Coverage Report

Created: 2025-11-16 09:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/work/workdir/UnpackedTarball/cairo/src/cairo-matrix.c
Line
Count
Source
1
/* cairo - a vector graphics library with display and print output
2
 *
3
 * Copyright © 2002 University of Southern California
4
 *
5
 * This library is free software; you can redistribute it and/or
6
 * modify it either under the terms of the GNU Lesser General Public
7
 * License version 2.1 as published by the Free Software Foundation
8
 * (the "LGPL") or, at your option, under the terms of the Mozilla
9
 * Public License Version 1.1 (the "MPL"). If you do not alter this
10
 * notice, a recipient may use your version of this file under either
11
 * the MPL or the LGPL.
12
 *
13
 * You should have received a copy of the LGPL along with this library
14
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
15
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
16
 * You should have received a copy of the MPL along with this library
17
 * in the file COPYING-MPL-1.1
18
 *
19
 * The contents of this file are subject to the Mozilla Public License
20
 * Version 1.1 (the "License"); you may not use this file except in
21
 * compliance with the License. You may obtain a copy of the License at
22
 * http://www.mozilla.org/MPL/
23
 *
24
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
25
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
26
 * the specific language governing rights and limitations.
27
 *
28
 * The Original Code is the cairo graphics library.
29
 *
30
 * The Initial Developer of the Original Code is University of Southern
31
 * California.
32
 *
33
 * Contributor(s):
34
 *  Carl D. Worth <cworth@cworth.org>
35
 */
36
37
#include "cairoint.h"
38
#include "cairo-error-private.h"
39
#include <float.h>
40
41
1.44M
#define PIXMAN_MAX_INT ((pixman_fixed_1 >> 1) - pixman_fixed_e) /* need to ensure deltas also fit */
42
43
/**
44
 * SECTION:cairo-matrix
45
 * @Title: cairo_matrix_t
46
 * @Short_Description: Generic matrix operations
47
 * @See_Also: #cairo_t
48
 *
49
 * #cairo_matrix_t is used throughout cairo to convert between different
50
 * coordinate spaces.  A #cairo_matrix_t holds an affine transformation,
51
 * such as a scale, rotation, shear, or a combination of these.
52
 * The transformation of a point (<literal>x</literal>,<literal>y</literal>)
53
 * is given by:
54
 *
55
 * <programlisting>
56
 * x_new = xx * x + xy * y + x0;
57
 * y_new = yx * x + yy * y + y0;
58
 * </programlisting>
59
 *
60
 * The current transformation matrix of a #cairo_t, represented as a
61
 * #cairo_matrix_t, defines the transformation from user-space
62
 * coordinates to device-space coordinates. See cairo_get_matrix() and
63
 * cairo_set_matrix().
64
 **/
65
66
static void
67
_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar);
68
69
static void
70
_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix);
71
72
/**
73
 * cairo_matrix_init_identity:
74
 * @matrix: a #cairo_matrix_t
75
 *
76
 * Modifies @matrix to be an identity transformation.
77
 *
78
 * Since: 1.0
79
 **/
80
void
81
cairo_matrix_init_identity (cairo_matrix_t *matrix)
82
27.6M
{
83
27.6M
    cairo_matrix_init (matrix,
84
27.6M
           1, 0,
85
27.6M
           0, 1,
86
27.6M
           0, 0);
87
27.6M
}
88
89
/**
90
 * cairo_matrix_init:
91
 * @matrix: a #cairo_matrix_t
92
 * @xx: xx component of the affine transformation
93
 * @yx: yx component of the affine transformation
94
 * @xy: xy component of the affine transformation
95
 * @yy: yy component of the affine transformation
96
 * @x0: X translation component of the affine transformation
97
 * @y0: Y translation component of the affine transformation
98
 *
99
 * Sets @matrix to be the affine transformation given by
100
 * @xx, @yx, @xy, @yy, @x0, @y0. The transformation is given
101
 * by:
102
 * <programlisting>
103
 *  x_new = xx * x + xy * y + x0;
104
 *  y_new = yx * x + yy * y + y0;
105
 * </programlisting>
106
 *
107
 * Since: 1.0
108
 **/
109
void
110
cairo_matrix_init (cairo_matrix_t *matrix,
111
       double xx, double yx,
112
113
       double xy, double yy,
114
       double x0, double y0)
115
52.3M
{
116
52.3M
    matrix->xx = xx; matrix->yx = yx;
117
52.3M
    matrix->xy = xy; matrix->yy = yy;
118
52.3M
    matrix->x0 = x0; matrix->y0 = y0;
119
52.3M
}
120
121
/**
122
 * _cairo_matrix_get_affine:
123
 * @matrix: a #cairo_matrix_t
124
 * @xx: location to store xx component of matrix
125
 * @yx: location to store yx component of matrix
126
 * @xy: location to store xy component of matrix
127
 * @yy: location to store yy component of matrix
128
 * @x0: location to store x0 (X-translation component) of matrix, or %NULL
129
 * @y0: location to store y0 (Y-translation component) of matrix, or %NULL
130
 *
131
 * Gets the matrix values for the affine transformation that @matrix represents.
132
 * See cairo_matrix_init().
133
 *
134
 *
135
 * This function is a leftover from the old public API, but is still
136
 * mildly useful as an internal means for getting at the matrix
137
 * members in a positional way. For example, when reassigning to some
138
 * external matrix type, or when renaming members to more meaningful
139
 * names (such as a,b,c,d,e,f) for particular manipulations.
140
 **/
141
void
142
_cairo_matrix_get_affine (const cairo_matrix_t *matrix,
143
        double *xx, double *yx,
144
        double *xy, double *yy,
145
        double *x0, double *y0)
146
117k
{
147
117k
    *xx  = matrix->xx;
148
117k
    *yx  = matrix->yx;
149
150
117k
    *xy  = matrix->xy;
151
117k
    *yy  = matrix->yy;
152
153
117k
    if (x0)
154
417
  *x0 = matrix->x0;
155
117k
    if (y0)
156
417
  *y0 = matrix->y0;
157
117k
}
158
159
/**
160
 * cairo_matrix_init_translate:
161
 * @matrix: a #cairo_matrix_t
162
 * @tx: amount to translate in the X direction
163
 * @ty: amount to translate in the Y direction
164
 *
165
 * Initializes @matrix to a transformation that translates by @tx and
166
 * @ty in the X and Y dimensions, respectively.
