1)); |
595 | |
|
596 | 0 | for(sal_uInt32 a(1); a <= nCount; a++) |
597 | 0 | { |
598 | 0 | const double fPos(static_cast< double >(a) * fLenFact); |
599 | 0 | rTarget.append(interpolatePoint(fPos)); |
600 | 0 | } |
601 | |
|
602 | 0 | rTarget.append(getEndPoint()); |
603 | 0 | } |
604 | | |
605 | | // adaptive subdivide by distance |
606 | | void B2DCubicBezier::adaptiveSubdivideByDistance(B2DPolygon& rTarget, double fDistanceBound, int nRecurseLimit) const |
607 | 2.67k | { |
608 | 2.67k | if(isBezier()) |
609 | 2.67k | { |
610 | 2.67k | ImpSubDivDistance(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget, |
611 | 2.67k | fDistanceBound * fDistanceBound, std::numeric_limits<double>::max(), nRecurseLimit); |
612 | 2.67k | } |
613 | 0 | else |
614 | 0 | { |
615 | 0 | rTarget.append(getEndPoint()); |
616 | 0 | } |
617 | 2.67k | } |
618 | | |
619 | | B2DPoint B2DCubicBezier::interpolatePoint(double t) const |
620 | 717k | { |
621 | 717k | OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::interpolatePoint: Access out of range (!)"); |
622 | | |
623 | 717k | if(isBezier()) |
624 | 144k | { |
625 | 144k | const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t)); |
626 | 144k | const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t)); |
627 | 144k | const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t)); |
628 | 144k | const B2DPoint aS2L(interpolate(aS1L, aS1C, t)); |
629 | 144k | const B2DPoint aS2R(interpolate(aS1C, aS1R, t)); |
630 | | |
631 | 144k | return interpolate(aS2L, aS2R, t); |
632 | 144k | } |
633 | 572k | else |
634 | 572k | { |
635 | 572k | return interpolate(maStartPoint, maEndPoint, t); |
636 | 572k | } |
637 | 717k | } |
638 | | |
639 | | double B2DCubicBezier::getSmallestDistancePointToBezierSegment(const B2DPoint& rTestPoint, double& rCut) const |
640 | 0 | { |
641 | 0 | const sal_uInt32 nInitialDivisions(3); |
642 | 0 | B2DPolygon aInitialPolygon; |
643 | | |
644 | | // as start make a fix division, creates nInitialDivisions + 2 points |
645 | 0 | aInitialPolygon.append(getStartPoint()); |
646 | 0 | adaptiveSubdivideByCount(aInitialPolygon, nInitialDivisions); |
647 | | |
648 | | // now look for the closest point |
649 | 0 | const sal_uInt32 nPointCount(aInitialPolygon.count()); |
650 | 0 | B2DVector aVector(rTestPoint - aInitialPolygon.getB2DPoint(0)); |
651 | 0 | double pointDistance(std::hypot(aVector.getX(), aVector.getY())); |
652 | 0 | double newPointDistance; |
653 | 0 | sal_uInt32 nSmallestIndex(0); |
654 | |
|
655 | 0 | for(sal_uInt32 a(1); a < nPointCount; a++) |
656 | 0 | { |
657 | 0 | aVector = B2DVector(rTestPoint - aInitialPolygon.getB2DPoint(a)); |
658 | 0 | newPointDistance = std::hypot(aVector.getX(), aVector.getY()); |
659 | 0 | if(newPointDistance < pointDistance) |
660 | 0 | { |
661 | 0 | pointDistance = newPointDistance; |
662 | 0 | nSmallestIndex = a; |
663 | 0 | } |
664 | 0 | } |
665 | | |
666 | | // look right and left for even smaller distances |
667 | 0 | double fStepValue(1.0 / static_cast<double>((nPointCount - 1) * 2)); // half the edge step width |
668 | 0 | double fPosition(static_cast<double>(nSmallestIndex) / static_cast<double>(nPointCount - 1)); |
669 | |
|
670 | 0 | while(true) |
671 | 0 | { |
672 | | // test left |
673 | 0 | double fPosLeft(fPosition - fStepValue); |
674 | |
|
675 | 0 | if(fPosLeft < 0.0) |
676 | 0 | { |
677 | 0 | fPosLeft = 0.0; |
678 | 0 | aVector = B2DVector(rTestPoint - maStartPoint); |
679 | 0 | } |
680 | 0 | else |
681 | 0 | { |
682 | 0 | aVector = B2DVector(rTestPoint - interpolatePoint(fPosLeft)); |
683 | 0 | } |
684 | |
|
685 | 0 | newPointDistance = std::hypot(aVector.getX(), aVector.getY()); |
686 | |
|
687 | 0 | if(fTools::less(newPointDistance, pointDistance)) |
688 | 0 | { |
689 | 0 | pointDistance = newPointDistance; |
690 | 0 | fPosition = fPosLeft; |
691 | 0 | } |
692 | 0 | else |
693 | 0 | { |
694 | | // test right |
695 | 0 | double fPosRight(fPosition + fStepValue); |
696 | |
|
697 | 0 | if(fPosRight > 1.0) |
698 | 0 | { |
699 | 0 | fPosRight = 1.0; |
700 | 0 | aVector = B2DVector(rTestPoint - maEndPoint); |
701 | 0 | } |
702 | 0 | else |
703 | 0 | { |
704 | 0 | aVector = B2DVector(rTestPoint - interpolatePoint(fPosRight)); |
705 | 0 | } |
706 | |
|
707 | 0 | newPointDistance = std::hypot(aVector.getX(), aVector.getY()); |
708 | |
|
709 | 0 | if(fTools::less(newPointDistance, pointDistance)) |
710 | 0 | { |
711 | 0 | pointDistance = newPointDistance; |
712 | 0 | fPosition = fPosRight; |
713 | 0 | } |
714 | 0 | else |
715 | 0 | { |
716 | | // not less left or right, done |
717 | 0 | break; |
718 | 0 | } |
719 | 0 | } |
720 | | |
721 | 0 | if(fPosition == 0.0 || fPosition == 1.0) |
722 | 0 | { |
723 | | // if we are completely left or right, we are done |
724 | 0 | break; |
725 | 0 | } |
726 | | |
727 | | // prepare next step value |
728 | 0 | fStepValue /= 2.0; |
729 | 0 | } |
730 | |
|
731 | 0 | rCut = fPosition; |
732 | 0 | return pointDistance; |
733 | 0 | } |
734 | | |
735 | | void B2DCubicBezier::split(double t, B2DCubicBezier* pBezierA, B2DCubicBezier* pBezierB) const |
736 | 231k | { |
737 | 231k | OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::split: Access out of range (!)"); |
738 | | |
739 | 231k | if(!pBezierA && !pBezierB) |
740 | 0 | { |
741 | 0 | return; |
742 | 0 | } |
743 | | |
744 | 231k | if(isBezier()) |
745 | 230k | { |
746 | 230k | const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t)); |
747 | 230k | const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t)); |
748 | 230k | const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t)); |
749 | 230k | const B2DPoint aS2L(interpolate(aS1L, aS1C, t)); |
750 | 230k | const B2DPoint aS2R(interpolate(aS1C, aS1R, t)); |
751 | 230k | const B2DPoint aS3C(interpolate(aS2L, aS2R, t)); |
752 | | |
753 | 230k | if(pBezierA) |
754 | 230k | { |
755 | 230k | pBezierA->setStartPoint(maStartPoint); |
756 | 230k | pBezierA->setEndPoint(aS3C); |
757 | 230k | pBezierA->setControlPointA(aS1L); |
758 | 230k | pBezierA->setControlPointB(aS2L); |
759 | 230k | } |
760 | | |
761 | 230k | if(pBezierB) |
762 | 230k | { |
763 | 230k | pBezierB->setStartPoint(aS3C); |
764 | 230k | pBezierB->setEndPoint(maEndPoint); |
765 | 230k | pBezierB->setControlPointA(aS2R); |
766 | 230k | pBezierB->setControlPointB(aS1R); |
767 | 230k | } |
768 | 230k | } |
769 | 1.12k | else |
770 | 1.12k | { |
771 | 1.12k | const B2DPoint aSplit(interpolate(maStartPoint, maEndPoint, t)); |
772 | | |
773 | 1.12k | if(pBezierA) |
774 | 1.12k | { |
775 | 1.12k | pBezierA->setStartPoint(maStartPoint); |
776 | 1.12k | pBezierA->setEndPoint(aSplit); |
777 | 1.12k | pBezierA->setControlPointA(maStartPoint); |
778 | 1.12k | pBezierA->setControlPointB(aSplit); |
779 | 1.12k | } |
780 | | |
781 | 1.12k | if(pBezierB) |
782 | 1.12k | { |
783 | 1.12k | pBezierB->setStartPoint(aSplit); |
784 | 1.12k | pBezierB->setEndPoint(maEndPoint); |
785 | 1.12k | pBezierB->setControlPointA(aSplit); |
786 | 1.12k | pBezierB->setControlPointB(maEndPoint); |
787 | 1.12k | } |
788 | 1.12k | } |
789 | 231k | } |
790 | | |
791 | | B2DCubicBezier B2DCubicBezier::snippet(double fStart, double fEnd) const |
792 | 0 | { |
793 | 0 | B2DCubicBezier aRetval; |
794 | |
|
795 | 0 | fStart = std::clamp(fStart, 0.0, 1.0); |
796 | 0 | fEnd = std::clamp(fEnd, 0.0, 1.0); |
797 | |
|
798 | 0 | if(fEnd <= fStart) |
799 | 0 | { |
800 | | // empty or NULL, create single point at center |
801 | 0 | const double fSplit((fEnd + fStart) * 0.5); |
802 | 0 | const B2DPoint aPoint(interpolate(getStartPoint(), getEndPoint(), fSplit)); |
803 | 0 | aRetval.setStartPoint(aPoint); |
804 | 0 | aRetval.setEndPoint(aPoint); |
805 | 0 | aRetval.setControlPointA(aPoint); |
806 | 0 | aRetval.setControlPointB(aPoint); |
807 | 0 | } |
808 | 0 | else |
809 | 0 | { |
810 | 0 | if(isBezier()) |
811 | 0 | { |
812 | | // copy bezier; cut off right, then cut off left. Do not forget to |
813 | | // adapt cut value when both cuts happen |
814 | 0 | const bool bEndIsOne(fTools::equal(fEnd, 1.0)); |
815 | 0 | const bool bStartIsZero(fTools::equalZero(fStart)); |
816 | 0 | aRetval = *this; |
817 | |
|
818 | 0 | if(!bEndIsOne) |
819 | 0 | { |
820 | 0 | aRetval.split(fEnd, &aRetval, nullptr); |
821 | |
|
822 | 0 | if(!bStartIsZero) |
823 | 0 | { |
824 | 0 | assert(fEnd != 0 && "help coverity see it's not zero"); |
825 | 0 | fStart /= fEnd; |
826 | 0 | } |
827 | 0 | } |
828 | |
|
829 | 0 | if(!bStartIsZero) |
830 | 0 | { |
831 | 0 | aRetval.split(fStart, nullptr, &aRetval); |
832 | 0 | } |
833 | 0 | } |
834 | 0 | else |
835 | 0 | { |
836 | | // no bezier, create simple edge |
837 | 0 | const B2DPoint aPointA(interpolate(getStartPoint(), getEndPoint(), fStart)); |
838 | 0 | const B2DPoint aPointB(interpolate(getStartPoint(), getEndPoint(), fEnd)); |
839 | 0 | aRetval.setStartPoint(aPointA); |
840 | 0 | aRetval.setEndPoint(aPointB); |
841 | 0 | aRetval.setControlPointA(aPointA); |
842 | 0 | aRetval.setControlPointB(aPointB); |
843 | 0 | } |
844 | 0 | } |
845 | |
|
846 | 0 | return aRetval; |
847 | 0 | } |
848 | | |
849 | | B2DRange B2DCubicBezier::getRange() const |
850 | 7.73M | { |
851 | 7.73M | B2DRange aRetval(maStartPoint, maEndPoint); |
852 | | |
853 | 7.73M | aRetval.expand(maControlPointA); |
854 | 7.73M | aRetval.expand(maControlPointB); |
855 | | |
856 | 7.73M | return aRetval; |
857 | 7.73M | } |
858 | | |
859 | | bool B2DCubicBezier::getMinimumExtremumPosition(double& rfResult) const |
860 | 0 | { |
861 | 0 | std::vector< double > aAllResults; |
862 | |
|
863 | 0 | aAllResults.reserve(4); |
864 | 0 | getAllExtremumPositions(aAllResults); |
865 | |
|
866 | 0 | const sal_uInt32 nCount(aAllResults.size()); |
867 | |
|
868 | 0 | if(!nCount) |
869 | 0 | { |
870 | 0 | return false; |
871 | 0 | } |
872 | 0 | else if(nCount == 1) |
873 | 0 | { |
874 | 0 | rfResult = aAllResults[0]; |
875 | 0 | return true; |
876 | 0 | } |
877 | 0 | else |
878 | 0 | { |
879 | 0 | rfResult = *(std::min_element(aAllResults.begin(), aAllResults.end())); |
880 | 0 | return true; |
881 | 0 | } |
882 | 0 | } |
883 | | |
884 | | namespace |
885 | | { |
886 | | void impCheckExtremumResult(double fCandidate, std::vector< double >& rResult) |
887 | 626k | { |
888 | | // check for range ]0.0 .. 1.0[ with excluding 1.0 and 0.0 clearly |
889 | | // by using the equalZero test, NOT ::more or ::less which will use the |
890 | | // ApproxEqual() which is too exact here |
891 | 626k | if(fCandidate > 0.0 && !fTools::equalZero(fCandidate)) |
892 | 400k | { |
893 | 400k | if(fCandidate < 1.0 && !fTools::equalZero(fCandidate - 1.0)) |
894 | 161k | { |
895 | 161k | rResult.push_back(fCandidate); |
896 | 161k | } |
897 | 400k | } |
898 | 626k | } |
899 | | } |
900 | | |
901 | | void B2DCubicBezier::getAllExtremumPositions(std::vector< double >& rResults) const |
902 | 162k | { |
903 | 162k | rResults.clear(); |
904 | | |
905 | | // calculate the x-extrema parameters by zeroing first x-derivative |
906 | | // of the cubic bezier's parametric formula, which results in a |
907 | | // quadratic equation: dBezier/dt = t*t*fAX - 2*t*fBX + fCX |
908 | 162k | const B2DPoint aControlDiff( maControlPointA - maControlPointB ); |
909 | 162k | double fCX = maControlPointA.getX() - maStartPoint.getX(); |
910 | 162k | const double fBX = fCX + aControlDiff.getX(); |
911 | 162k | const double fAX = 3 * aControlDiff.getX() + (maEndPoint.getX() - maStartPoint.getX()); |
912 | | |
913 | 162k | if(fTools::equalZero(fCX)) |
914 | 7.82k | { |
915 | | // detect fCX equal zero and truncate to real zero value in that case |
916 | 7.82k | fCX = 0.0; |
917 | 7.82k | } |
918 | | |
919 | 162k | if( !fTools::equalZero(fAX) ) |
920 | 158k | { |
921 | | // derivative is polynomial of order 2 => use binomial formula |
922 | 158k | const double fD = fBX*fBX - fAX*fCX; |
923 | 158k | if( fD >= 0.0 ) |
924 | 156k | { |
925 | 156k | const double fS = sqrt(fD); |
926 | | // calculate both roots (avoiding a numerically unstable subtraction) |
927 | 156k | const double fQ = fBX + ((fBX >= 0) ? +fS : -fS); |
928 | 156k | impCheckExtremumResult(fQ / fAX, rResults); |
929 | 156k | if( !fTools::equalZero(fS) ) // ignore root multiplicity |
930 | 155k | impCheckExtremumResult(fCX / fQ, rResults); |
931 | 156k | } |
932 | 158k | } |
933 | 4.10k | else if( !fTools::equalZero(fBX) ) |
934 | 2.53k | { |
935 | | // derivative is polynomial of order 1 => one extrema |
936 | 2.53k | impCheckExtremumResult(fCX / (2 * fBX), rResults); |
937 | 2.53k | } |
938 | | |
939 | | // calculate the y-extrema parameters by zeroing first y-derivative |
940 | 162k | double fCY = maControlPointA.getY() - maStartPoint.getY(); |
941 | 162k | const double fBY = fCY + aControlDiff.getY(); |
942 | 162k | const double fAY = 3 * aControlDiff.getY() + (maEndPoint.getY() - maStartPoint.getY()); |
943 | | |
944 | 162k | if(fTools::equalZero(fCY)) |
945 | 10.3k | { |
946 | | // detect fCY equal zero and truncate to real zero value in that case |
947 | 10.3k | fCY = 0.0; |
948 | 10.3k | } |
949 | | |
950 | 162k | if( !fTools::equalZero(fAY) ) |
951 | 157k | { |
952 | | // derivative is polynomial of order 2 => use binomial formula |
953 | 157k | const double fD = fBY*fBY - fAY*fCY; |
954 | 157k | if( fD >= 0.0 ) |
955 | 155k | { |
956 | 155k | const double fS = sqrt(fD); |
957 | | // calculate both roots (avoiding a numerically unstable subtraction) |
958 | 155k | const double fQ = fBY + ((fBY >= 0) ? +fS : -fS); |
959 | 155k | impCheckExtremumResult(fQ / fAY, rResults); |
960 | 155k | if( !fTools::equalZero(fS) ) // ignore root multiplicity |
961 | 153k | impCheckExtremumResult(fCY / fQ, rResults); |
962 | 155k | } |
963 | 157k | } |
964 | 5.40k | else if( !fTools::equalZero(fBY) ) |
965 | 2.23k | { |
966 | | // derivative is polynomial of order 1 => one extrema |
967 | 2.23k | impCheckExtremumResult(fCY / (2 * fBY), rResults); |
968 | 2.23k | } |
969 | 162k | } |
970 | | |
971 | | void B2DCubicBezier::transform(const basegfx::B2DHomMatrix& rMatrix) |
972 | 0 | { |
973 | 0 | if(rMatrix.isIdentity()) |
974 | 0 | return; |
975 | | |
976 | 0 | if(maControlPointA == maStartPoint) |
977 | 0 | { |
978 | 0 | maControlPointA = maStartPoint = rMatrix * maStartPoint; |
979 | 0 | } |
980 | 0 | else |
981 | 0 | { |
982 | 0 | maStartPoint *= rMatrix; |
983 | 0 | maControlPointA *= rMatrix; |
984 | 0 | } |
985 | |
|
986 | 0 | if(maControlPointB == maEndPoint) |
987 | 0 | { |
988 | 0 | maControlPointB = maEndPoint = rMatrix * maEndPoint; |
989 | 0 | } |
990 | 0 | else |
991 | 0 | { |
992 | 0 | maEndPoint *= rMatrix; |
993 | 0 | maControlPointB *= rMatrix; |
994 | 0 | } |
995 | 0 | } |
996 | | |
997 | | void B2DCubicBezier::fround() |
998 | 0 | { |
999 | 0 | if(maControlPointA == maStartPoint) |
1000 | 0 | { |
1001 | 0 | maControlPointA = maStartPoint = basegfx::B2DPoint( |
1002 | 0 | std::round(maStartPoint.getX()), |
1003 | 0 | std::round(maStartPoint.getY())); |
1004 | 0 | } |
1005 | 0 | else |
1006 | 0 | { |
1007 | 0 | maStartPoint = basegfx::B2DPoint( |
1008 | 0 | std::round(maStartPoint.getX()), |
1009 | 0 | std::round(maStartPoint.getY())); |
1010 | 0 | maControlPointA = basegfx::B2DPoint( |
1011 | 0 | std::round(maControlPointA.getX()), |
1012 | 0 | std::round(maControlPointA.getY())); |
1013 | 0 | } |
1014 | |
|
1015 | 0 | if(maControlPointB == maEndPoint) |
1016 | 0 | { |
1017 | 0 | maControlPointB = maEndPoint = basegfx::B2DPoint( |
1018 | 0 | std::round(maEndPoint.getX()), |
1019 | 0 | std::round(maEndPoint.getY())); |
1020 | 0 | } |
1021 | 0 | else |
1022 | 0 | { |
1023 | 0 | maEndPoint = basegfx::B2DPoint( |
1024 | 0 | std::round(maEndPoint.getX()), |
1025 | 0 | std::round(maEndPoint.getY())); |
1026 | 0 | maControlPointB = basegfx::B2DPoint( |
1027 | 0 | std::round(maControlPointB.getX()), |
1028 | 0 | std::round(maControlPointB.getY())); |
1029 | 0 | } |
1030 | 0 | } |
1031 | | } // end of namespace basegfx |
1032 | | |
1033 | | /* vim:set shiftwidth=4 softtabstop=4 expandtab: */ |