Coverage Report

Created: 2025-11-16 09:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libreoffice/chart2/source/tools/ExponentialRegressionCurveCalculator.cxx
Line
Count
Source
1
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
/*
3
 * This file is part of the LibreOffice project.
4
 *
5
 * This Source Code Form is subject to the terms of the Mozilla Public
6
 * License, v. 2.0. If a copy of the MPL was not distributed with this
7
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
8
 *
9
 * This file incorporates work covered by the following license notice:
10
 *
11
 *   Licensed to the Apache Software Foundation (ASF) under one or more
12
 *   contributor license agreements. See the NOTICE file distributed
13
 *   with this work for additional information regarding copyright
14
 *   ownership. The ASF licenses this file to you under the Apache
15
 *   License, Version 2.0 (the "License"); you may not use this file
16
 *   except in compliance with the License. You may obtain a copy of
17
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
18
 */
19
20
#include <sal/config.h>
21
22
#include <limits>
23
#include <string_view>
24
25
#include <ExponentialRegressionCurveCalculator.hxx>
26
#include <RegressionCalculationHelper.hxx>
27
#include <SpecialCharacters.hxx>
28
29
#include <rtl/math.hxx>
30
#include <rtl/ustrbuf.hxx>
31
32
using namespace ::com::sun::star;
33
34
namespace chart
35
{
36
37
ExponentialRegressionCurveCalculator::ExponentialRegressionCurveCalculator()
38
0
    : m_fLogSlope(std::numeric_limits<double>::quiet_NaN())
39
0
    , m_fLogIntercept(std::numeric_limits<double>::quiet_NaN())
40
0
    , m_fSign(1.0)
41
0
{
42
0
}
43
44
ExponentialRegressionCurveCalculator::~ExponentialRegressionCurveCalculator()
45
0
{}
46
47
// ____ XRegressionCurveCalculator ____
48
void SAL_CALL ExponentialRegressionCurveCalculator::recalculateRegression(
49
    const uno::Sequence< double >& aXValues,
50
    const uno::Sequence< double >& aYValues )
51
0
{
52
0
    RegressionCalculationHelper::tDoubleVectorPair aValues(
53
0
        RegressionCalculationHelper::cleanup(
54
0
            aXValues, aYValues,
55
0
            RegressionCalculationHelper::isValidAndYPositive()));
56
0
    m_fSign = 1.0;
57
58
0
    size_t nMax = aValues.first.size();
59
0
    if( nMax <= 1 ) // at least 2 points
60
0
    {
61
0
        aValues = RegressionCalculationHelper::cleanup(
62
0
                    aXValues, aYValues,
63
0
                    RegressionCalculationHelper::isValidAndYNegative());
64
0
        nMax = aValues.first.size();
65
0
        if( nMax <= 1 )
66
0
        {
67
0
            m_fLogSlope = std::numeric_limits<double>::quiet_NaN();
68
0
            m_fLogIntercept = std::numeric_limits<double>::quiet_NaN();
69
0
            m_fCorrelationCoefficient = std::numeric_limits<double>::quiet_NaN();// actual it is coefficient of determination
70
0
            return;
71
0
        }
72
0
        m_fSign = -1.0;
73
0
    }
74
75
0
    double fAverageX = 0.0, fAverageY = 0.0;
76
0
    double fLogIntercept = ( mForceIntercept && (m_fSign * mInterceptValue)>0 ) ? log(m_fSign * mInterceptValue) : 0.0;
77
0
    std::vector<double> yVector;
78
0
    yVector.resize(nMax, 0.0);
79
80
0
    size_t i = 0;
81
0
    for( i = 0; i < nMax; ++i )
82
0
    {
83
0
        double yValue = log( m_fSign *aValues.second[i] );
84
0
        if (mForceIntercept)
85
0
        {
86
0
            yValue -= fLogIntercept;
87
0
        }
88
0
        else
89
0
        {
90
0
            fAverageX += aValues.first[i];
91
0
            fAverageY += yValue;
92
0
        }
93
0
        yVector[i] = yValue;
94
0
    }
95
96
0
    const double fN = static_cast< double >( nMax );
97
0
    fAverageX /= fN;
98
0
    fAverageY /= fN;
99
100
0
    double fQx = 0.0, fQy = 0.0, fQxy = 0.0;
101
0
    for( i = 0; i < nMax; ++i )
102
0
    {
103
0
        double fDeltaX = aValues.first[i] - fAverageX;
104
0
        double fDeltaY = yVector[i] - fAverageY;
105
106
0
        fQx  += fDeltaX * fDeltaX;
107
0
        fQy  += fDeltaY * fDeltaY;
108
0
        fQxy += fDeltaX * fDeltaY;
109
0
    }
110
111
0
    m_fLogSlope = fQxy / fQx;
112
0
    m_fLogIntercept = mForceIntercept ? fLogIntercept : fAverageY - m_fLogSlope * fAverageX;
113
0
    m_fCorrelationCoefficient = fQxy / sqrt( fQx * fQy );
114
0
}
115
116
double SAL_CALL ExponentialRegressionCurveCalculator::getCurveValue( double x )
117
0
{
118
0
    if( ! ( std::isnan( m_fLogSlope ) ||
119
0
            std::isnan( m_fLogIntercept )))
120
0
    {
121
0
        return m_fSign * exp(m_fLogIntercept + x * m_fLogSlope);
122
0
    }
123
124
0
    return std::numeric_limits<double>::quiet_NaN();
125
0
}
126
127
uno::Sequence< geometry::RealPoint2D > SAL_CALL ExponentialRegressionCurveCalculator::getCurveValues(