167
 *
168
 * Since: 1.0
169
 **/
170
void
171
cairo_matrix_init_translate (cairo_matrix_t *matrix,
172
           double tx, double ty)
173
1.59M
{
174
1.59M
    cairo_matrix_init (matrix,
175
1.59M
           1, 0,
176
1.59M
           0, 1,
177
1.59M
           tx, ty);
178
1.59M
}
179
180
/**
181
 * cairo_matrix_translate:
182
 * @matrix: a #cairo_matrix_t
183
 * @tx: amount to translate in the X direction
184
 * @ty: amount to translate in the Y direction
185
 *
186
 * Applies a translation by @tx, @ty to the transformation in
187
 * @matrix. The effect of the new transformation is to first translate
188
 * the coordinates by @tx and @ty, then apply the original transformation
189
 * to the coordinates.
190
 *
191
 * Since: 1.0
192
 **/
193
void
194
cairo_matrix_translate (cairo_matrix_t *matrix, double tx, double ty)
195
2.18k
{
196
2.18k
    cairo_matrix_t tmp;
197
198
2.18k
    cairo_matrix_init_translate (&tmp, tx, ty);
199
200
2.18k
    cairo_matrix_multiply (matrix, &tmp, matrix);
201
2.18k
}
202
203
/**
204
 * cairo_matrix_init_scale:
205
 * @matrix: a #cairo_matrix_t
206
 * @sx: scale factor in the X direction
207
 * @sy: scale factor in the Y direction
208
 *
209
 * Initializes @matrix to a transformation that scales by @sx and @sy
210
 * in the X and Y dimensions, respectively.
211
 *
212
 * Since: 1.0
213
 **/
214
void
215
cairo_matrix_init_scale (cairo_matrix_t *matrix,
216
       double sx, double sy)
217
19.2M
{
218
19.2M
    cairo_matrix_init (matrix,
219
19.2M
           sx,  0,
220
19.2M
           0, sy,
221
19.2M
           0, 0);
222
19.2M
}
223
224
/**
225
 * cairo_matrix_scale:
226
 * @matrix: a #cairo_matrix_t
227
 * @sx: scale factor in the X direction
228
 * @sy: scale factor in the Y direction
229
 *
230
 * Applies scaling by @sx, @sy to the transformation in @matrix. The
231
 * effect of the new transformation is to first scale the coordinates
232
 * by @sx and @sy, then apply the original transformation to the coordinates.
233
 *
234
 * Since: 1.0
235
 **/
236
void
237
cairo_matrix_scale (cairo_matrix_t *matrix, double sx, double sy)
238
2.34M
{
239
2.34M
    cairo_matrix_t tmp;
240
241
2.34M
    cairo_matrix_init_scale (&tmp, sx, sy);
242
243
2.34M
    cairo_matrix_multiply (matrix, &tmp, matrix);
244
2.34M
}
245
246
/**
247
 * cairo_matrix_init_rotate:
248
 * @matrix: a #cairo_matrix_t
249
 * @radians: angle of rotation, in radians. The direction of rotation
250
 * is defined such that positive angles rotate in the direction from
251
 * the positive X axis toward the positive Y axis. With the default
252
 * axis orientation of cairo, positive angles rotate in a clockwise
253
 * direction.
254
 *
255
 * Initialized @matrix to a transformation that rotates by @radians.
256
 *
257
 * Since: 1.0
258
 **/
259
void
260
cairo_matrix_init_rotate (cairo_matrix_t *matrix,
261
        double radians)
262
3.67M
{
263
3.67M
    double  s;
264
3.67M
    double  c;
265
266
3.67M
    s = sin (radians);
267
3.67M
    c = cos (radians);
268
269
3.67M
    cairo_matrix_init (matrix,
270
3.67M
           c, s,
271
3.67M
           -s, c,
272
3.67M
           0, 0);
273
3.67M
}
274
275
/**
276
 * cairo_matrix_rotate:
277
 * @matrix: a #cairo_matrix_t
278
 * @radians: angle of rotation, in radians. The direction of rotation
279
 * is defined such that positive angles rotate in the direction from
280
 * the positive X axis toward the positive Y axis. With the default
281
 * axis orientation of cairo, positive angles rotate in a clockwise
282
 * direction.
283
 *
284
 * Applies rotation by @radians to the transformation in
285
 * @matrix. The effect of the new transformation is to first rotate the
286
 * coordinates by @radians, then apply the original transformation
287
 * to the coordinates.
288
 *
289
 * Since: 1.0
290
 **/
291
void
292
cairo_matrix_rotate (cairo_matrix_t *matrix, double radians)
293
3.67M
{
294
3.67M
    cairo_matrix_t tmp;
295
296
3.67M
    cairo_matrix_init_rotate (&tmp, radians);
297
298
3.67M
    cairo_matrix_multiply (matrix, &tmp, matrix);
299
3.67M
}
300
301
/**
302
 * cairo_matrix_multiply:
303
 * @result: a #cairo_matrix_t in which to store the result
304
 * @a: a #cairo_matrix_t
305
 * @b: a #cairo_matrix_t
306
 *
307
 * Multiplies the affine transformations in @a and @b together
308
 * and stores the result in @result. The effect of the resulting
309
 * transformation is to first apply the transformation in @a to the
310
 * coordinates and then apply the transformation in @b to the
311
 * coordinates.
312
 *
313
 * It is allowable for @result to be identical to either @a or @b.
314
 *
315
 * Since: 1.0
316
 **/
317
/*
318
 * XXX: The ordering of the arguments to this function corresponds
319
 *      to [row_vector]*A*B. If we want to use column vectors instead,
320
 *      then we need to switch the two arguments and fix up all
321
 *      uses.
322
 */
323
void
324
cairo_matrix_multiply (cairo_matrix_t *result, const cairo_matrix_t *a, const cairo_matrix_t *b)
325
12.5M
{
326
12.5M
    cairo_matrix_t r;
327
328
12.5M
    r.xx = a->xx * b->xx + a->yx * b->xy;
329
12.5M
    r.yx = a->xx * b->yx + a->yx * b->yy;
330
331
12.5M
    r.xy = a->xy * b->xx + a->yy * b->xy;
332
12.5M
    r.yy = a->xy * b->yx + a->yy * b->yy;
333
334
12.5M
    r.x0 = a->x0 * b->xx + a->y0 * b->xy + b->x0;
335
12.5M
    r.y0 = a->x0 * b->yx + a->y0 * b->yy + b->y0;
336
337
12.5M
    *result = r;
338
12.5M
}
339
340
void
341
_cairo_matrix_multiply (cairo_matrix_t *r,
342
      const cairo_matrix_t *a,
343
      const cairo_matrix_t *b)
344
0
{
345
0
    r->xx = a->xx * b->xx + a->yx * b->xy;
346
0
    r->yx = a->xx * b->yx + a->yx * b->yy;
347
348
0
    r->xy = a->xy * b->xx + a->yy * b->xy;
349
0
    r->yy = a->xy * b->yx + a->yy * b->yy;
350
351
0
    r->x0 = a->x0 * b->xx + a->y0 * b->xy + b->x0;
352
0
    r->y0 = a->x0 * b->yx + a->y0 * b->yy + b->y0;
353
0
}
354
355
/**
356
 * cairo_matrix_transform_distance:
357
 * @matrix: a #cairo_matrix_t
358
 * @dx: X component of a distance vector. An in/out parameter
359
 * @dy: Y component of a distance vector. An in/out parameter
360
 *
361
 * Transforms the distance vector (@dx,@dy) by @matrix. This is
362
 * similar to cairo_matrix_transform_point() except that the translation
363
 * components of the transformation are ignored. The calculation of
364
 * the returned vector is as follows:
365
 *
366
 * <programlisting>
367
 * dx_new = xx * dx + xy * dy;
368
 * dy_new = yx * dx + yy * dy;
369
 * </programlisting>
370
 *
371
 * Since: 1.0
372
 **/
373
void
374
cairo_matrix_transform_distance (const cairo_matrix_t *matrix, double *dx, double *dy)
375
17.0M
{
376
17.0M
    double new_x, new_y;
377
378
17.0M
    new_x = (matrix->xx * *dx + matrix->xy * *dy);
379
17.0M
    new_y = (matrix->yx * *dx + matrix->yy * *dy);
380
381
17.0M
    *dx = new_x;
382
17.0M
    *dy = new_y;
383
17.0M
}
384
385
/**
386
 * cairo_matrix_transform_point:
387
 * @matrix: a #cairo_matrix_t
388
 * @x: X position. An in/out parameter
389
 * @y: Y position. An in/out parameter
390
 *
391
 * Transforms the point (@x, @y) by @matrix.
392
 *
393
 * Since: 1.0
394
 **/
395
void
396
cairo_matrix_transform_point (const cairo_matrix_t *matrix, double *x, double *y)
397
13.6M
{
398
13.6M
    cairo_matrix_transform_distance (matrix, x, y);
399
400
13.6M
    *x += matrix->x0;
401
13.6M
    *y += matrix->y0;
402
13.6M
}
403
404
void
405
_cairo_matrix_transform_bounding_box (const cairo_matrix_t *matrix,
406
              double *x1, double *y1,
407
              double *x2, double *y2,
408
              cairo_bool_t *is_tight)
409
2.57M
{
410
2.57M
    int i;
411
2.57M
    double quad_x[4], quad_y[4];
412
2.57M
    double min_x, max_x;
413
2.57M
    double min_y, max_y;
414
415
2.57M
    if (matrix->xy == 0. && matrix->yx == 0.) {
416
  /* non-rotation/skew matrix, just map the two extreme points */
417
418
2.57M
  if (matrix->xx != 1.) {
419
8.23k
      quad_x[0] = *x1 * matrix->xx;
420
8.23k
      quad_x[1] = *x2 * matrix->xx;
421
8.23k
      if (quad_x[0] < quad_x[1]) {
422
4.27k
    *x1 = quad_x[0];
423
4.27k
    *x2 = quad_x[1];
424
4.27k
      } else {
425
3.96k
    *x1 = quad_x[1];
426
3.96k
    *x2 = quad_x[0];
427
3.96k
      }
428
8.23k
  }
429
2.57M
  if (matrix->x0 != 0.) {
430
2.52M
      *x1 += matrix->x0;
431
2.52M
      *x2 += matrix->x0;
432
2.52M
  }
433
434
2.57M
  if (matrix->yy != 1.) {
435
11.9k
      quad_y[0] = *y1 * matrix->yy;
436
11.9k
      quad_y[1] = *y2 * matrix->yy;
437
11.9k
      if (quad_y[0] < quad_y[1]) {
438
6.62k
    *y1 = quad_y[0];
439
6.62k
    *y2 = quad_y[1];
440
6.62k
      } else {
441
5.27k
    *y1 = quad_y[1];
442
5.27k
    *y2 = quad_y[0];
443
5.27k
      }
444
11.9k
  }
445
2.57M
  if (matrix->y0 != 0.) {
446
2.52M
      *y1 += matrix->y0;
447
2.52M
      *y2 += matrix->y0;
448
2.52M
  }
449
450
2.57M
  if (is_tight)
451
0
      *is_tight = TRUE;
452
453
2.57M
  return;
454
2.57M
    }
455
456
    /* general matrix */
457
0
    quad_x[0] = *x1;
458
0
    quad_y[0] = *y1;
459
0
    cairo_matrix_transform_point (matrix, &quad_x[0], &quad_y[0]);
460
461
0
    quad_x[1] = *x2;
462
0
    quad_y[1] = *y1;
463
0
    cairo_matrix_transform_point (matrix, &quad_x[1], &quad_y[1]);
464
465
0
    quad_x[2] = *x1;
466
0
    quad_y[2] = *y2;
467
0
    cairo_matrix_transform_point (matrix, &quad_x[2], &quad_y[2]);
468
469
0
    quad_x[3] = *x2;
470
0
    quad_y[3] = *y2;
471
0
    cairo_matrix_transform_point (matrix, &quad_x[3], &quad_y[3]);
472
473
0
    min_x = max_x = quad_x[0];
474
0
    min_y = max_y = quad_y[0];
475
476
0
    for (i=1; i < 4; i++) {
477
0
  if (quad_x[i] < min_x)
478
0
      min_x = quad_x[i];
479
0
  if (quad_x[i] > max_x)
480
0
      max_x = quad_x[i];
481
482
0
  if (quad_y[i] < min_y)
483
0
      min_y = quad_y[i];
484
0
  if (quad_y[i] > max_y)
485
0
      max_y = quad_y[i];
486
0
    }
487
488
0
    *x1 = min_x;
489
0
    *y1 = min_y;
490
0
    *x2 = max_x;
491
0
    *y2 = max_y;
492
493
0
    if (is_tight) {
494
        /* it's tight if and only if the four corner points form an axis-aligned
495
           rectangle.
496
           And that's true if and only if we can derive corners 0 and 3 from
497
           corners 1 and 2 in one of two straightforward ways...
498
           We could use a tolerance here but for now we'll fall back to FALSE in the case
499
           of floating point error.
500
        */
501
0
        *is_tight =
502
0
            (quad_x[1] == quad_x[0] && quad_y[1] == quad_y[3] &&
503
0
             quad_x[2] == quad_x[3] && quad_y[2] == quad_y[0]) ||
504
0
            (quad_x[1] == quad_x[3] && quad_y[1] == quad_y[0] &&
505
0
             quad_x[2] == quad_x[0] && quad_y[2] == quad_y[3]);
506
0
    }
507
0
}
508
509
cairo_private void
510
_cairo_matrix_transform_bounding_box_fixed (const cairo_matrix_t *matrix,
511
              cairo_box_t          *bbox,
512
              cairo_bool_t *is_tight)
513
0
{
514
0
    double x1, y1, x2, y2;
515
516
0
    _cairo_box_to_doubles (bbox, &x1, &y1, &x2, &y2);
517
0
    _cairo_matrix_transform_bounding_box (matrix, &x1, &y1, &x2, &y2, is_tight);
518
0
    _cairo_box_from_doubles (bbox, &x1, &y1, &x2, &y2);
519
0
}
520
521
static void
522
_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar)
523
417
{
524
417
    matrix->xx *= scalar;
525
417
    matrix->yx *= scalar;
526
527
417
    matrix->xy *= scalar;
528
417
    matrix->yy *= scalar;
529
530
417
    matrix->x0 *= scalar;
531
417
    matrix->y0 *= scalar;
532
417
}
533
534
/* This function isn't a correct adjoint in that the implicit 1 in the
535
   homogeneous result should actually be ad-bc instead. But, since this
536
   adjoint is only used in the computation of the inverse, which
537
   divides by det (A)=ad-bc anyway, everything works out in the end. */
538
static void
539
_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix)
540
417
{
541
    /* adj (A) = transpose (C:cofactor (A,i,j)) */
542
417
    double a, b, c, d, tx, ty;
543
544
417
    _cairo_matrix_get_affine (matrix,
545
417
            &a,  &b,
546
417
            &c,  &d,
547
417
            &tx, &ty);
548
549
417
    cairo_matrix_init (matrix,
550
417
           d, -b,
551
417
           -c, a,
552
417
           c*ty - d*tx, b*tx - a*ty);
553
417
}
554
555
/**
556
 * cairo_matrix_invert:
557
 * @matrix: a #cairo_matrix_t
558
 *
559
 * Changes @matrix to be the inverse of its original value. Not
560
 * all transformation matrices have inverses; if the matrix
561
 * collapses points together (it is <firstterm>degenerate</firstterm>),
562
 * then it has no inverse and this function will fail.
563
 *
564
 * Returns: If @matrix has an inverse, modifies @matrix to
565
 *  be the inverse matrix and returns %CAIRO_STATUS_SUCCESS. Otherwise,
566
 *  returns %CAIRO_STATUS_INVALID_MATRIX.
567
 *
568
 * Since: 1.0
569
 **/
570
cairo_status_t
571
cairo_matrix_invert (cairo_matrix_t *matrix)
572
3.38M
{
573
3.38M
    double det;
574
575
    /* Simple scaling|translation matrices are quite common... */
576
3.38M
    if (matrix->xy == 0. && matrix->yx == 0.) {
577
3.38M
  matrix->x0 = -matrix->x0;
578
3.38M
  matrix->y0 = -matrix->y0;
579
580
3.38M
  if (matrix->xx != 1.) {
581
6.70k
      if (matrix->xx == 0.)
582
0
    return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
583
584
6.70k
      matrix->xx = 1. / matrix->xx;
585
6.70k
      matrix->x0 *= matrix->xx;
586
6.70k
  }
587
588
3.38M
  if (matrix->yy != 1.) {
589
8.51k
      if (matrix->yy == 0.)
590
0
    return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
591
592
8.51k
      matrix->yy = 1. / matrix->yy;
593
8.51k
      matrix->y0 *= matrix->yy;
594
8.51k
  }
595
596
3.38M
  return CAIRO_STATUS_SUCCESS;
597
3.38M
    }
598
599
    /* inv (A) = 1/det (A) * adj (A) */
600
417
    det = _cairo_matrix_compute_determinant (matrix);
601
602
417
    if (! ISFINITE (det))
603
0
  return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
604
605
417
    if (det == 0)
606
0
  return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
607
608
417
    _cairo_matrix_compute_adjoint (matrix);
609
417
    _cairo_matrix_scalar_multiply (matrix, 1 / det);
610
611
417
    return CAIRO_STATUS_SUCCESS;
612
417
}
613
614
cairo_bool_t
615
_cairo_matrix_is_invertible (const cairo_matrix_t *matrix)
616
1.08M
{
617
1.08M
    double det;
618
619
1.08M
    det = _cairo_matrix_compute_determinant (matrix);
620
621
1.08M
    return ISFINITE (det) && det != 0.;
622
1.08M
}
623
624
cairo_bool_t
625
_cairo_matrix_is_scale_0 (const cairo_matrix_t *matrix)
626
0
{
627
0
    return matrix->xx == 0. &&
628
0
           matrix->xy == 0. &&
629
0
           matrix->yx == 0. &&
630
0
           matrix->yy == 0.;
631
0
}
632
633
double
634
_cairo_matrix_compute_determinant (const cairo_matrix_t *matrix)
635
8.56M
{
636
8.56M
    double a, b, c, d;
637
638
8.56M
    a = matrix->xx; b = matrix->yx;
639
8.56M
    c = matrix->xy; d = matrix->yy;
640
641
8.56M
    return a*d - b*c;
642
8.56M
}
643
644
/**
645
 * _cairo_matrix_compute_basis_scale_factors:
646
 * @matrix: a matrix
647
 * @basis_scale: the scale factor in the direction of basis
648
 * @normal_scale: the scale factor in the direction normal to the basis
649
 * @x_basis: basis to use.  X basis if true, Y basis otherwise.
650
 *
651
 * Computes |Mv| and det(M)/|Mv| for v=[1,0] if x_basis is true, and v=[0,1]
652
 * otherwise, and M is @matrix.
653
 *
654
 * Return value: the scale factor of @matrix on the height of the font,
655
 * or 1.0 if @matrix is %NULL.
656
 **/
657
cairo_status_t
658
_cairo_matrix_compute_basis_scale_factors (const cairo_matrix_t *matrix,
659
             double *basis_scale, double *normal_scale,
660
             cairo_bool_t x_basis)
661
113k
{
662
113k
    double det;
663
664
113k
    det = _cairo_matrix_compute_determinant (matrix);
665
666
113k
    if (! ISFINITE (det))
667
0
  return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
668
669
113k
    if (det == 0)
670
0
    {
671
0
  *basis_scale = *normal_scale = 0;
672
0
    }
673
113k
    else
674
113k
    {
675
113k
  double x = x_basis != 0;
676
113k
  double y = x == 0;
677
113k
  double major, minor;
678
679
113k
  cairo_matrix_transform_distance (matrix, &x, &y);
680
113k
  major = hypot (x, y);
681
  /*
682
   * ignore mirroring
683
   */
684
113k
  if (det < 0)
685
0
      det = -det;
686
113k
  if (major)
687
113k
      minor = det / major;
688
0
  else
689
0
      minor = 0.0;
690
113k
  if (x_basis)
691
113k
  {
692
113k
      *basis_scale = major;
693
113k
      *normal_scale = minor;
694
113k
  }
695
0
  else
696
0
  {
697
0
      *basis_scale = minor;
698
0
      *normal_scale = major;
699
0
  }
700
113k
    }
701
702
113k
    return CAIRO_STATUS_SUCCESS;
703
113k
}
704
705
cairo_bool_t
706
_cairo_matrix_is_integer_translation (const cairo_matrix_t *matrix,
707
              int *itx, int *ity)
708
512k
{
709
512k
    if (_cairo_matrix_is_translation (matrix))
710
512k
    {
711
512k
        cairo_fixed_t x0_fixed = _cairo_fixed_from_double (matrix->x0);
712
512k
        cairo_fixed_t y0_fixed = _cairo_fixed_from_double (matrix->y0);
713
714
512k
        if (_cairo_fixed_is_integer (x0_fixed) &&
715
512k
            _cairo_fixed_is_integer (y0_fixed))
716
512k
        {
717
512k
            if (itx)
718
512k
                *itx = _cairo_fixed_integer_part (x0_fixed);
719
512k
            if (ity)
720
512k
                *ity = _cairo_fixed_integer_part (y0_fixed);
721
722
512k
            return TRUE;
723
512k
        }
724
512k
    }
725
726
67
    return FALSE;
727
512k
}
728
729
10.9M
#define SCALING_EPSILON _cairo_fixed_to_double(1)
730
731
/* This only returns true if the matrix is 90 degree rotations or
732
 * flips. It appears calling code is relying on this. It will return
733
 * false for other rotations even if the scale is one. Approximations
734
 * are allowed to handle matricies filled in using trig functions
735
 * such as sin(M_PI_2).
736
 */
737
cairo_bool_t
738
_cairo_matrix_has_unity_scale (const cairo_matrix_t *matrix)
739
2.75M
{
740
    /* check that the determinant is near +/-1 */
741
2.75M
    double det = _cairo_matrix_compute_determinant (matrix);
742
2.75M
    if (fabs (det * det - 1.0) < SCALING_EPSILON) {
743
  /* check that one axis is close to zero */
744
2.74M
  if (fabs (matrix->xy) < SCALING_EPSILON  &&
745
2.74M
      fabs (matrix->yx) < SCALING_EPSILON)
746
2.74M
      return TRUE;
747
0
  if (fabs (matrix->xx) < SCALING_EPSILON  &&
748
0
      fabs (matrix->yy) < SCALING_EPSILON)
749
0
      return TRUE;
750
  /* If rotations are allowed then it must instead test for
751
   * orthogonality. This is xx*xy+yx*yy ~= 0.
752
   */
753
0
    }
754
10.0k
    return FALSE;
755
2.75M
}
756
757
/* By pixel exact here, we mean a matrix that is composed only of
758
 * 90 degree rotations, flips, and integer translations and produces a 1:1
759
 * mapping between source and destination pixels. If we transform an image
760
 * with a pixel-exact matrix, filtering is not useful.
761
 */
762
cairo_bool_t
763
_cairo_matrix_is_pixel_exact (const cairo_matrix_t *matrix)
764
515k
{
765
515k
    cairo_fixed_t x0_fixed, y0_fixed;
766
767
515k
    if (! _cairo_matrix_has_unity_scale (matrix))
768
241
  return FALSE;
769
770
515k
    x0_fixed = _cairo_fixed_from_double (matrix->x0);
771
515k
    y0_fixed = _cairo_fixed_from_double (matrix->y0);
772
773
515k
    return _cairo_fixed_is_integer (x0_fixed) && _cairo_fixed_is_integer (y0_fixed);
774
515k
}
775
776
/*
777
  A circle in user space is transformed into an ellipse in device space.
778
779
  The following is a derivation of a formula to calculate the length of the
780
  major axis for this ellipse; this is useful for error bounds calculations.
781
782
  Thanks to Walter Brisken <wbrisken@aoc.nrao.edu> for this derivation:
783
784
  1.  First some notation:
785
786
  All capital letters represent vectors in two dimensions.  A prime '
787
  represents a transformed coordinate.  Matrices are written in underlined
788
  form, ie _R_.  Lowercase letters represent scalar real values.
789
790
  2.  The question has been posed:  What is the maximum expansion factor
791
  achieved by the linear transformation
792
793
  X' = X _R_
794
795
  where _R_ is a real-valued 2x2 matrix with entries:
796
797
  _R_ = [a b]
798
        [c d]  .
799
800
  In other words, what is the maximum radius, MAX[ |X'| ], reached for any
801
  X on the unit circle ( |X| = 1 ) ?
802
803
  3.  Some useful formulae
804
805
  (A) through (C) below are standard double-angle formulae.  (D) is a lesser
806
  known result and is derived below:
807
808
  (A)  sin²(θ) = (1 - cos(2*θ))/2
809
  (B)  cos²(θ) = (1 + cos(2*θ))/2
810
  (C)  sin(θ)*cos(θ) = sin(2*θ)/2
811
  (D)  MAX[a*cos(θ) + b*sin(θ)] = sqrt(a² + b²)
812
813
  Proof of (D):
814
815
  find the maximum of the function by setting the derivative to zero:
816
817
       -a*sin(θ)+b*cos(θ) = 0
818
819
  From this it follows that
820
821
       tan(θ) = b/a
822
823
  and hence
824
825
       sin(θ) = b/sqrt(a² + b²)
826
827
  and
828
829
       cos(θ) = a/sqrt(a² + b²)
830
831
  Thus the maximum value is
832
833
       MAX[a*cos(θ) + b*sin(θ)] = (a² + b²)/sqrt(a² + b²)
834
                                   = sqrt(a² + b²)
835
836
  4.  Derivation of maximum expansion
837
838
  To find MAX[ |X'| ] we search brute force method using calculus.  The unit
839
  circle on which X is constrained is to be parameterized by t:
840
841
       X(θ) = (cos(θ), sin(θ))
842
843
  Thus
844
845
       X'(θ) = X(θ) * _R_ = (cos(θ), sin(θ)) * [a b]
846
                                               [c d]
847
             = (a*cos(θ) + c*sin(θ), b*cos(θ) + d*sin(θ)).
848
849
  Define
850
851
       r(θ) = |X'(θ)|
852
853
  Thus
854
855
       r²(θ) = (a*cos(θ) + c*sin(θ))² + (b*cos(θ) + d*sin(θ))²
856
             = (a² + b²)*cos²(θ) + (c² + d²)*sin²(θ)
857
                 + 2*(a*c + b*d)*cos(θ)*sin(θ)
858
859
  Now apply the double angle formulae (A) to (C) from above:
860
861
       r²(θ) = (a² + b² + c² + d²)/2
862
       + (a² + b² - c² - d²)*cos(2*θ)/2
863
         + (a*c + b*d)*sin(2*θ)
864
             = f + g*cos(φ) + h*sin(φ)
865
866
  Where
867
868
       f = (a² + b² + c² + d²)/2
869
       g = (a² + b² - c² - d²)/2
870
       h = (a*c + d*d)
871
       φ = 2*θ
872
873
  It is clear that MAX[ |X'| ] = sqrt(MAX[ r² ]).  Here we determine MAX[ r² ]
874
  using (D) from above:
875
876
       MAX[ r² ] = f + sqrt(g² + h²)
877
878
  And finally
879
880
       MAX[ |X'| ] = sqrt( f + sqrt(g² + h²) )
881
882
  Which is the solution to this problem.
883
884
  Walter Brisken
885
  2004/10/08
886
887
  (Note that the minor axis length is at the minimum of the above solution,
888
  which is just sqrt ( f - sqrt(g² + h²) ) given the symmetry of (D)).
889
890
891
  For another derivation of the same result, using Singular Value Decomposition,
892
  see doc/tutorial/src/singular.c.
893
*/
894
895
/* determine the length of the major axis of a circle of the given radius
896
   after applying the transformation matrix. */
897
double
898
_cairo_matrix_transformed_circle_major_axis (const cairo_matrix_t *matrix,
899
               double radius)
900
1.11M
{
901
1.11M
    double  a, b, c, d, f, g, h, i, j;
902
903
1.11M
    if (_cairo_matrix_has_unity_scale (matrix))
904
1.11M
  return radius;
905
906
4.07k
    _cairo_matrix_get_affine (matrix,
907
4.07k
                              &a, &b,
908
4.07k
                              &c, &d,
909
4.07k
                              NULL, NULL);
910
911
4.07k
    i = a*a + b*b;
912
4.07k
    j = c*c + d*d;
913
914
4.07k
    f = 0.5 * (i + j);
915
4.07k
    g = 0.5 * (i - j);
916
4.07k
    h = a*c + b*d;
917
918
4.07k
    return radius * sqrt (f + hypot (g, h));
919
920
    /*
921
     * we don't need the minor axis length, which is
922
     * double min = radius * sqrt (f - sqrt (g*g+h*h));
923
     */
924
1.11M
}
925
926
static const pixman_transform_t pixman_identity_transform = {{
927
        {1 << 16,        0,       0},
928
        {       0, 1 << 16,       0},
929
        {       0,       0, 1 << 16}
930
    }};
931
932
static cairo_status_t
933
_cairo_matrix_to_pixman_matrix (const cairo_matrix_t  *matrix,
934
        pixman_transform_t  *pixman_transform,
935
        double xc,
936
        double yc)
937
2.05k
{
938
2.05k
    cairo_matrix_t inv;
939
2.05k
    unsigned max_iterations;
940
941
2.05k
    pixman_transform->matrix[0][0] = _cairo_fixed_16_16_from_double (matrix->xx);
942
2.05k
    pixman_transform->matrix[0][1] = _cairo_fixed_16_16_from_double (matrix->xy);
943
2.05k
    pixman_transform->matrix[0][2] = _cairo_fixed_16_16_from_double (matrix->x0);
944
945
2.05k
    pixman_transform->matrix[1][0] = _cairo_fixed_16_16_from_double (matrix->yx);
946
2.05k
    pixman_transform->matrix[1][1] = _cairo_fixed_16_16_from_double (matrix->yy);
947
2.05k
    pixman_transform->matrix[1][2] = _cairo_fixed_16_16_from_double (matrix->y0);
948
949
2.05k
    pixman_transform->matrix[2][0] = 0;
950
2.05k
    pixman_transform->matrix[2][1] = 0;
951
2.05k
    pixman_transform->matrix[2][2] = 1 << 16;
952
953
    /* The conversion above breaks cairo's translation invariance:
954
     * a translation of (a, b) in device space translates to
955
     * a translation of (xx * a + xy * b, yx * a + yy * b)
956
     * for cairo, while pixman uses rounded versions of xx ... yy.
957
     * This error increases as a and b get larger.
958
     *
959
     * To compensate for this, we fix the point (xc, yc) in pattern
960
     * space and adjust pixman's transform to agree with cairo's at
961
     * that point.
962
     */
963
964
2.05k
    if (_cairo_matrix_has_unity_scale (matrix))
965
7
  return CAIRO_STATUS_SUCCESS;
966
967
2.04k
    if (unlikely (fabs (matrix->xx) > PIXMAN_MAX_INT ||
968
2.04k
      fabs (matrix->xy) > PIXMAN_MAX_INT ||
969
2.04k
      fabs (matrix->x0) > PIXMAN_MAX_INT ||
970
2.04k
      fabs (matrix->yx) > PIXMAN_MAX_INT ||
971
2.04k
      fabs (matrix->yy) > PIXMAN_MAX_INT ||
972
2.04k
      fabs (matrix->y0) > PIXMAN_MAX_INT))
973
42
    {
974
42
  return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
975
42
    }
976
977
    /* Note: If we can't invert the transformation, skip the adjustment. */
978
2.00k
    inv = *matrix;
979
2.00k
    if (cairo_matrix_invert (&inv) != CAIRO_STATUS_SUCCESS)
980
0
  return CAIRO_STATUS_SUCCESS;
981
982
    /* find the pattern space coordinate that maps to (xc, yc) */
983
2.00k
    max_iterations = 5;
984
2.72k
    do {
985
2.72k
  double x,y;
986
2.72k
  pixman_vector_t vector;
987
2.72k
  cairo_fixed_16_16_t dx, dy;
988
989
2.72k
  vector.vector[0] = _cairo_fixed_16_16_from_double (xc);
990
2.72k
  vector.vector[1] = _cairo_fixed_16_16_from_double (yc);
991
2.72k
  vector.vector[2] = 1 << 16;
992
993
  /* If we can't transform the reference point, skip the adjustment. */
994
2.72k
  if (! pixman_transform_point_3d (pixman_transform, &vector))
995
0
      return CAIRO_STATUS_SUCCESS;
996
997
2.72k
  x = pixman_fixed_to_double (vector.vector[0]);
998
2.72k
  y = pixman_fixed_to_double (vector.vector[1]);
999
2.72k
  cairo_matrix_transform_point (&inv, &x, &y);
1000
1001
  /* Ideally, the vector should now be (xc, yc).
1002
   * We can now compensate for the resulting error.
1003
   */
1004
2.72k
  x -= xc;
1005
2.72k
  y -= yc;
1006
2.72k
  cairo_matrix_transform_distance (matrix, &x, &y);
1007
2.72k
  dx = _cairo_fixed_16_16_from_double (x);
1008
2.72k
  dy = _cairo_fixed_16_16_from_double (y);
1009
2.72k
  pixman_transform->matrix[0][2] -= dx;
1010
2.72k
  pixman_transform->matrix[1][2] -= dy;
1011
1012
2.72k
  if (dx == 0 && dy == 0)
1013
2.00k
      return CAIRO_STATUS_SUCCESS;
1014
2.72k
    } while (--max_iterations);
1015
1016
    /* We didn't find an exact match between cairo and pixman, but
1017
     * the matrix should be mostly correct */
1018
0
    return CAIRO_STATUS_SUCCESS;
1019
2.00k
}
1020
1021
static inline double
1022
_pixman_nearest_sample (double d)
1023
964k
{
1024
964k
    return ceil (d - .5);
1025
964k
}
1026
1027
/**
1028
 * _cairo_matrix_is_pixman_translation:
1029
 * @matrix: a matrix
1030
 * @filter: the filter to be used on the pattern transformed by @matrix
1031
 * @x_offset: the translation in the X direction
1032
 * @y_offset: the translation in the Y direction
1033
 *
1034
 * Checks if @matrix translated by (x_offset, y_offset) can be
1035
 * represented using just an offset (within the range pixman can
1036
 * accept) and an identity matrix.
1037
 *
1038
 * Passing a non-zero value in x_offset/y_offset has the same effect
1039
 * as applying cairo_matrix_translate(matrix, x_offset, y_offset) and
1040
 * setting x_offset and y_offset to 0.
1041
 *
1042
 * Upon return x_offset and y_offset contain the translation vector if
1043
 * the return value is %TRUE. If the return value is %FALSE, they will
1044
 * not be modified.
1045
 *
1046
 * Return value: %TRUE if @matrix can be represented as a pixman
1047
 * translation, %FALSE otherwise.
1048
 **/
1049
cairo_bool_t
1050
_cairo_matrix_is_pixman_translation (const cairo_matrix_t     *matrix,
1051
             cairo_filter_t            filter,
1052
             int                      *x_offset,
1053
             int                      *y_offset)
1054
518k
{
1055
518k
    double tx, ty;
1056
1057
518k
    if (!_cairo_matrix_is_translation (matrix))
1058
2.28k
  return FALSE;
1059
1060
516k
    if (matrix->x0 == 0. && matrix->y0 == 0.)
1061
34.2k
  return TRUE;
1062
1063
482k
    tx = matrix->x0 + *x_offset;
1064
482k
    ty = matrix->y0 + *y_offset;
1065
1066
482k
    if (filter == CAIRO_FILTER_FAST || filter == CAIRO_FILTER_NEAREST) {
1067
482k
  tx = _pixman_nearest_sample (tx);
1068
482k
  ty = _pixman_nearest_sample (ty);
1069
482k
    } else if (tx != floor (tx) || ty != floor (ty)) {
1070
0
  return FALSE;
1071
0
    }
1072
1073
482k
    if (fabs (tx) > PIXMAN_MAX_INT || fabs (ty) > PIXMAN_MAX_INT)
1074
203
  return FALSE;
1075
1076
481k
    *x_offset = _cairo_lround (tx);
1077
481k
    *y_offset = _cairo_lround (ty);
1078
481k
    return TRUE;
1079
482k
}
1080
1081
/**
1082
 * _cairo_matrix_to_pixman_matrix_offset:
1083
 * @matrix: a matrix
1084
 * @filter: the filter to be used on the pattern transformed by @matrix
1085
 * @xc: the X coordinate of the point to fix in pattern space
1086
 * @yc: the Y coordinate of the point to fix in pattern space
1087
 * @out_transform: the transformation which best approximates @matrix
1088
 * @x_offset: the translation in the X direction
1089
 * @y_offset: the translation in the Y direction
1090
 *
1091
 * This function tries to represent @matrix translated by (x_offset,
1092
 * y_offset) as a %pixman_transform_t and an translation.
1093
 *
1094
 * Passing a non-zero value in x_offset/y_offset has the same effect
1095
 * as applying cairo_matrix_translate(matrix, x_offset, y_offset) and
1096
 * setting x_offset and y_offset to 0.
1097
 *
1098
 * If it is possible to represent the matrix with an identity
1099
 * %pixman_transform_t and a translation within the valid range for
1100
 * pixman, this function will set @out_transform to be the identity,
1101
 * @x_offset and @y_offset to be the translation vector and will
1102
 * return %CAIRO_INT_STATUS_NOTHING_TO_DO. Otherwise it will try to
1103
 * evenly divide the translational component of @matrix between
1104
 * @out_transform and (@x_offset, @y_offset).
1105
 *
1106
 * Upon return x_offset and y_offset contain the translation vector.
1107
 *
1108
 * Return value: %CAIRO_INT_STATUS_NOTHING_TO_DO if the out_transform
1109
 * is the identity, %CAIRO_STATUS_INVALID_MATRIX if it was not
1110
 * possible to represent @matrix as a pixman_transform_t without
1111
 * overflows, %CAIRO_STATUS_SUCCESS otherwise.
1112
 **/
1113
cairo_status_t
1114
_cairo_matrix_to_pixman_matrix_offset (const cairo_matrix_t *matrix,
1115
               cairo_filter_t            filter,
1116
               double                    xc,
1117
               double                    yc,
1118
               pixman_transform_t *out_transform,
1119
               int                      *x_offset,
1120
               int                      *y_offset)
1121
2.72k
{
1122
2.72k
    cairo_bool_t is_pixman_translation;
1123
1124
2.72k
    is_pixman_translation = _cairo_matrix_is_pixman_translation (matrix,
1125
2.72k
                 filter,
1126
2.72k
                 x_offset,
1127
2.72k
                 y_offset);
1128
1129
2.72k
    if (is_pixman_translation) {
1130
668
  *out_transform = pixman_identity_transform;
1131
668
  return CAIRO_INT_STATUS_NOTHING_TO_DO;
1132
2.05k
    } else {
1133
2.05k
  cairo_matrix_t m;
1134
1135
2.05k
  m = *matrix;
1136
2.05k
  cairo_matrix_translate (&m, *x_offset, *y_offset);
1137
2.05k
  if (m.x0 != 0.0 || m.y0 != 0.0) {
1138
133
      double tx, ty, norm;
1139
133
      int i, j;
1140
1141
      /* pixman also limits the [xy]_offset to 16 bits so evenly
1142
       * spread the bits between the two.
1143
       *
1144
       * To do this, find the solutions of:
1145
       *   |x| = |x*m.xx + y*m.xy + m.x0|
1146
       *   |y| = |x*m.yx + y*m.yy + m.y0|
1147
       *
1148
       * and select the one whose maximum norm is smallest.
1149
       */
1150
133
      tx = m.x0;
1151
133
      ty = m.y0;
1152
133
      norm = MAX (fabs (tx), fabs (ty));
1153
1154
399
      for (i = -1; i < 2; i+=2) {
1155
798
    for (j = -1; j < 2; j+=2) {
1156
532
        double x, y, den, new_norm;
1157
1158
532
        den = (m.xx + i) * (m.yy + j) - m.xy * m.yx;
1159
532
        if (fabs (den) < DBL_EPSILON)
1160
21
      continue;
1161
1162
511
        x = m.y0 * m.xy - m.x0 * (m.yy + j);
1163
511
        y = m.x0 * m.yx - m.y0 * (m.xx + i);
1164
1165
511
        den = 1 / den;
1166
511
        x *= den;
1167
511
        y *= den;
1168
1169
511
        new_norm = MAX (fabs (x), fabs (y));
1170
511
        if (norm > new_norm) {
1171
166
      norm = new_norm;
1172
166
      tx = x;
1173
166
      ty = y;
1174
166
        }
1175
511
    }
1176
266
      }
1177
1178
133
      tx = floor (tx);
1179
133
      ty = floor (ty);
1180
133
      *x_offset = -tx;
1181
133
      *y_offset = -ty;
1182
133
      cairo_matrix_translate (&m, tx, ty);
1183
1.91k
  } else {
1184
1.91k
      *x_offset = 0;
1185
1.91k
      *y_offset = 0;
1186
1.91k
  }
1187
1188
2.05k
  return _cairo_matrix_to_pixman_matrix (&m, out_transform, xc, yc);
1189
2.05k
    }
1190
2.72k
}