128
    double min, double max, ::sal_Int32 nPointCount,
129
    const uno::Reference< chart2::XScaling >& xScalingX,
130
    const uno::Reference< chart2::XScaling >& xScalingY,
131
    sal_Bool bMaySkipPointsInCalculation )
132
0
{
133
0
    if( bMaySkipPointsInCalculation &&
134
0
        isLinearScaling( xScalingX ) &&
135
0
        isLogarithmicScaling( xScalingY ))
136
0
    {
137
        // optimize result
138
0
        uno::Sequence< geometry::RealPoint2D > aResult{ { min, getCurveValue( min ) },
139
0
                                                        { max, getCurveValue( max ) } };
140
141
0
        return aResult;
142
0
    }
143
144
0
    return RegressionCurveCalculator::getCurveValues( min, max, nPointCount, xScalingX, xScalingY, bMaySkipPointsInCalculation );
145
0
}
146
147
OUString ExponentialRegressionCurveCalculator::ImplGetRepresentation(
148
    const uno::Reference< util::XNumberFormatter >& xNumFormatter,
149
    sal_Int32 nNumberFormatKey, sal_Int32* pFormulaMaxWidth /* = nullptr */ ) const
150
0
{
151
0
    double fIntercept = exp(m_fLogIntercept);
152
0
    bool bHasSlope = !rtl::math::approxEqual( exp(m_fLogSlope), 1.0 );
153
0
    bool bHasLogSlope = !rtl::math::approxEqual( fabs(m_fLogSlope), 1.0 );
154
0
    bool bHasIntercept = !rtl::math::approxEqual( fIntercept, 1.0 ) && fIntercept != 0.0;
155
156
0
    OUStringBuffer aBuf( mYName + " = " );
157
0
    sal_Int32 nLineLength = aBuf.getLength();
158
0
    sal_Int32 nValueLength=0;
159
0
    if ( pFormulaMaxWidth && *pFormulaMaxWidth > 0 )
160
0
    {          // count characters different from coefficients
161
0
        sal_Int32 nCharMin = nLineLength + 10 + mXName.getLength();  // 10 = "exp( ", " x )" + 2 extra characters
162
0
        if ( m_fSign < 0.0 )
163
0
            nCharMin += 2;
164
0
        if ( fIntercept == 0.0 || ( !bHasSlope && m_fLogIntercept != 0.0 ) )
165
0
            nCharMin += 3; // " + " special case where equation is written exp( a + b x )
166
0
        if ( ( bHasIntercept || fIntercept == 0.0 || ( !bHasSlope && m_fLogIntercept != 0.0 ) ) &&
167
0
               bHasLogSlope )
168
0
            nValueLength = ( *pFormulaMaxWidth - nCharMin ) / 2;
169
0
        else
170
0
            nValueLength = *pFormulaMaxWidth - nCharMin;
171
0
        if ( nValueLength <= 0 )
172
0
            nValueLength = 1;
173
0
    }
174
                    // temporary buffer
175
0
    OUStringBuffer aTmpBuf("");
176
        // if nValueLength not calculated then nullptr
177
0
    sal_Int32* pValueLength = nValueLength ? &nValueLength : nullptr;
178
0
    if ( m_fSign < 0.0 )
179
0
        aTmpBuf.append( OUStringChar(aMinusSign) + " " );
180
0
    if ( bHasIntercept )
181
0
    {
182
0
        OUString aValueString = getFormattedString( xNumFormatter, nNumberFormatKey, fIntercept, pValueLength );
183
0
        if ( aValueString != "1" )  // aValueString may be rounded to 1 if nValueLength is small
184
0
        {
185
0
            aTmpBuf.append( aValueString + " " );
186
0
            addStringToEquation( aBuf, nLineLength, aTmpBuf, pFormulaMaxWidth );
187
0
            aTmpBuf.truncate();
188
0
        }
189
0
    }
190
0
    aTmpBuf.append( "exp( " );
191
0
    if ( !bHasIntercept )
192
0
    {
193
0
        if ( fIntercept == 0.0 ||  // underflow, a true zero is impossible
194
0
           ( !bHasSlope && m_fLogIntercept != 0.0 ) )   // show logarithmic output, if intercept and slope both are near one
195
0
        {                                               // otherwise drop output of intercept, which is 1 here
196
0
            OUString aValueString = getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogIntercept, pValueLength );
197
0
            if ( aValueString != "0" )  // aValueString may be rounded to 0 if nValueLength is small
198
0
            {
199
0
                aTmpBuf.append( aValueString ).append( (m_fLogSlope < 0.0) ? std::u16string_view(u" ") : std::u16string_view(u" + ") );
200
0
            }
201
0
        }
202
0
    }
203
0
    if ( m_fLogSlope < 0.0 )
204
0
        aTmpBuf.append( OUStringChar(aMinusSign) + " " );
205
0
    if ( bHasLogSlope )
206
0
    {
207
0
        OUString aValueString = getFormattedString( xNumFormatter, nNumberFormatKey, fabs(m_fLogSlope), pValueLength );
208
0
        if ( aValueString != "1" )  // aValueString may be rounded to 1 if nValueLength is small
209
0
        {
210
0
            aTmpBuf.append( aValueString + " " );
211
0
        }
212
0
    }
213
0
    aTmpBuf.append( mXName + " )");
214
0
    addStringToEquation( aBuf, nLineLength, aTmpBuf, pFormulaMaxWidth );
215
216
0
    return aBuf.makeStringAndClear();
217
0
}
218
219
} //  namespace chart
220
221
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */