/work/workdir/UnpackedTarball/cairo/src/cairo-pattern.c
Line | Count | Source |
1 | | /* -*- Mode: c; c-basic-offset: 4; indent-tabs-mode: t; tab-width: 8; -*- */ |
2 | | /* cairo - a vector graphics library with display and print output |
3 | | * |
4 | | * Copyright © 2004 David Reveman |
5 | | * Copyright © 2005 Red Hat, Inc. |
6 | | * |
7 | | * Permission to use, copy, modify, distribute, and sell this software |
8 | | * and its documentation for any purpose is hereby granted without |
9 | | * fee, provided that the above copyright notice appear in all copies |
10 | | * and that both that copyright notice and this permission notice |
11 | | * appear in supporting documentation, and that the name of David |
12 | | * Reveman not be used in advertising or publicity pertaining to |
13 | | * distribution of the software without specific, written prior |
14 | | * permission. David Reveman makes no representations about the |
15 | | * suitability of this software for any purpose. It is provided "as |
16 | | * is" without express or implied warranty. |
17 | | * |
18 | | * DAVID REVEMAN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS |
19 | | * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND |
20 | | * FITNESS, IN NO EVENT SHALL DAVID REVEMAN BE LIABLE FOR ANY SPECIAL, |
21 | | * INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER |
22 | | * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
23 | | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR |
24 | | * IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
25 | | * |
26 | | * Authors: David Reveman <davidr@novell.com> |
27 | | * Keith Packard <keithp@keithp.com> |
28 | | * Carl Worth <cworth@cworth.org> |
29 | | */ |
30 | | |
31 | | #include "cairoint.h" |
32 | | |
33 | | #include "cairo-array-private.h" |
34 | | #include "cairo-error-private.h" |
35 | | #include "cairo-freed-pool-private.h" |
36 | | #include "cairo-image-surface-private.h" |
37 | | #include "cairo-list-inline.h" |
38 | | #include "cairo-path-private.h" |
39 | | #include "cairo-pattern-private.h" |
40 | | #include "cairo-recording-surface-inline.h" |
41 | | #include "cairo-surface-snapshot-inline.h" |
42 | | |
43 | | #include <float.h> |
44 | | |
45 | | #define PIXMAN_MAX_INT ((pixman_fixed_1 >> 1) - pixman_fixed_e) /* need to ensure deltas also fit */ |
46 | | |
47 | | /** |
48 | | * SECTION:cairo-pattern |
49 | | * @Title: cairo_pattern_t |
50 | | * @Short_Description: Sources for drawing |
51 | | * @See_Also: #cairo_t, #cairo_surface_t |
52 | | * |
53 | | * #cairo_pattern_t is the paint with which cairo draws. |
54 | | * The primary use of patterns is as the source for all cairo drawing |
55 | | * operations, although they can also be used as masks, that is, as the |
56 | | * brush too. |
57 | | * |
58 | | * A cairo pattern is created by using one of the many constructors, |
59 | | * of the form |
60 | | * <function>cairo_pattern_create_<emphasis>type</emphasis>()</function> |
61 | | * or implicitly through |
62 | | * <function>cairo_set_source_<emphasis>type</emphasis>()</function> |
63 | | * functions. |
64 | | **/ |
65 | | |
66 | | /** |
67 | | * CAIRO_HAS_MIME_SURFACE: |
68 | | * |
69 | | * Unused symbol, always defined. |
70 | | * |
71 | | * Since: 1.12 |
72 | | **/ |
73 | | |
74 | | static freed_pool_t freed_pattern_pool[5]; |
75 | | |
76 | | static const cairo_solid_pattern_t _cairo_pattern_nil = { |
77 | | { |
78 | | CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */ |
79 | | CAIRO_STATUS_NO_MEMORY, /* status */ |
80 | | { 0, 0, 0, NULL }, /* user_data */ |
81 | | { NULL, NULL }, /* observers */ |
82 | | |
83 | | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
84 | | CAIRO_FILTER_DEFAULT, /* filter */ |
85 | | CAIRO_EXTEND_GRADIENT_DEFAULT, /* extend */ |
86 | | FALSE, /* has component alpha */ |
87 | | FALSE, /* is_foreground_marker */ |
88 | | CAIRO_DITHER_DEFAULT, /* dither */ |
89 | | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
90 | | 1.0 /* opacity */ |
91 | | } |
92 | | }; |
93 | | |
94 | | static const cairo_solid_pattern_t _cairo_pattern_nil_null_pointer = { |
95 | | { |
96 | | CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */ |
97 | | CAIRO_STATUS_NULL_POINTER, /* status */ |
98 | | { 0, 0, 0, NULL }, /* user_data */ |
99 | | { NULL, NULL }, /* observers */ |
100 | | |
101 | | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
102 | | CAIRO_FILTER_DEFAULT, /* filter */ |
103 | | CAIRO_EXTEND_GRADIENT_DEFAULT, /* extend */ |
104 | | FALSE, /* has component alpha */ |
105 | | FALSE, /* is_foreground_marker */ |
106 | | CAIRO_DITHER_DEFAULT, /* dither */ |
107 | | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
108 | | 1.0 /* opacity */ |
109 | | } |
110 | | }; |
111 | | |
112 | | const cairo_solid_pattern_t _cairo_pattern_black = { |
113 | | { |
114 | | CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */ |
115 | | CAIRO_STATUS_SUCCESS, /* status */ |
116 | | { 0, 0, 0, NULL }, /* user_data */ |
117 | | { NULL, NULL }, /* observers */ |
118 | | |
119 | | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
120 | | CAIRO_FILTER_NEAREST, /* filter */ |
121 | | CAIRO_EXTEND_REPEAT, /* extend */ |
122 | | FALSE, /* has component alpha */ |
123 | | FALSE, /* is_foreground_marker */ |
124 | | CAIRO_DITHER_DEFAULT, /* dither */ |
125 | | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
126 | | 1.0 /* opacity */ |
127 | | }, |
128 | | { 0., 0., 0., 1., 0, 0, 0, 0xffff },/* color (double rgba, short rgba) */ |
129 | | }; |
130 | | |
131 | | const cairo_solid_pattern_t _cairo_pattern_clear = { |
132 | | { |
133 | | CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */ |
134 | | CAIRO_STATUS_SUCCESS, /* status */ |
135 | | { 0, 0, 0, NULL }, /* user_data */ |
136 | | { NULL, NULL }, /* observers */ |
137 | | |
138 | | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
139 | | CAIRO_FILTER_NEAREST, /* filter */ |
140 | | CAIRO_EXTEND_REPEAT, /* extend */ |
141 | | FALSE, /* has component alpha */ |
142 | | FALSE, /* is_foreground_marker */ |
143 | | CAIRO_DITHER_DEFAULT, /* dither */ |
144 | | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
145 | | 1.0 /* opacity */ |
146 | | }, |
147 | | { 0., 0., 0., 0., 0, 0, 0, 0 },/* color (double rgba, short rgba) */ |
148 | | }; |
149 | | |
150 | | const cairo_solid_pattern_t _cairo_pattern_white = { |
151 | | { |
152 | | CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */ |
153 | | CAIRO_STATUS_SUCCESS, /* status */ |
154 | | { 0, 0, 0, NULL }, /* user_data */ |
155 | | { NULL, NULL }, /* observers */ |
156 | | |
157 | | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
158 | | CAIRO_FILTER_NEAREST, /* filter */ |
159 | | CAIRO_EXTEND_REPEAT, /* extend */ |
160 | | FALSE, /* has component alpha */ |
161 | | FALSE, /* is_foreground_marker */ |
162 | | CAIRO_DITHER_DEFAULT, /* dither */ |
163 | | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
164 | | 1.0 /* opacity */ |
165 | | }, |
166 | | { 1., 1., 1., 1., 0xffff, 0xffff, 0xffff, 0xffff },/* color (double rgba, short rgba) */ |
167 | | }; |
168 | | |
169 | | static void |
170 | | _cairo_pattern_notify_observers (cairo_pattern_t *pattern, |
171 | | unsigned int flags) |
172 | 535k | { |
173 | 535k | cairo_pattern_observer_t *pos; |
174 | | |
175 | 535k | cairo_list_foreach_entry (pos, cairo_pattern_observer_t, &pattern->observers, link) |
176 | 0 | pos->notify (pos, pattern, flags); |
177 | 535k | } |
178 | | |
179 | | /** |
180 | | * _cairo_pattern_set_error: |
181 | | * @pattern: a pattern |
182 | | * @status: a status value indicating an error |
183 | | * |
184 | | * Atomically sets pattern->status to @status and calls _cairo_error; |
185 | | * Does nothing if status is %CAIRO_STATUS_SUCCESS. |
186 | | * |
187 | | * All assignments of an error status to pattern->status should happen |
188 | | * through _cairo_pattern_set_error(). Note that due to the nature of |
189 | | * the atomic operation, it is not safe to call this function on the nil |
190 | | * objects. |
191 | | * |
192 | | * The purpose of this function is to allow the user to set a |
193 | | * breakpoint in _cairo_error() to generate a stack trace for when the |
194 | | * user causes cairo to detect an error. |
195 | | **/ |
196 | | static cairo_status_t |
197 | | _cairo_pattern_set_error (cairo_pattern_t *pattern, |
198 | | cairo_status_t status) |
199 | 0 | { |
200 | 0 | if (status == CAIRO_STATUS_SUCCESS) |
201 | 0 | return status; |
202 | | |
203 | | /* Don't overwrite an existing error. This preserves the first |
204 | | * error, which is the most significant. */ |
205 | 0 | _cairo_status_set_error (&pattern->status, status); |
206 | |
|
207 | 0 | return _cairo_error (status); |
208 | 0 | } |
209 | | |
210 | | void |
211 | | _cairo_pattern_init (cairo_pattern_t *pattern, cairo_pattern_type_t type) |
212 | 6.10M | { |
213 | | #if HAVE_VALGRIND |
214 | | switch (type) { |
215 | | case CAIRO_PATTERN_TYPE_SOLID: |
216 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_solid_pattern_t)); |
217 | | break; |
218 | | case CAIRO_PATTERN_TYPE_SURFACE: |
219 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_surface_pattern_t)); |
220 | | break; |
221 | | case CAIRO_PATTERN_TYPE_LINEAR: |
222 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_linear_pattern_t)); |
223 | | break; |
224 | | case CAIRO_PATTERN_TYPE_RADIAL: |
225 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_radial_pattern_t)); |
226 | | break; |
227 | | case CAIRO_PATTERN_TYPE_MESH: |
228 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_mesh_pattern_t)); |
229 | | break; |
230 | | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
231 | | break; |
232 | | } |
233 | | #endif |
234 | | |
235 | 6.10M | pattern->type = type; |
236 | 6.10M | pattern->status = CAIRO_STATUS_SUCCESS; |
237 | | |
238 | | /* Set the reference count to zero for on-stack patterns. |
239 | | * Callers needs to explicitly increment the count for heap allocations. */ |
240 | 6.10M | CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0); |
241 | | |
242 | 6.10M | _cairo_user_data_array_init (&pattern->user_data); |
243 | | |
244 | 6.10M | if (type == CAIRO_PATTERN_TYPE_SURFACE || |
245 | 5.58M | type == CAIRO_PATTERN_TYPE_RASTER_SOURCE) |
246 | 516k | pattern->extend = CAIRO_EXTEND_SURFACE_DEFAULT; |
247 | 5.58M | else |
248 | 5.58M | pattern->extend = CAIRO_EXTEND_GRADIENT_DEFAULT; |
249 | | |
250 | 6.10M | pattern->filter = CAIRO_FILTER_DEFAULT; |
251 | 6.10M | pattern->opacity = 1.0; |
252 | | |
253 | 6.10M | pattern->has_component_alpha = FALSE; |
254 | 6.10M | pattern->is_foreground_marker = FALSE; |
255 | | |
256 | 6.10M | pattern->dither = CAIRO_DITHER_DEFAULT; |
257 | | |
258 | 6.10M | cairo_matrix_init_identity (&pattern->matrix); |
259 | | |
260 | 6.10M | cairo_list_init (&pattern->observers); |
261 | 6.10M | } |
262 | | |
263 | | static cairo_status_t |
264 | | _cairo_gradient_pattern_init_copy (cairo_gradient_pattern_t *pattern, |
265 | | const cairo_gradient_pattern_t *other) |
266 | 0 | { |
267 | 0 | if (CAIRO_INJECT_FAULT ()) |
268 | 0 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
269 | | |
270 | 0 | if (other->base.type == CAIRO_PATTERN_TYPE_LINEAR) |
271 | 0 | { |
272 | 0 | cairo_linear_pattern_t *dst = (cairo_linear_pattern_t *) pattern; |
273 | 0 | cairo_linear_pattern_t *src = (cairo_linear_pattern_t *) other; |
274 | |
|
275 | 0 | *dst = *src; |
276 | 0 | } |
277 | 0 | else |
278 | 0 | { |
279 | 0 | cairo_radial_pattern_t *dst = (cairo_radial_pattern_t *) pattern; |
280 | 0 | cairo_radial_pattern_t *src = (cairo_radial_pattern_t *) other; |
281 | |
|
282 | 0 | *dst = *src; |
283 | 0 | } |
284 | |
|
285 | 0 | if (other->stops == other->stops_embedded) |
286 | 0 | pattern->stops = pattern->stops_embedded; |
287 | 0 | else if (other->stops) |
288 | 0 | { |
289 | 0 | pattern->stops = _cairo_malloc_ab (other->stops_size, |
290 | 0 | sizeof (cairo_gradient_stop_t)); |
291 | 0 | if (unlikely (pattern->stops == NULL)) { |
292 | 0 | pattern->stops_size = 0; |
293 | 0 | pattern->n_stops = 0; |
294 | 0 | return _cairo_pattern_set_error (&pattern->base, CAIRO_STATUS_NO_MEMORY); |
295 | 0 | } |
296 | | |
297 | 0 | memcpy (pattern->stops, other->stops, |
298 | 0 | other->n_stops * sizeof (cairo_gradient_stop_t)); |
299 | 0 | } |
300 | | |
301 | 0 | return CAIRO_STATUS_SUCCESS; |
302 | 0 | } |
303 | | |
304 | | static cairo_status_t |
305 | | _cairo_mesh_pattern_init_copy (cairo_mesh_pattern_t *pattern, |
306 | | const cairo_mesh_pattern_t *other) |
307 | 0 | { |
308 | 0 | *pattern = *other; |
309 | |
|
310 | 0 | _cairo_array_init (&pattern->patches, sizeof (cairo_mesh_patch_t)); |
311 | 0 | return _cairo_array_append_multiple (&pattern->patches, |
312 | 0 | _cairo_array_index_const (&other->patches, 0), |
313 | 0 | _cairo_array_num_elements (&other->patches)); |
314 | 0 | } |
315 | | |
316 | | cairo_status_t |
317 | | _cairo_pattern_init_copy (cairo_pattern_t *pattern, |
318 | | const cairo_pattern_t *other) |
319 | 0 | { |
320 | 0 | cairo_status_t status; |
321 | |
|
322 | 0 | if (other->status) |
323 | 0 | return _cairo_pattern_set_error (pattern, other->status); |
324 | | |
325 | 0 | switch (other->type) { |
326 | 0 | case CAIRO_PATTERN_TYPE_SOLID: { |
327 | 0 | cairo_solid_pattern_t *dst = (cairo_solid_pattern_t *) pattern; |
328 | 0 | cairo_solid_pattern_t *src = (cairo_solid_pattern_t *) other; |
329 | |
|
330 | 0 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_solid_pattern_t))); |
331 | |
|
332 | 0 | *dst = *src; |
333 | 0 | } break; |
334 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: { |
335 | 0 | cairo_surface_pattern_t *dst = (cairo_surface_pattern_t *) pattern; |
336 | 0 | cairo_surface_pattern_t *src = (cairo_surface_pattern_t *) other; |
337 | |
|
338 | 0 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_surface_pattern_t))); |
339 | |
|
340 | 0 | *dst = *src; |
341 | 0 | cairo_surface_reference (dst->surface); |
342 | 0 | } break; |
343 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
344 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: { |
345 | 0 | cairo_gradient_pattern_t *dst = (cairo_gradient_pattern_t *) pattern; |
346 | 0 | cairo_gradient_pattern_t *src = (cairo_gradient_pattern_t *) other; |
347 | |
|
348 | 0 | if (other->type == CAIRO_PATTERN_TYPE_LINEAR) { |
349 | 0 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_linear_pattern_t))); |
350 | 0 | } else { |
351 | 0 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_radial_pattern_t))); |
352 | 0 | } |
353 | |
|
354 | 0 | status = _cairo_gradient_pattern_init_copy (dst, src); |
355 | 0 | if (unlikely (status)) |
356 | 0 | return status; |
357 | |
|
358 | 0 | } break; |
359 | 0 | case CAIRO_PATTERN_TYPE_MESH: { |
360 | 0 | cairo_mesh_pattern_t *dst = (cairo_mesh_pattern_t *) pattern; |
361 | 0 | cairo_mesh_pattern_t *src = (cairo_mesh_pattern_t *) other; |
362 | |
|
363 | 0 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_mesh_pattern_t))); |
364 | |
|
365 | 0 | status = _cairo_mesh_pattern_init_copy (dst, src); |
366 | 0 | if (unlikely (status)) |
367 | 0 | return status; |
368 | |
|
369 | 0 | } break; |
370 | | |
371 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: { |
372 | 0 | status = _cairo_raster_source_pattern_init_copy (pattern, other); |
373 | 0 | if (unlikely (status)) |
374 | 0 | return status; |
375 | 0 | } break; |
376 | 0 | } |
377 | | |
378 | | /* The reference count and user_data array are unique to the copy. */ |
379 | 0 | CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0); |
380 | 0 | _cairo_user_data_array_init (&pattern->user_data); |
381 | 0 | cairo_list_init (&pattern->observers); |
382 | |
|
383 | 0 | return CAIRO_STATUS_SUCCESS; |
384 | 0 | } |
385 | | |
386 | | void |
387 | | _cairo_pattern_init_static_copy (cairo_pattern_t *pattern, |
388 | | const cairo_pattern_t *other) |
389 | 26.3M | { |
390 | 26.3M | int size; |
391 | | |
392 | 26.3M | assert (other->status == CAIRO_STATUS_SUCCESS); |
393 | | |
394 | 26.3M | switch (other->type) { |
395 | 0 | default: |
396 | 0 | ASSERT_NOT_REACHED; |
397 | 25.3M | case CAIRO_PATTERN_TYPE_SOLID: |
398 | 25.3M | size = sizeof (cairo_solid_pattern_t); |
399 | 25.3M | break; |
400 | 1.02M | case CAIRO_PATTERN_TYPE_SURFACE: |
401 | 1.02M | size = sizeof (cairo_surface_pattern_t); |
402 | 1.02M | break; |
403 | 1.20k | case CAIRO_PATTERN_TYPE_LINEAR: |
404 | 1.20k | size = sizeof (cairo_linear_pattern_t); |
405 | 1.20k | break; |
406 | 3.82k | case CAIRO_PATTERN_TYPE_RADIAL: |
407 | 3.82k | size = sizeof (cairo_radial_pattern_t); |
408 | 3.82k | break; |
409 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
410 | 0 | size = sizeof (cairo_mesh_pattern_t); |
411 | 0 | break; |
412 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
413 | 0 | size = sizeof (cairo_raster_source_pattern_t); |
414 | 0 | break; |
415 | 26.3M | } |
416 | | |
417 | 26.3M | memcpy (pattern, other, size); |
418 | | |
419 | 26.3M | CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0); |
420 | 26.3M | _cairo_user_data_array_init (&pattern->user_data); |
421 | 26.3M | cairo_list_init (&pattern->observers); |
422 | 26.3M | } |
423 | | |
424 | | cairo_status_t |
425 | | _cairo_pattern_init_snapshot (cairo_pattern_t *pattern, |
426 | | const cairo_pattern_t *other) |
427 | 0 | { |
428 | 0 | cairo_status_t status; |
429 | | |
430 | | /* We don't bother doing any fancy copy-on-write implementation |
431 | | * for the pattern's data. It's generally quite tiny. */ |
432 | 0 | status = _cairo_pattern_init_copy (pattern, other); |
433 | 0 | if (unlikely (status)) |
434 | 0 | return status; |
435 | | |
436 | | /* But we do let the surface snapshot stuff be as fancy as it |
437 | | * would like to be. */ |
438 | 0 | if (pattern->type == CAIRO_PATTERN_TYPE_SURFACE) { |
439 | 0 | cairo_surface_pattern_t *surface_pattern = |
440 | 0 | (cairo_surface_pattern_t *) pattern; |
441 | 0 | cairo_surface_t *surface = surface_pattern->surface; |
442 | |
|
443 | 0 | surface_pattern->surface = _cairo_surface_snapshot (surface); |
444 | |
|
445 | 0 | cairo_surface_destroy (surface); |
446 | |
|
447 | 0 | status = surface_pattern->surface->status; |
448 | 0 | } else if (pattern->type == CAIRO_PATTERN_TYPE_RASTER_SOURCE) |
449 | 0 | status = _cairo_raster_source_pattern_snapshot (pattern); |
450 | |
|
451 | 0 | return status; |
452 | 0 | } |
453 | | |
454 | | void |
455 | | _cairo_pattern_fini (cairo_pattern_t *pattern) |
456 | 6.07M | { |
457 | 6.07M | _cairo_user_data_array_fini (&pattern->user_data); |
458 | | |
459 | 6.07M | switch (pattern->type) { |
460 | 5.55M | case CAIRO_PATTERN_TYPE_SOLID: |
461 | 5.55M | break; |
462 | 516k | case CAIRO_PATTERN_TYPE_SURFACE: { |
463 | 516k | cairo_surface_pattern_t *surface_pattern = |
464 | 516k | (cairo_surface_pattern_t *) pattern; |
465 | | |
466 | 516k | cairo_surface_destroy (surface_pattern->surface); |
467 | 516k | } break; |
468 | 4.62k | case CAIRO_PATTERN_TYPE_LINEAR: |
469 | 6.53k | case CAIRO_PATTERN_TYPE_RADIAL: { |
470 | 6.53k | cairo_gradient_pattern_t *gradient = |
471 | 6.53k | (cairo_gradient_pattern_t *) pattern; |
472 | | |
473 | 6.53k | if (gradient->stops && gradient->stops != gradient->stops_embedded) |
474 | 0 | free (gradient->stops); |
475 | 6.53k | } break; |
476 | 0 | case CAIRO_PATTERN_TYPE_MESH: { |
477 | 0 | cairo_mesh_pattern_t *mesh = |
478 | 0 | (cairo_mesh_pattern_t *) pattern; |
479 | |
|
480 | 0 | _cairo_array_fini (&mesh->patches); |
481 | 0 | } break; |
482 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
483 | 0 | _cairo_raster_source_pattern_finish (pattern); |
484 | 0 | break; |
485 | 6.07M | } |
486 | | |
487 | | #if HAVE_VALGRIND |
488 | | switch (pattern->type) { |
489 | | case CAIRO_PATTERN_TYPE_SOLID: |
490 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_solid_pattern_t)); |
491 | | break; |
492 | | case CAIRO_PATTERN_TYPE_SURFACE: |
493 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_surface_pattern_t)); |
494 | | break; |
495 | | case CAIRO_PATTERN_TYPE_LINEAR: |
496 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_linear_pattern_t)); |
497 | | break; |
498 | | case CAIRO_PATTERN_TYPE_RADIAL: |
499 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_radial_pattern_t)); |
500 | | break; |
501 | | case CAIRO_PATTERN_TYPE_MESH: |
502 | | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_mesh_pattern_t)); |
503 | | break; |
504 | | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
505 | | break; |
506 | | } |
507 | | #endif |
508 | 6.07M | } |
509 | | |
510 | | cairo_status_t |
511 | | _cairo_pattern_create_copy (cairo_pattern_t **pattern_out, |
512 | | const cairo_pattern_t *other) |
513 | 0 | { |
514 | 0 | cairo_pattern_t *pattern; |
515 | 0 | cairo_status_t status; |
516 | |
|
517 | 0 | if (other->status) |
518 | 0 | return other->status; |
519 | | |
520 | 0 | switch (other->type) { |
521 | 0 | case CAIRO_PATTERN_TYPE_SOLID: |
522 | 0 | pattern = _cairo_malloc (sizeof (cairo_solid_pattern_t)); |
523 | 0 | break; |
524 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: |
525 | 0 | pattern = _cairo_malloc (sizeof (cairo_surface_pattern_t)); |
526 | 0 | break; |
527 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
528 | 0 | pattern = _cairo_malloc (sizeof (cairo_linear_pattern_t)); |
529 | 0 | break; |
530 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: |
531 | 0 | pattern = _cairo_malloc (sizeof (cairo_radial_pattern_t)); |
532 | 0 | break; |
533 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
534 | 0 | pattern = _cairo_malloc (sizeof (cairo_mesh_pattern_t)); |
535 | 0 | break; |
536 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
537 | 0 | pattern = _cairo_malloc (sizeof (cairo_raster_source_pattern_t)); |
538 | 0 | break; |
539 | 0 | default: |
540 | 0 | ASSERT_NOT_REACHED; |
541 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
542 | 0 | } |
543 | 0 | if (unlikely (pattern == NULL)) |
544 | 0 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
545 | | |
546 | 0 | status = _cairo_pattern_init_copy (pattern, other); |
547 | 0 | if (unlikely (status)) { |
548 | 0 | free (pattern); |
549 | 0 | return status; |
550 | 0 | } |
551 | | |
552 | 0 | CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 1); |
553 | 0 | *pattern_out = pattern; |
554 | 0 | return CAIRO_STATUS_SUCCESS; |
555 | 0 | } |
556 | | |
557 | | void |
558 | | _cairo_pattern_init_solid (cairo_solid_pattern_t *pattern, |
559 | | const cairo_color_t *color) |
560 | 5.58M | { |
561 | 5.58M | _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SOLID); |
562 | 5.58M | pattern->color = *color; |
563 | 5.58M | } |
564 | | |
565 | | void |
566 | | _cairo_pattern_init_for_surface (cairo_surface_pattern_t *pattern, |
567 | | cairo_surface_t *surface) |
568 | 516k | { |
569 | 516k | if (surface->status) { |
570 | | /* Force to solid to simplify the pattern_fini process. */ |
571 | 0 | _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SOLID); |
572 | 0 | _cairo_pattern_set_error (&pattern->base, surface->status); |
573 | 0 | return; |
574 | 0 | } |
575 | | |
576 | 516k | _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SURFACE); |
577 | | |
578 | 516k | pattern->surface = cairo_surface_reference (surface); |
579 | 516k | pattern->region_array_id = 0; |
580 | 516k | } |
581 | | |
582 | | static void |
583 | | _cairo_pattern_init_gradient (cairo_gradient_pattern_t *pattern, |
584 | | cairo_pattern_type_t type) |
585 | 6.53k | { |
586 | 6.53k | _cairo_pattern_init (&pattern->base, type); |
587 | | |
588 | 6.53k | pattern->n_stops = 0; |
589 | 6.53k | pattern->stops_size = 0; |
590 | 6.53k | pattern->stops = NULL; |
591 | 6.53k | } |
592 | | |
593 | | static void |
594 | | _cairo_pattern_init_linear (cairo_linear_pattern_t *pattern, |
595 | | double x0, double y0, double x1, double y1) |
596 | 4.62k | { |
597 | 4.62k | _cairo_pattern_init_gradient (&pattern->base, CAIRO_PATTERN_TYPE_LINEAR); |
598 | | |
599 | 4.62k | pattern->pd1.x = x0; |
600 | 4.62k | pattern->pd1.y = y0; |
601 | 4.62k | pattern->pd2.x = x1; |
602 | 4.62k | pattern->pd2.y = y1; |
603 | 4.62k | } |
604 | | |
605 | | static void |
606 | | _cairo_pattern_init_radial (cairo_radial_pattern_t *pattern, |
607 | | double cx0, double cy0, double radius0, |
608 | | double cx1, double cy1, double radius1) |
609 | 1.91k | { |
610 | 1.91k | _cairo_pattern_init_gradient (&pattern->base, CAIRO_PATTERN_TYPE_RADIAL); |
611 | | |
612 | 1.91k | pattern->cd1.center.x = cx0; |
613 | 1.91k | pattern->cd1.center.y = cy0; |
614 | 1.91k | pattern->cd1.radius = fabs (radius0); |
615 | 1.91k | pattern->cd2.center.x = cx1; |
616 | 1.91k | pattern->cd2.center.y = cy1; |
617 | 1.91k | pattern->cd2.radius = fabs (radius1); |
618 | 1.91k | } |
619 | | |
620 | | cairo_pattern_t * |
621 | | _cairo_pattern_create_solid (const cairo_color_t *color) |
622 | 5.55M | { |
623 | 5.55M | cairo_solid_pattern_t *pattern; |
624 | | |
625 | 5.55M | pattern = |
626 | 5.55M | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_SOLID]); |
627 | 5.55M | if (unlikely (pattern == NULL)) { |
628 | | /* None cached, need to create a new pattern. */ |
629 | 5 | pattern = _cairo_calloc (sizeof (cairo_solid_pattern_t)); |
630 | 5 | if (unlikely (pattern == NULL)) { |
631 | 0 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); |
632 | 0 | return (cairo_pattern_t *) &_cairo_pattern_nil; |
633 | 0 | } |
634 | 5 | } |
635 | | |
636 | 5.55M | _cairo_pattern_init_solid (pattern, color); |
637 | 5.55M | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.ref_count, 1); |
638 | | |
639 | 5.55M | return &pattern->base; |
640 | 5.55M | } |
641 | | |
642 | | cairo_pattern_t * |
643 | | _cairo_pattern_create_foreground_marker (void) |
644 | 0 | { |
645 | 0 | cairo_pattern_t *pattern = _cairo_pattern_create_solid (CAIRO_COLOR_BLACK); |
646 | 0 | pattern->is_foreground_marker = TRUE; |
647 | 0 | return pattern; |
648 | 0 | } |
649 | | |
650 | | cairo_pattern_t * |
651 | | _cairo_pattern_create_in_error (cairo_status_t status) |
652 | 0 | { |
653 | 0 | cairo_pattern_t *pattern; |
654 | |
|
655 | 0 | if (status == CAIRO_STATUS_NO_MEMORY) |
656 | 0 | return (cairo_pattern_t *)&_cairo_pattern_nil.base; |
657 | | |
658 | 0 | CAIRO_MUTEX_INITIALIZE (); |
659 | |
|
660 | 0 | pattern = _cairo_pattern_create_solid (CAIRO_COLOR_BLACK); |
661 | 0 | if (pattern->status == CAIRO_STATUS_SUCCESS) |
662 | 0 | status = _cairo_pattern_set_error (pattern, status); |
663 | |
|
664 | 0 | return pattern; |
665 | 0 | } |
666 | | |
667 | | /** |
668 | | * cairo_pattern_create_rgb: |
669 | | * @red: red component of the color |
670 | | * @green: green component of the color |
671 | | * @blue: blue component of the color |
672 | | * |
673 | | * Creates a new #cairo_pattern_t corresponding to an opaque color. The |
674 | | * color components are floating point numbers in the range 0 to 1. |
675 | | * If the values passed in are outside that range, they will be |
676 | | * clamped. |
677 | | * |
678 | | * Return value: the newly created #cairo_pattern_t if successful, or |
679 | | * an error pattern in case of no memory. The caller owns the |
680 | | * returned object and should call cairo_pattern_destroy() when |
681 | | * finished with it. |
682 | | * |
683 | | * This function will always return a valid pointer, but if an error |
684 | | * occurred the pattern status will be set to an error. To inspect |
685 | | * the status of a pattern use cairo_pattern_status(). |
686 | | * |
687 | | * Since: 1.0 |
688 | | **/ |
689 | | cairo_pattern_t * |
690 | | cairo_pattern_create_rgb (double red, double green, double blue) |
691 | 0 | { |
692 | 0 | return cairo_pattern_create_rgba (red, green, blue, 1.0); |
693 | 0 | } |
694 | | |
695 | | /** |
696 | | * cairo_pattern_create_rgba: |
697 | | * @red: red component of the color |
698 | | * @green: green component of the color |
699 | | * @blue: blue component of the color |
700 | | * @alpha: alpha component of the color |
701 | | * |
702 | | * Creates a new #cairo_pattern_t corresponding to a translucent color. |
703 | | * The color components are floating point numbers in the range 0 to |
704 | | * 1. If the values passed in are outside that range, they will be |
705 | | * clamped. |
706 | | * |
707 | | * The color is specified in the same way as in cairo_set_source_rgb(). |
708 | | * |
709 | | * Return value: the newly created #cairo_pattern_t if successful, or |
710 | | * an error pattern in case of no memory. The caller owns the |
711 | | * returned object and should call cairo_pattern_destroy() when |
712 | | * finished with it. |
713 | | * |
714 | | * This function will always return a valid pointer, but if an error |
715 | | * occurred the pattern status will be set to an error. To inspect |
716 | | * the status of a pattern use cairo_pattern_status(). |
717 | | * |
718 | | * Since: 1.0 |
719 | | **/ |
720 | | cairo_pattern_t * |
721 | | cairo_pattern_create_rgba (double red, double green, double blue, |
722 | | double alpha) |
723 | 5.55M | { |
724 | 5.55M | cairo_color_t color; |
725 | | |
726 | 5.55M | red = _cairo_restrict_value (red, 0.0, 1.0); |
727 | 5.55M | green = _cairo_restrict_value (green, 0.0, 1.0); |
728 | 5.55M | blue = _cairo_restrict_value (blue, 0.0, 1.0); |
729 | 5.55M | alpha = _cairo_restrict_value (alpha, 0.0, 1.0); |
730 | | |
731 | 5.55M | _cairo_color_init_rgba (&color, red, green, blue, alpha); |
732 | | |
733 | 5.55M | CAIRO_MUTEX_INITIALIZE (); |
734 | | |
735 | 5.55M | return _cairo_pattern_create_solid (&color); |
736 | 5.55M | } |
737 | | |
738 | | /** |
739 | | * cairo_pattern_create_for_surface: |
740 | | * @surface: the surface |
741 | | * |
742 | | * Create a new #cairo_pattern_t for the given surface. |
743 | | * |
744 | | * Return value: the newly created #cairo_pattern_t if successful, or |
745 | | * an error pattern in case of no memory. The caller owns the |
746 | | * returned object and should call cairo_pattern_destroy() when |
747 | | * finished with it. |
748 | | * |
749 | | * This function will always return a valid pointer, but if an error |
750 | | * occurred the pattern status will be set to an error. To inspect |
751 | | * the status of a pattern use cairo_pattern_status(). |
752 | | * |
753 | | * Since: 1.0 |
754 | | **/ |
755 | | cairo_pattern_t * |
756 | | cairo_pattern_create_for_surface (cairo_surface_t *surface) |
757 | 516k | { |
758 | 516k | cairo_surface_pattern_t *pattern; |
759 | | |
760 | 516k | if (surface == NULL) { |
761 | 0 | _cairo_error_throw (CAIRO_STATUS_NULL_POINTER); |
762 | 0 | return (cairo_pattern_t*) &_cairo_pattern_nil_null_pointer; |
763 | 0 | } |
764 | | |
765 | 516k | if (surface->status) |
766 | 0 | return _cairo_pattern_create_in_error (surface->status); |
767 | | |
768 | 516k | pattern = |
769 | 516k | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_SURFACE]); |
770 | 516k | if (unlikely (pattern == NULL)) { |
771 | 3 | pattern = _cairo_calloc (sizeof (cairo_surface_pattern_t)); |
772 | 3 | if (unlikely (pattern == NULL)) { |
773 | 0 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); |
774 | 0 | return (cairo_pattern_t *)&_cairo_pattern_nil.base; |
775 | 0 | } |
776 | 3 | } |
777 | | |
778 | 516k | CAIRO_MUTEX_INITIALIZE (); |
779 | | |
780 | 516k | _cairo_pattern_init_for_surface (pattern, surface); |
781 | 516k | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.ref_count, 1); |
782 | | |
783 | 516k | return &pattern->base; |
784 | 516k | } |
785 | | |
786 | | /** |
787 | | * cairo_pattern_create_linear: |
788 | | * @x0: x coordinate of the start point |
789 | | * @y0: y coordinate of the start point |
790 | | * @x1: x coordinate of the end point |
791 | | * @y1: y coordinate of the end point |
792 | | * |
793 | | * Create a new linear gradient #cairo_pattern_t along the line defined |
794 | | * by (x0, y0) and (x1, y1). Before using the gradient pattern, a |
795 | | * number of color stops should be defined using |
796 | | * cairo_pattern_add_color_stop_rgb() or |
797 | | * cairo_pattern_add_color_stop_rgba(). |
798 | | * |
799 | | * Note: The coordinates here are in pattern space. For a new pattern, |
800 | | * pattern space is identical to user space, but the relationship |
801 | | * between the spaces can be changed with cairo_pattern_set_matrix(). |
802 | | * |
803 | | * Return value: the newly created #cairo_pattern_t if successful, or |
804 | | * an error pattern in case of no memory. The caller owns the |
805 | | * returned object and should call cairo_pattern_destroy() when |
806 | | * finished with it. |
807 | | * |
808 | | * This function will always return a valid pointer, but if an error |
809 | | * occurred the pattern status will be set to an error. To inspect |
810 | | * the status of a pattern use cairo_pattern_status(). |
811 | | * |
812 | | * Since: 1.0 |
813 | | **/ |
814 | | cairo_pattern_t * |
815 | | cairo_pattern_create_linear (double x0, double y0, double x1, double y1) |
816 | 4.62k | { |
817 | 4.62k | cairo_linear_pattern_t *pattern; |
818 | | |
819 | 4.62k | pattern = |
820 | 4.62k | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_LINEAR]); |
821 | 4.62k | if (unlikely (pattern == NULL)) { |
822 | 1 | pattern = _cairo_calloc (sizeof (cairo_linear_pattern_t)); |
823 | 1 | if (unlikely (pattern == NULL)) { |
824 | 0 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); |
825 | 0 | return (cairo_pattern_t *) &_cairo_pattern_nil.base; |
826 | 0 | } |
827 | 1 | } |
828 | | |
829 | 4.62k | CAIRO_MUTEX_INITIALIZE (); |
830 | | |
831 | 4.62k | _cairo_pattern_init_linear (pattern, x0, y0, x1, y1); |
832 | 4.62k | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.base.ref_count, 1); |
833 | | |
834 | 4.62k | return &pattern->base.base; |
835 | 4.62k | } |
836 | | |
837 | | /** |
838 | | * cairo_pattern_create_radial: |
839 | | * @cx0: x coordinate for the center of the start circle |
840 | | * @cy0: y coordinate for the center of the start circle |
841 | | * @radius0: radius of the start circle |
842 | | * @cx1: x coordinate for the center of the end circle |
843 | | * @cy1: y coordinate for the center of the end circle |
844 | | * @radius1: radius of the end circle |
845 | | * |
846 | | * Creates a new radial gradient #cairo_pattern_t between the two |
847 | | * circles defined by (cx0, cy0, radius0) and (cx1, cy1, radius1). Before using the |
848 | | * gradient pattern, a number of color stops should be defined using |
849 | | * cairo_pattern_add_color_stop_rgb() or |
850 | | * cairo_pattern_add_color_stop_rgba(). |
851 | | * |
852 | | * Note: The coordinates here are in pattern space. For a new pattern, |
853 | | * pattern space is identical to user space, but the relationship |
854 | | * between the spaces can be changed with cairo_pattern_set_matrix(). |
855 | | * |
856 | | * Return value: the newly created #cairo_pattern_t if successful, or |
857 | | * an error pattern in case of no memory. The caller owns the |
858 | | * returned object and should call cairo_pattern_destroy() when |
859 | | * finished with it. |
860 | | * |
861 | | * This function will always return a valid pointer, but if an error |
862 | | * occurred the pattern status will be set to an error. To inspect |
863 | | * the status of a pattern use cairo_pattern_status(). |
864 | | * |
865 | | * Since: 1.0 |
866 | | **/ |
867 | | cairo_pattern_t * |
868 | | cairo_pattern_create_radial (double cx0, double cy0, double radius0, |
869 | | double cx1, double cy1, double radius1) |
870 | 1.91k | { |
871 | 1.91k | cairo_radial_pattern_t *pattern; |
872 | | |
873 | 1.91k | pattern = |
874 | 1.91k | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_RADIAL]); |
875 | 1.91k | if (unlikely (pattern == NULL)) { |
876 | 1 | pattern = _cairo_calloc (sizeof (cairo_radial_pattern_t)); |
877 | 1 | if (unlikely (pattern == NULL)) { |
878 | 0 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); |
879 | 0 | return (cairo_pattern_t *) &_cairo_pattern_nil.base; |
880 | 0 | } |
881 | 1 | } |
882 | | |
883 | 1.91k | CAIRO_MUTEX_INITIALIZE (); |
884 | | |
885 | 1.91k | _cairo_pattern_init_radial (pattern, cx0, cy0, radius0, cx1, cy1, radius1); |
886 | 1.91k | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.base.ref_count, 1); |
887 | | |
888 | 1.91k | return &pattern->base.base; |
889 | 1.91k | } |
890 | | |
891 | | /* This order is specified in the diagram in the documentation for |
892 | | * cairo_pattern_create_mesh() */ |
893 | | static const int mesh_path_point_i[12] = { 0, 0, 0, 0, 1, 2, 3, 3, 3, 3, 2, 1 }; |
894 | | static const int mesh_path_point_j[12] = { 0, 1, 2, 3, 3, 3, 3, 2, 1, 0, 0, 0 }; |
895 | | static const int mesh_control_point_i[4] = { 1, 1, 2, 2 }; |
896 | | static const int mesh_control_point_j[4] = { 1, 2, 2, 1 }; |
897 | | |
898 | | /** |
899 | | * cairo_pattern_create_mesh: |
900 | | * |
901 | | * Create a new mesh pattern. |
902 | | * |
903 | | * Mesh patterns are tensor-product patch meshes (type 7 shadings in |
904 | | * PDF). Mesh patterns may also be used to create other types of |
905 | | * shadings that are special cases of tensor-product patch meshes such |
906 | | * as Coons patch meshes (type 6 shading in PDF) and Gouraud-shaded |
907 | | * triangle meshes (type 4 and 5 shadings in PDF). |
908 | | * |
909 | | * Mesh patterns consist of one or more tensor-product patches, which |
910 | | * should be defined before using the mesh pattern. Using a mesh |
911 | | * pattern with a partially defined patch as source or mask will put |
912 | | * the context in an error status with a status of |
913 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
914 | | * |
915 | | * A tensor-product patch is defined by 4 Bézier curves (side 0, 1, 2, |
916 | | * 3) and by 4 additional control points (P0, P1, P2, P3) that provide |
917 | | * further control over the patch and complete the definition of the |
918 | | * tensor-product patch. The corner C0 is the first point of the |
919 | | * patch. |
920 | | * |
921 | | * Degenerate sides are permitted so straight lines may be used. A |
922 | | * zero length line on one side may be used to create 3 sided patches. |
923 | | * |
924 | | * <informalexample><screen> |
925 | | * C1 Side 1 C2 |
926 | | * +---------------+ |
927 | | * | | |
928 | | * | P1 P2 | |
929 | | * | | |
930 | | * Side 0 | | Side 2 |
931 | | * | | |
932 | | * | | |
933 | | * | P0 P3 | |
934 | | * | | |
935 | | * +---------------+ |
936 | | * C0 Side 3 C3 |
937 | | * </screen></informalexample> |
938 | | * |
939 | | * Each patch is constructed by first calling |
940 | | * cairo_mesh_pattern_begin_patch(), then cairo_mesh_pattern_move_to() |
941 | | * to specify the first point in the patch (C0). Then the sides are |
942 | | * specified with calls to cairo_mesh_pattern_curve_to() and |
943 | | * cairo_mesh_pattern_line_to(). |
944 | | * |
945 | | * The four additional control points (P0, P1, P2, P3) in a patch can |
946 | | * be specified with cairo_mesh_pattern_set_control_point(). |
947 | | * |
948 | | * At each corner of the patch (C0, C1, C2, C3) a color may be |
949 | | * specified with cairo_mesh_pattern_set_corner_color_rgb() or |
950 | | * cairo_mesh_pattern_set_corner_color_rgba(). Any corner whose color |
951 | | * is not explicitly specified defaults to transparent black. |
952 | | * |
953 | | * A Coons patch is a special case of the tensor-product patch where |
954 | | * the control points are implicitly defined by the sides of the |
955 | | * patch. The default value for any control point not specified is the |
956 | | * implicit value for a Coons patch, i.e. if no control points are |
957 | | * specified the patch is a Coons patch. |
958 | | * |
959 | | * A triangle is a special case of the tensor-product patch where the |
960 | | * control points are implicitly defined by the sides of the patch, |
961 | | * all the sides are lines and one of them has length 0, i.e. if the |
962 | | * patch is specified using just 3 lines, it is a triangle. If the |
963 | | * corners connected by the 0-length side have the same color, the |
964 | | * patch is a Gouraud-shaded triangle. |
965 | | * |
966 | | * Patches may be oriented differently to the above diagram. For |
967 | | * example the first point could be at the top left. The diagram only |
968 | | * shows the relationship between the sides, corners and control |
969 | | * points. Regardless of where the first point is located, when |
970 | | * specifying colors, corner 0 will always be the first point, corner |
971 | | * 1 the point between side 0 and side 1 etc. |
972 | | * |
973 | | * Calling cairo_mesh_pattern_end_patch() completes the current |
974 | | * patch. If less than 4 sides have been defined, the first missing |
975 | | * side is defined as a line from the current point to the first point |
976 | | * of the patch (C0) and the other sides are degenerate lines from C0 |
977 | | * to C0. The corners between the added sides will all be coincident |
978 | | * with C0 of the patch and their color will be set to be the same as |
979 | | * the color of C0. |
980 | | * |
981 | | * Additional patches may be added with additional calls to |
982 | | * cairo_mesh_pattern_begin_patch()/cairo_mesh_pattern_end_patch(). |
983 | | * |
984 | | * <informalexample><programlisting> |
985 | | * cairo_pattern_t *pattern = cairo_pattern_create_mesh (); |
986 | | * |
987 | | * /* Add a Coons patch */ |
988 | | * cairo_mesh_pattern_begin_patch (pattern); |
989 | | * cairo_mesh_pattern_move_to (pattern, 0, 0); |
990 | | * cairo_mesh_pattern_curve_to (pattern, 30, -30, 60, 30, 100, 0); |
991 | | * cairo_mesh_pattern_curve_to (pattern, 60, 30, 130, 60, 100, 100); |
992 | | * cairo_mesh_pattern_curve_to (pattern, 60, 70, 30, 130, 0, 100); |
993 | | * cairo_mesh_pattern_curve_to (pattern, 30, 70, -30, 30, 0, 0); |
994 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 0, 1, 0, 0); |
995 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 1, 0, 1, 0); |
996 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 2, 0, 0, 1); |
997 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 3, 1, 1, 0); |
998 | | * cairo_mesh_pattern_end_patch (pattern); |
999 | | * |
1000 | | * /* Add a Gouraud-shaded triangle */ |
1001 | | * cairo_mesh_pattern_begin_patch (pattern) |
1002 | | * cairo_mesh_pattern_move_to (pattern, 100, 100); |
1003 | | * cairo_mesh_pattern_line_to (pattern, 130, 130); |
1004 | | * cairo_mesh_pattern_line_to (pattern, 130, 70); |
1005 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 0, 1, 0, 0); |
1006 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 1, 0, 1, 0); |
1007 | | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 2, 0, 0, 1); |
1008 | | * cairo_mesh_pattern_end_patch (pattern) |
1009 | | * </programlisting></informalexample> |
1010 | | * |
1011 | | * When two patches overlap, the last one that has been added is drawn |
1012 | | * over the first one. |
1013 | | * |
1014 | | * When a patch folds over itself, points are sorted depending on |
1015 | | * their parameter coordinates inside the patch. The v coordinate |
1016 | | * ranges from 0 to 1 when moving from side 3 to side 1; the u |
1017 | | * coordinate ranges from 0 to 1 when going from side 0 to side |
1018 | | * 2. Points with higher v coordinate hide points with lower v |
1019 | | * coordinate. When two points have the same v coordinate, the one |
1020 | | * with higher u coordinate is above. This means that points nearer to |
1021 | | * side 1 are above points nearer to side 3; when this is not |
1022 | | * sufficient to decide which point is above (for example when both |
1023 | | * points belong to side 1 or side 3) points nearer to side 2 are |
1024 | | * above points nearer to side 0. |
1025 | | * |
1026 | | * For a complete definition of tensor-product patches, see the PDF |
1027 | | * specification (ISO32000), which describes the parametrization in |
1028 | | * detail. |
1029 | | * |
1030 | | * Note: The coordinates are always in pattern space. For a new |
1031 | | * pattern, pattern space is identical to user space, but the |
1032 | | * relationship between the spaces can be changed with |
1033 | | * cairo_pattern_set_matrix(). |
1034 | | * |
1035 | | * Return value: the newly created #cairo_pattern_t if successful, or |
1036 | | * an error pattern in case of no memory. The caller owns the returned |
1037 | | * object and should call cairo_pattern_destroy() when finished with |
1038 | | * it. |
1039 | | * |
1040 | | * This function will always return a valid pointer, but if an error |
1041 | | * occurred the pattern status will be set to an error. To inspect the |
1042 | | * status of a pattern use cairo_pattern_status(). |
1043 | | * |
1044 | | * Since: 1.12 |
1045 | | **/ |
1046 | | cairo_pattern_t * |
1047 | | cairo_pattern_create_mesh (void) |
1048 | 0 | { |
1049 | 0 | cairo_mesh_pattern_t *pattern; |
1050 | |
|
1051 | 0 | pattern = |
1052 | 0 | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_MESH]); |
1053 | 0 | if (unlikely (pattern == NULL)) { |
1054 | 0 | pattern = _cairo_calloc (sizeof (cairo_mesh_pattern_t)); |
1055 | 0 | if (unlikely (pattern == NULL)) { |
1056 | 0 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); |
1057 | 0 | return (cairo_pattern_t *) &_cairo_pattern_nil.base; |
1058 | 0 | } |
1059 | 0 | } |
1060 | | |
1061 | 0 | CAIRO_MUTEX_INITIALIZE (); |
1062 | |
|
1063 | 0 | _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_MESH); |
1064 | 0 | _cairo_array_init (&pattern->patches, sizeof (cairo_mesh_patch_t)); |
1065 | 0 | pattern->current_patch = NULL; |
1066 | 0 | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.ref_count, 1); |
1067 | |
|
1068 | 0 | return &pattern->base; |
1069 | 0 | } |
1070 | | |
1071 | | /** |
1072 | | * cairo_pattern_reference: |
1073 | | * @pattern: a #cairo_pattern_t |
1074 | | * |
1075 | | * Increases the reference count on @pattern by one. This prevents |
1076 | | * @pattern from being destroyed until a matching call to |
1077 | | * cairo_pattern_destroy() is made. |
1078 | | * |
1079 | | * Use cairo_pattern_get_reference_count() to get the number of |
1080 | | * references to a #cairo_pattern_t. |
1081 | | * |
1082 | | * Return value: the referenced #cairo_pattern_t. |
1083 | | * |
1084 | | * Since: 1.0 |
1085 | | **/ |
1086 | | cairo_pattern_t * |
1087 | | cairo_pattern_reference (cairo_pattern_t *pattern) |
1088 | 12.1M | { |
1089 | 12.1M | if (pattern == NULL || |
1090 | 12.1M | CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count)) |
1091 | 6.08M | return pattern; |
1092 | | |
1093 | 12.1M | assert (CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&pattern->ref_count)); |
1094 | | |
1095 | 6.07M | _cairo_reference_count_inc (&pattern->ref_count); |
1096 | | |
1097 | 6.07M | return pattern; |
1098 | 6.07M | } |
1099 | | |
1100 | | /** |
1101 | | * cairo_pattern_get_type: |
1102 | | * @pattern: a #cairo_pattern_t |
1103 | | * |
1104 | | * Get the pattern's type. See #cairo_pattern_type_t for available |
1105 | | * types. |
1106 | | * |
1107 | | * Return value: The type of @pattern. |
1108 | | * |
1109 | | * Since: 1.2 |
1110 | | **/ |
1111 | | cairo_pattern_type_t |
1112 | | cairo_pattern_get_type (cairo_pattern_t *pattern) |
1113 | 0 | { |
1114 | 0 | return pattern->type; |
1115 | 0 | } |
1116 | | |
1117 | | /** |
1118 | | * cairo_pattern_status: |
1119 | | * @pattern: a #cairo_pattern_t |
1120 | | * |
1121 | | * Checks whether an error has previously occurred for this |
1122 | | * pattern. |
1123 | | * |
1124 | | * Return value: %CAIRO_STATUS_SUCCESS, %CAIRO_STATUS_NO_MEMORY, |
1125 | | * %CAIRO_STATUS_INVALID_MATRIX, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH, |
1126 | | * or %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1127 | | * |
1128 | | * Since: 1.0 |
1129 | | **/ |
1130 | | cairo_status_t |
1131 | | cairo_pattern_status (cairo_pattern_t *pattern) |
1132 | 0 | { |
1133 | 0 | return pattern->status; |
1134 | 0 | } |
1135 | | |
1136 | | /** |
1137 | | * cairo_pattern_destroy: |
1138 | | * @pattern: a #cairo_pattern_t |
1139 | | * |
1140 | | * Decreases the reference count on @pattern by one. If the result is |
1141 | | * zero, then @pattern and all associated resources are freed. See |
1142 | | * cairo_pattern_reference(). |
1143 | | * |
1144 | | * Since: 1.0 |
1145 | | **/ |
1146 | | void |
1147 | | cairo_pattern_destroy (cairo_pattern_t *pattern) |
1148 | 32.8M | { |
1149 | 32.8M | cairo_pattern_type_t type; |
1150 | | |
1151 | 32.8M | if (pattern == NULL || |
1152 | 32.8M | CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count)) |
1153 | 20.6M | return; |
1154 | | |
1155 | 32.8M | assert (CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&pattern->ref_count)); |
1156 | | |
1157 | 12.1M | if (! _cairo_reference_count_dec_and_test (&pattern->ref_count)) |
1158 | 6.07M | return; |
1159 | | |
1160 | 6.07M | type = pattern->type; |
1161 | 6.07M | _cairo_pattern_fini (pattern); |
1162 | | |
1163 | | /* maintain a small cache of freed patterns */ |
1164 | 6.07M | if (type < ARRAY_LENGTH (freed_pattern_pool)) |
1165 | 6.07M | _freed_pool_put (&freed_pattern_pool[type], pattern); |
1166 | 0 | else |
1167 | 0 | free (pattern); |
1168 | 6.07M | } |
1169 | | |
1170 | | /** |
1171 | | * cairo_pattern_get_reference_count: |
1172 | | * @pattern: a #cairo_pattern_t |
1173 | | * |
1174 | | * Returns the current reference count of @pattern. |
1175 | | * |
1176 | | * Return value: the current reference count of @pattern. If the |
1177 | | * object is a nil object, 0 will be returned. |
1178 | | * |
1179 | | * Since: 1.4 |
1180 | | **/ |
1181 | | unsigned int |
1182 | | cairo_pattern_get_reference_count (cairo_pattern_t *pattern) |
1183 | 0 | { |
1184 | 0 | if (pattern == NULL || |
1185 | 0 | CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count)) |
1186 | 0 | return 0; |
1187 | | |
1188 | 0 | return CAIRO_REFERENCE_COUNT_GET_VALUE (&pattern->ref_count); |
1189 | 0 | } |
1190 | | |
1191 | | /** |
1192 | | * cairo_pattern_get_user_data: |
1193 | | * @pattern: a #cairo_pattern_t |
1194 | | * @key: the address of the #cairo_user_data_key_t the user data was |
1195 | | * attached to |
1196 | | * |
1197 | | * Return user data previously attached to @pattern using the |
1198 | | * specified key. If no user data has been attached with the given |
1199 | | * key this function returns %NULL. |
1200 | | * |
1201 | | * Return value: the user data previously attached or %NULL. |
1202 | | * |
1203 | | * Since: 1.4 |
1204 | | **/ |
1205 | | void * |
1206 | | cairo_pattern_get_user_data (cairo_pattern_t *pattern, |
1207 | | const cairo_user_data_key_t *key) |
1208 | 0 | { |
1209 | 0 | return _cairo_user_data_array_get_data (&pattern->user_data, |
1210 | 0 | key); |
1211 | 0 | } |
1212 | | |
1213 | | /** |
1214 | | * cairo_pattern_set_user_data: |
1215 | | * @pattern: a #cairo_pattern_t |
1216 | | * @key: the address of a #cairo_user_data_key_t to attach the user data to |
1217 | | * @user_data: the user data to attach to the #cairo_pattern_t |
1218 | | * @destroy: a #cairo_destroy_func_t which will be called when the |
1219 | | * #cairo_t is destroyed or when new user data is attached using the |
1220 | | * same key. |
1221 | | * |
1222 | | * Attach user data to @pattern. To remove user data from a surface, |
1223 | | * call this function with the key that was used to set it and %NULL |
1224 | | * for @data. |
1225 | | * |
1226 | | * Return value: %CAIRO_STATUS_SUCCESS or %CAIRO_STATUS_NO_MEMORY if a |
1227 | | * slot could not be allocated for the user data. |
1228 | | * |
1229 | | * Since: 1.4 |
1230 | | **/ |
1231 | | cairo_status_t |
1232 | | cairo_pattern_set_user_data (cairo_pattern_t *pattern, |
1233 | | const cairo_user_data_key_t *key, |
1234 | | void *user_data, |
1235 | | cairo_destroy_func_t destroy) |
1236 | 0 | { |
1237 | 0 | if (CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count)) |
1238 | 0 | return pattern->status; |
1239 | | |
1240 | 0 | return _cairo_user_data_array_set_data (&pattern->user_data, |
1241 | 0 | key, user_data, destroy); |
1242 | 0 | } |
1243 | | |
1244 | | /** |
1245 | | * cairo_mesh_pattern_begin_patch: |
1246 | | * @pattern: a #cairo_pattern_t |
1247 | | * |
1248 | | * Begin a patch in a mesh pattern. |
1249 | | * |
1250 | | * After calling this function, the patch shape should be defined with |
1251 | | * cairo_mesh_pattern_move_to(), cairo_mesh_pattern_line_to() and |
1252 | | * cairo_mesh_pattern_curve_to(). |
1253 | | * |
1254 | | * After defining the patch, cairo_mesh_pattern_end_patch() must be |
1255 | | * called before using @pattern as a source or mask. |
1256 | | * |
1257 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1258 | | * into an error status with a status of |
1259 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern already has a |
1260 | | * current patch, it will be put into an error status with a status of |
1261 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1262 | | * |
1263 | | * Since: 1.12 |
1264 | | **/ |
1265 | | void |
1266 | | cairo_mesh_pattern_begin_patch (cairo_pattern_t *pattern) |
1267 | 0 | { |
1268 | 0 | cairo_mesh_pattern_t *mesh; |
1269 | 0 | cairo_status_t status; |
1270 | 0 | cairo_mesh_patch_t *current_patch; |
1271 | 0 | int i; |
1272 | |
|
1273 | 0 | if (unlikely (pattern->status)) |
1274 | 0 | return; |
1275 | | |
1276 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1277 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1278 | 0 | return; |
1279 | 0 | } |
1280 | | |
1281 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1282 | 0 | if (unlikely (mesh->current_patch)) { |
1283 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1284 | 0 | return; |
1285 | 0 | } |
1286 | | |
1287 | 0 | status = _cairo_array_allocate (&mesh->patches, 1, (void **) ¤t_patch); |
1288 | 0 | if (unlikely (status)) { |
1289 | 0 | _cairo_pattern_set_error (pattern, status); |
1290 | 0 | return; |
1291 | 0 | } |
1292 | | |
1293 | 0 | mesh->current_patch = current_patch; |
1294 | 0 | mesh->current_side = -2; /* no current point */ |
1295 | |
|
1296 | 0 | for (i = 0; i < 4; i++) |
1297 | 0 | mesh->has_control_point[i] = FALSE; |
1298 | |
|
1299 | 0 | for (i = 0; i < 4; i++) |
1300 | 0 | mesh->has_color[i] = FALSE; |
1301 | 0 | } |
1302 | | |
1303 | | static void |
1304 | | _calc_control_point (cairo_mesh_patch_t *patch, int control_point) |
1305 | 0 | { |
1306 | | /* The Coons patch is a special case of the Tensor Product patch |
1307 | | * where the four control points are: |
1308 | | * |
1309 | | * P11 = S(1/3, 1/3) |
1310 | | * P12 = S(1/3, 2/3) |
1311 | | * P21 = S(2/3, 1/3) |
1312 | | * P22 = S(2/3, 2/3) |
1313 | | * |
1314 | | * where S is the gradient surface. |
1315 | | * |
1316 | | * When one or more control points has not been specified |
1317 | | * calculated the Coons patch control points are substituted. If |
1318 | | * no control points are specified the gradient will be a Coons |
1319 | | * patch. |
1320 | | * |
1321 | | * The equations below are defined in the ISO32000 standard. |
1322 | | */ |
1323 | 0 | cairo_point_double_t *p[3][3]; |
1324 | 0 | int cp_i, cp_j, i, j; |
1325 | |
|
1326 | 0 | cp_i = mesh_control_point_i[control_point]; |
1327 | 0 | cp_j = mesh_control_point_j[control_point]; |
1328 | |
|
1329 | 0 | for (i = 0; i < 3; i++) |
1330 | 0 | for (j = 0; j < 3; j++) |
1331 | 0 | p[i][j] = &patch->points[cp_i ^ i][cp_j ^ j]; |
1332 | |
|
1333 | 0 | p[0][0]->x = (- 4 * p[1][1]->x |
1334 | 0 | + 6 * (p[1][0]->x + p[0][1]->x) |
1335 | 0 | - 2 * (p[1][2]->x + p[2][1]->x) |
1336 | 0 | + 3 * (p[2][0]->x + p[0][2]->x) |
1337 | 0 | - 1 * p[2][2]->x) * (1. / 9); |
1338 | |
|
1339 | 0 | p[0][0]->y = (- 4 * p[1][1]->y |
1340 | 0 | + 6 * (p[1][0]->y + p[0][1]->y) |
1341 | 0 | - 2 * (p[1][2]->y + p[2][1]->y) |
1342 | 0 | + 3 * (p[2][0]->y + p[0][2]->y) |
1343 | 0 | - 1 * p[2][2]->y) * (1. / 9); |
1344 | 0 | } |
1345 | | |
1346 | | /** |
1347 | | * cairo_mesh_pattern_end_patch: |
1348 | | * @pattern: a #cairo_pattern_t |
1349 | | * |
1350 | | * Indicates the end of the current patch in a mesh pattern. |
1351 | | * |
1352 | | * If the current patch has less than 4 sides, it is closed with a |
1353 | | * straight line from the current point to the first point of the |
1354 | | * patch as if cairo_mesh_pattern_line_to() was used. |
1355 | | * |
1356 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1357 | | * into an error status with a status of |
1358 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern has no current |
1359 | | * patch or the current patch has no current point, @pattern will be |
1360 | | * put into an error status with a status of |
1361 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1362 | | * |
1363 | | * Since: 1.12 |
1364 | | **/ |
1365 | | void |
1366 | | cairo_mesh_pattern_end_patch (cairo_pattern_t *pattern) |
1367 | 0 | { |
1368 | 0 | cairo_mesh_pattern_t *mesh; |
1369 | 0 | cairo_mesh_patch_t *current_patch; |
1370 | 0 | int i; |
1371 | |
|
1372 | 0 | if (unlikely (pattern->status)) |
1373 | 0 | return; |
1374 | | |
1375 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1376 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1377 | 0 | return; |
1378 | 0 | } |
1379 | | |
1380 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1381 | 0 | current_patch = mesh->current_patch; |
1382 | 0 | if (unlikely (!current_patch)) { |
1383 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1384 | 0 | return; |
1385 | 0 | } |
1386 | | |
1387 | 0 | if (unlikely (mesh->current_side == -2)) { |
1388 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1389 | 0 | return; |
1390 | 0 | } |
1391 | | |
1392 | 0 | while (mesh->current_side < 3) { |
1393 | 0 | int corner_num; |
1394 | |
|
1395 | 0 | cairo_mesh_pattern_line_to (pattern, |
1396 | 0 | current_patch->points[0][0].x, |
1397 | 0 | current_patch->points[0][0].y); |
1398 | |
|
1399 | 0 | corner_num = mesh->current_side + 1; |
1400 | 0 | if (corner_num < 4 && ! mesh->has_color[corner_num]) { |
1401 | 0 | current_patch->colors[corner_num] = current_patch->colors[0]; |
1402 | 0 | mesh->has_color[corner_num] = TRUE; |
1403 | 0 | } |
1404 | 0 | } |
1405 | |
|
1406 | 0 | for (i = 0; i < 4; i++) { |
1407 | 0 | if (! mesh->has_control_point[i]) |
1408 | 0 | _calc_control_point (current_patch, i); |
1409 | 0 | } |
1410 | |
|
1411 | 0 | for (i = 0; i < 4; i++) { |
1412 | 0 | if (! mesh->has_color[i]) |
1413 | 0 | current_patch->colors[i] = *CAIRO_COLOR_TRANSPARENT; |
1414 | 0 | } |
1415 | |
|
1416 | 0 | mesh->current_patch = NULL; |
1417 | 0 | } |
1418 | | |
1419 | | /** |
1420 | | * cairo_mesh_pattern_curve_to: |
1421 | | * @pattern: a #cairo_pattern_t |
1422 | | * @x1: the X coordinate of the first control point |
1423 | | * @y1: the Y coordinate of the first control point |
1424 | | * @x2: the X coordinate of the second control point |
1425 | | * @y2: the Y coordinate of the second control point |
1426 | | * @x3: the X coordinate of the end of the curve |
1427 | | * @y3: the Y coordinate of the end of the curve |
1428 | | * |
1429 | | * Adds a cubic Bézier spline to the current patch from the current |
1430 | | * point to position (@x3, @y3) in pattern-space coordinates, using |
1431 | | * (@x1, @y1) and (@x2, @y2) as the control points. |
1432 | | * |
1433 | | * If the current patch has no current point before the call to |
1434 | | * cairo_mesh_pattern_curve_to(), this function will behave as if |
1435 | | * preceded by a call to cairo_mesh_pattern_move_to(@pattern, @x1, |
1436 | | * @y1). |
1437 | | * |
1438 | | * After this call the current point will be (@x3, @y3). |
1439 | | * |
1440 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1441 | | * into an error status with a status of |
1442 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern has no current |
1443 | | * patch or the current patch already has 4 sides, @pattern will be |
1444 | | * put into an error status with a status of |
1445 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1446 | | * |
1447 | | * Since: 1.12 |
1448 | | **/ |
1449 | | void |
1450 | | cairo_mesh_pattern_curve_to (cairo_pattern_t *pattern, |
1451 | | double x1, double y1, |
1452 | | double x2, double y2, |
1453 | | double x3, double y3) |
1454 | 0 | { |
1455 | 0 | cairo_mesh_pattern_t *mesh; |
1456 | 0 | int current_point, i, j; |
1457 | |
|
1458 | 0 | if (unlikely (pattern->status)) |
1459 | 0 | return; |
1460 | | |
1461 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1462 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1463 | 0 | return; |
1464 | 0 | } |
1465 | | |
1466 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1467 | 0 | if (unlikely (!mesh->current_patch)) { |
1468 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1469 | 0 | return; |
1470 | 0 | } |
1471 | | |
1472 | 0 | if (unlikely (mesh->current_side == 3)) { |
1473 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1474 | 0 | return; |
1475 | 0 | } |
1476 | | |
1477 | 0 | if (mesh->current_side == -2) |
1478 | 0 | cairo_mesh_pattern_move_to (pattern, x1, y1); |
1479 | |
|
1480 | 0 | assert (mesh->current_side >= -1); |
1481 | 0 | assert (pattern->status == CAIRO_STATUS_SUCCESS); |
1482 | |
|
1483 | 0 | mesh->current_side++; |
1484 | |
|
1485 | 0 | current_point = 3 * mesh->current_side; |
1486 | |
|
1487 | 0 | current_point++; |
1488 | 0 | i = mesh_path_point_i[current_point]; |
1489 | 0 | j = mesh_path_point_j[current_point]; |
1490 | 0 | mesh->current_patch->points[i][j].x = x1; |
1491 | 0 | mesh->current_patch->points[i][j].y = y1; |
1492 | |
|
1493 | 0 | current_point++; |
1494 | 0 | i = mesh_path_point_i[current_point]; |
1495 | 0 | j = mesh_path_point_j[current_point]; |
1496 | 0 | mesh->current_patch->points[i][j].x = x2; |
1497 | 0 | mesh->current_patch->points[i][j].y = y2; |
1498 | |
|
1499 | 0 | current_point++; |
1500 | 0 | if (current_point < 12) { |
1501 | 0 | i = mesh_path_point_i[current_point]; |
1502 | 0 | j = mesh_path_point_j[current_point]; |
1503 | 0 | mesh->current_patch->points[i][j].x = x3; |
1504 | 0 | mesh->current_patch->points[i][j].y = y3; |
1505 | 0 | } |
1506 | 0 | } |
1507 | | |
1508 | | /** |
1509 | | * cairo_mesh_pattern_line_to: |
1510 | | * @pattern: a #cairo_pattern_t |
1511 | | * @x: the X coordinate of the end of the new line |
1512 | | * @y: the Y coordinate of the end of the new line |
1513 | | * |
1514 | | * Adds a line to the current patch from the current point to position |
1515 | | * (@x, @y) in pattern-space coordinates. |
1516 | | * |
1517 | | * If there is no current point before the call to |
1518 | | * cairo_mesh_pattern_line_to() this function will behave as |
1519 | | * cairo_mesh_pattern_move_to(@pattern, @x, @y). |
1520 | | * |
1521 | | * After this call the current point will be (@x, @y). |
1522 | | * |
1523 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1524 | | * into an error status with a status of |
1525 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern has no current |
1526 | | * patch or the current patch already has 4 sides, @pattern will be |
1527 | | * put into an error status with a status of |
1528 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1529 | | * |
1530 | | * Since: 1.12 |
1531 | | **/ |
1532 | | void |
1533 | | cairo_mesh_pattern_line_to (cairo_pattern_t *pattern, |
1534 | | double x, double y) |
1535 | 0 | { |
1536 | 0 | cairo_mesh_pattern_t *mesh; |
1537 | 0 | cairo_point_double_t last_point; |
1538 | 0 | int last_point_idx, i, j; |
1539 | |
|
1540 | 0 | if (unlikely (pattern->status)) |
1541 | 0 | return; |
1542 | | |
1543 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1544 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1545 | 0 | return; |
1546 | 0 | } |
1547 | | |
1548 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1549 | 0 | if (unlikely (!mesh->current_patch)) { |
1550 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1551 | 0 | return; |
1552 | 0 | } |
1553 | | |
1554 | 0 | if (unlikely (mesh->current_side == 3)) { |
1555 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1556 | 0 | return; |
1557 | 0 | } |
1558 | | |
1559 | 0 | if (mesh->current_side == -2) { |
1560 | 0 | cairo_mesh_pattern_move_to (pattern, x, y); |
1561 | 0 | return; |
1562 | 0 | } |
1563 | | |
1564 | 0 | last_point_idx = 3 * (mesh->current_side + 1); |
1565 | 0 | i = mesh_path_point_i[last_point_idx]; |
1566 | 0 | j = mesh_path_point_j[last_point_idx]; |
1567 | |
|
1568 | 0 | last_point = mesh->current_patch->points[i][j]; |
1569 | |
|
1570 | 0 | cairo_mesh_pattern_curve_to (pattern, |
1571 | 0 | (2 * last_point.x + x) * (1. / 3), |
1572 | 0 | (2 * last_point.y + y) * (1. / 3), |
1573 | 0 | (last_point.x + 2 * x) * (1. / 3), |
1574 | 0 | (last_point.y + 2 * y) * (1. / 3), |
1575 | 0 | x, y); |
1576 | 0 | } |
1577 | | |
1578 | | /** |
1579 | | * cairo_mesh_pattern_move_to: |
1580 | | * @pattern: a #cairo_pattern_t |
1581 | | * @x: the X coordinate of the new position |
1582 | | * @y: the Y coordinate of the new position |
1583 | | * |
1584 | | * Define the first point of the current patch in a mesh pattern. |
1585 | | * |
1586 | | * After this call the current point will be (@x, @y). |
1587 | | * |
1588 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1589 | | * into an error status with a status of |
1590 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern has no current |
1591 | | * patch or the current patch already has at least one side, @pattern |
1592 | | * will be put into an error status with a status of |
1593 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1594 | | * |
1595 | | * Since: 1.12 |
1596 | | **/ |
1597 | | void |
1598 | | cairo_mesh_pattern_move_to (cairo_pattern_t *pattern, |
1599 | | double x, double y) |
1600 | 0 | { |
1601 | 0 | cairo_mesh_pattern_t *mesh; |
1602 | |
|
1603 | 0 | if (unlikely (pattern->status)) |
1604 | 0 | return; |
1605 | | |
1606 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1607 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1608 | 0 | return; |
1609 | 0 | } |
1610 | | |
1611 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1612 | 0 | if (unlikely (!mesh->current_patch)) { |
1613 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1614 | 0 | return; |
1615 | 0 | } |
1616 | | |
1617 | 0 | if (unlikely (mesh->current_side >= 0)) { |
1618 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1619 | 0 | return; |
1620 | 0 | } |
1621 | | |
1622 | 0 | mesh->current_side = -1; |
1623 | 0 | mesh->current_patch->points[0][0].x = x; |
1624 | 0 | mesh->current_patch->points[0][0].y = y; |
1625 | 0 | } |
1626 | | |
1627 | | /** |
1628 | | * cairo_mesh_pattern_set_control_point: |
1629 | | * @pattern: a #cairo_pattern_t |
1630 | | * @point_num: the control point to set the position for |
1631 | | * @x: the X coordinate of the control point |
1632 | | * @y: the Y coordinate of the control point |
1633 | | * |
1634 | | * Set an internal control point of the current patch. |
1635 | | * |
1636 | | * Valid values for @point_num are from 0 to 3 and identify the |
1637 | | * control points as explained in cairo_pattern_create_mesh(). |
1638 | | * |
1639 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1640 | | * into an error status with a status of |
1641 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @point_num is not valid, |
1642 | | * @pattern will be put into an error status with a status of |
1643 | | * %CAIRO_STATUS_INVALID_INDEX. If @pattern has no current patch, |
1644 | | * @pattern will be put into an error status with a status of |
1645 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1646 | | * |
1647 | | * Since: 1.12 |
1648 | | **/ |
1649 | | void |
1650 | | cairo_mesh_pattern_set_control_point (cairo_pattern_t *pattern, |
1651 | | unsigned int point_num, |
1652 | | double x, |
1653 | | double y) |
1654 | 0 | { |
1655 | 0 | cairo_mesh_pattern_t *mesh; |
1656 | 0 | int i, j; |
1657 | |
|
1658 | 0 | if (unlikely (pattern->status)) |
1659 | 0 | return; |
1660 | | |
1661 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1662 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1663 | 0 | return; |
1664 | 0 | } |
1665 | | |
1666 | 0 | if (unlikely (point_num > 3)) { |
1667 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_INDEX); |
1668 | 0 | return; |
1669 | 0 | } |
1670 | | |
1671 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1672 | 0 | if (unlikely (!mesh->current_patch)) { |
1673 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1674 | 0 | return; |
1675 | 0 | } |
1676 | | |
1677 | 0 | i = mesh_control_point_i[point_num]; |
1678 | 0 | j = mesh_control_point_j[point_num]; |
1679 | |
|
1680 | 0 | mesh->current_patch->points[i][j].x = x; |
1681 | 0 | mesh->current_patch->points[i][j].y = y; |
1682 | 0 | mesh->has_control_point[point_num] = TRUE; |
1683 | 0 | } |
1684 | | |
1685 | | /* make room for at least one more color stop */ |
1686 | | static cairo_status_t |
1687 | | _cairo_pattern_gradient_grow (cairo_gradient_pattern_t *pattern) |
1688 | 6.53k | { |
1689 | 6.53k | cairo_gradient_stop_t *new_stops; |
1690 | 6.53k | int old_size = pattern->stops_size; |
1691 | 6.53k | int embedded_size = ARRAY_LENGTH (pattern->stops_embedded); |
1692 | 6.53k | int new_size = 2 * MAX (old_size, 4); |
1693 | | |
1694 | | /* we have a local buffer at pattern->stops_embedded. try to fulfill the request |
1695 | | * from there. */ |
1696 | 6.53k | if (old_size < embedded_size) { |
1697 | 6.53k | pattern->stops = pattern->stops_embedded; |
1698 | 6.53k | pattern->stops_size = embedded_size; |
1699 | 6.53k | return CAIRO_STATUS_SUCCESS; |
1700 | 6.53k | } |
1701 | | |
1702 | 0 | if (CAIRO_INJECT_FAULT ()) |
1703 | 0 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
1704 | | |
1705 | 0 | assert (pattern->n_stops <= pattern->stops_size); |
1706 | |
|
1707 | 0 | if (pattern->stops == pattern->stops_embedded) { |
1708 | 0 | new_stops = _cairo_malloc_ab (new_size, sizeof (cairo_gradient_stop_t)); |
1709 | 0 | if (new_stops) |
1710 | 0 | memcpy (new_stops, pattern->stops, old_size * sizeof (cairo_gradient_stop_t)); |
1711 | 0 | } else { |
1712 | 0 | new_stops = _cairo_realloc_ab (pattern->stops, |
1713 | 0 | new_size, |
1714 | 0 | sizeof (cairo_gradient_stop_t)); |
1715 | 0 | } |
1716 | |
|
1717 | 0 | if (unlikely (new_stops == NULL)) |
1718 | 0 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
1719 | | |
1720 | 0 | pattern->stops = new_stops; |
1721 | 0 | pattern->stops_size = new_size; |
1722 | |
|
1723 | 0 | return CAIRO_STATUS_SUCCESS; |
1724 | 0 | } |
1725 | | |
1726 | | static void |
1727 | | _cairo_mesh_pattern_set_corner_color (cairo_mesh_pattern_t *mesh, |
1728 | | unsigned int corner_num, |
1729 | | double red, double green, double blue, |
1730 | | double alpha) |
1731 | 0 | { |
1732 | 0 | cairo_color_t *color; |
1733 | |
|
1734 | 0 | assert (mesh->current_patch); |
1735 | 0 | assert (corner_num <= 3); |
1736 | |
|
1737 | 0 | color = &mesh->current_patch->colors[corner_num]; |
1738 | 0 | color->red = red; |
1739 | 0 | color->green = green; |
1740 | 0 | color->blue = blue; |
1741 | 0 | color->alpha = alpha; |
1742 | |
|
1743 | 0 | color->red_short = _cairo_color_double_to_short (red); |
1744 | 0 | color->green_short = _cairo_color_double_to_short (green); |
1745 | 0 | color->blue_short = _cairo_color_double_to_short (blue); |
1746 | 0 | color->alpha_short = _cairo_color_double_to_short (alpha); |
1747 | |
|
1748 | 0 | mesh->has_color[corner_num] = TRUE; |
1749 | 0 | } |
1750 | | |
1751 | | /** |
1752 | | * cairo_mesh_pattern_set_corner_color_rgb: |
1753 | | * @pattern: a #cairo_pattern_t |
1754 | | * @corner_num: the corner to set the color for |
1755 | | * @red: red component of color |
1756 | | * @green: green component of color |
1757 | | * @blue: blue component of color |
1758 | | * |
1759 | | * Sets the color of a corner of the current patch in a mesh pattern. |
1760 | | * |
1761 | | * The color is specified in the same way as in cairo_set_source_rgb(). |
1762 | | * |
1763 | | * Valid values for @corner_num are from 0 to 3 and identify the |
1764 | | * corners as explained in cairo_pattern_create_mesh(). |
1765 | | * |
1766 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1767 | | * into an error status with a status of |
1768 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @corner_num is not valid, |
1769 | | * @pattern will be put into an error status with a status of |
1770 | | * %CAIRO_STATUS_INVALID_INDEX. If @pattern has no current patch, |
1771 | | * @pattern will be put into an error status with a status of |
1772 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1773 | | * |
1774 | | * Since: 1.12 |
1775 | | **/ |
1776 | | void |
1777 | | cairo_mesh_pattern_set_corner_color_rgb (cairo_pattern_t *pattern, |
1778 | | unsigned int corner_num, |
1779 | | double red, double green, double blue) |
1780 | 0 | { |
1781 | 0 | cairo_mesh_pattern_set_corner_color_rgba (pattern, corner_num, red, green, blue, 1.0); |
1782 | 0 | } |
1783 | | |
1784 | | /** |
1785 | | * cairo_mesh_pattern_set_corner_color_rgba: |
1786 | | * @pattern: a #cairo_pattern_t |
1787 | | * @corner_num: the corner to set the color for |
1788 | | * @red: red component of color |
1789 | | * @green: green component of color |
1790 | | * @blue: blue component of color |
1791 | | * @alpha: alpha component of color |
1792 | | * |
1793 | | * Sets the color of a corner of the current patch in a mesh pattern. |
1794 | | * |
1795 | | * The color is specified in the same way as in cairo_set_source_rgba(). |
1796 | | * |
1797 | | * Valid values for @corner_num are from 0 to 3 and identify the |
1798 | | * corners as explained in cairo_pattern_create_mesh(). |
1799 | | * |
1800 | | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1801 | | * into an error status with a status of |
1802 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @corner_num is not valid, |
1803 | | * @pattern will be put into an error status with a status of |
1804 | | * %CAIRO_STATUS_INVALID_INDEX. If @pattern has no current patch, |
1805 | | * @pattern will be put into an error status with a status of |
1806 | | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1807 | | * |
1808 | | * Since: 1.12 |
1809 | | **/ |
1810 | | void |
1811 | | cairo_mesh_pattern_set_corner_color_rgba (cairo_pattern_t *pattern, |
1812 | | unsigned int corner_num, |
1813 | | double red, double green, double blue, |
1814 | | double alpha) |
1815 | 0 | { |
1816 | 0 | cairo_mesh_pattern_t *mesh; |
1817 | |
|
1818 | 0 | if (unlikely (pattern->status)) |
1819 | 0 | return; |
1820 | | |
1821 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) { |
1822 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1823 | 0 | return; |
1824 | 0 | } |
1825 | | |
1826 | 0 | if (unlikely (corner_num > 3)) { |
1827 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_INDEX); |
1828 | 0 | return; |
1829 | 0 | } |
1830 | | |
1831 | 0 | mesh = (cairo_mesh_pattern_t *) pattern; |
1832 | 0 | if (unlikely (!mesh->current_patch)) { |
1833 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1834 | 0 | return; |
1835 | 0 | } |
1836 | | |
1837 | 0 | red = _cairo_restrict_value (red, 0.0, 1.0); |
1838 | 0 | green = _cairo_restrict_value (green, 0.0, 1.0); |
1839 | 0 | blue = _cairo_restrict_value (blue, 0.0, 1.0); |
1840 | 0 | alpha = _cairo_restrict_value (alpha, 0.0, 1.0); |
1841 | |
|
1842 | 0 | _cairo_mesh_pattern_set_corner_color (mesh, corner_num, red, green, blue, alpha); |
1843 | 0 | } |
1844 | | |
1845 | | static void |
1846 | | _cairo_pattern_add_color_stop (cairo_gradient_pattern_t *pattern, |
1847 | | double offset, |
1848 | | double red, |
1849 | | double green, |
1850 | | double blue, |
1851 | | double alpha) |
1852 | 13.0k | { |
1853 | 13.0k | cairo_gradient_stop_t *stops; |
1854 | 13.0k | unsigned int i; |
1855 | | |
1856 | 13.0k | if (pattern->n_stops >= pattern->stops_size) { |
1857 | 6.53k | cairo_status_t status = _cairo_pattern_gradient_grow (pattern); |
1858 | 6.53k | if (unlikely (status)) { |
1859 | 0 | status = _cairo_pattern_set_error (&pattern->base, status); |
1860 | 0 | return; |
1861 | 0 | } |
1862 | 6.53k | } |
1863 | | |
1864 | 13.0k | stops = pattern->stops; |
1865 | | |
1866 | 19.6k | for (i = 0; i < pattern->n_stops; i++) |
1867 | 6.53k | { |
1868 | 6.53k | if (offset < stops[i].offset) |
1869 | 0 | { |
1870 | 0 | memmove (&stops[i + 1], &stops[i], |
1871 | 0 | sizeof (cairo_gradient_stop_t) * (pattern->n_stops - i)); |
1872 | |
|
1873 | 0 | break; |
1874 | 0 | } |
1875 | 6.53k | } |
1876 | | |
1877 | 13.0k | stops[i].offset = offset; |
1878 | | |
1879 | 13.0k | stops[i].color.red = red; |
1880 | 13.0k | stops[i].color.green = green; |
1881 | 13.0k | stops[i].color.blue = blue; |
1882 | 13.0k | stops[i].color.alpha = alpha; |
1883 | | |
1884 | 13.0k | stops[i].color.red_short = _cairo_color_double_to_short (red); |
1885 | 13.0k | stops[i].color.green_short = _cairo_color_double_to_short (green); |
1886 | 13.0k | stops[i].color.blue_short = _cairo_color_double_to_short (blue); |
1887 | 13.0k | stops[i].color.alpha_short = _cairo_color_double_to_short (alpha); |
1888 | | |
1889 | 13.0k | pattern->n_stops++; |
1890 | 13.0k | } |
1891 | | |
1892 | | /** |
1893 | | * cairo_pattern_add_color_stop_rgb: |
1894 | | * @pattern: a #cairo_pattern_t |
1895 | | * @offset: an offset in the range [0.0 .. 1.0] |
1896 | | * @red: red component of color |
1897 | | * @green: green component of color |
1898 | | * @blue: blue component of color |
1899 | | * |
1900 | | * Adds an opaque color stop to a gradient pattern. The offset |
1901 | | * specifies the location along the gradient's control vector. For |
1902 | | * example, a linear gradient's control vector is from (x0,y0) to |
1903 | | * (x1,y1) while a radial gradient's control vector is from any point |
1904 | | * on the start circle to the corresponding point on the end circle. |
1905 | | * |
1906 | | * The color is specified in the same way as in cairo_set_source_rgb(). |
1907 | | * |
1908 | | * If two (or more) stops are specified with identical offset values, |
1909 | | * they will be sorted according to the order in which the stops are |
1910 | | * added, (stops added earlier will compare less than stops added |
1911 | | * later). This can be useful for reliably making sharp color |
1912 | | * transitions instead of the typical blend. |
1913 | | * |
1914 | | * |
1915 | | * Note: If the pattern is not a gradient pattern, (eg. a linear or |
1916 | | * radial pattern), then the pattern will be put into an error status |
1917 | | * with a status of %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. |
1918 | | * |
1919 | | * Since: 1.0 |
1920 | | **/ |
1921 | | void |
1922 | | cairo_pattern_add_color_stop_rgb (cairo_pattern_t *pattern, |
1923 | | double offset, |
1924 | | double red, |
1925 | | double green, |
1926 | | double blue) |
1927 | 0 | { |
1928 | 0 | cairo_pattern_add_color_stop_rgba (pattern, offset, red, green, blue, 1.0); |
1929 | 0 | } |
1930 | | |
1931 | | /** |
1932 | | * cairo_pattern_add_color_stop_rgba: |
1933 | | * @pattern: a #cairo_pattern_t |
1934 | | * @offset: an offset in the range [0.0 .. 1.0] |
1935 | | * @red: red component of color |
1936 | | * @green: green component of color |
1937 | | * @blue: blue component of color |
1938 | | * @alpha: alpha component of color |
1939 | | * |
1940 | | * Adds a translucent color stop to a gradient pattern. The offset |
1941 | | * specifies the location along the gradient's control vector. For |
1942 | | * example, a linear gradient's control vector is from (x0,y0) to |
1943 | | * (x1,y1) while a radial gradient's control vector is from any point |
1944 | | * on the start circle to the corresponding point on the end circle. |
1945 | | * |
1946 | | * The color is specified in the same way as in cairo_set_source_rgba(). |
1947 | | * |
1948 | | * If two (or more) stops are specified with identical offset values, |
1949 | | * they will be sorted according to the order in which the stops are |
1950 | | * added, (stops added earlier will compare less than stops added |
1951 | | * later). This can be useful for reliably making sharp color |
1952 | | * transitions instead of the typical blend. |
1953 | | * |
1954 | | * Note: If the pattern is not a gradient pattern, (eg. a linear or |
1955 | | * radial pattern), then the pattern will be put into an error status |
1956 | | * with a status of %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. |
1957 | | * |
1958 | | * Since: 1.0 |
1959 | | **/ |
1960 | | void |
1961 | | cairo_pattern_add_color_stop_rgba (cairo_pattern_t *pattern, |
1962 | | double offset, |
1963 | | double red, |
1964 | | double green, |
1965 | | double blue, |
1966 | | double alpha) |
1967 | 13.0k | { |
1968 | 13.0k | if (pattern->status) |
1969 | 0 | return; |
1970 | | |
1971 | 13.0k | if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR && |
1972 | 3.82k | pattern->type != CAIRO_PATTERN_TYPE_RADIAL) |
1973 | 0 | { |
1974 | 0 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1975 | 0 | return; |
1976 | 0 | } |
1977 | | |
1978 | 13.0k | offset = _cairo_restrict_value (offset, 0.0, 1.0); |
1979 | 13.0k | red = _cairo_restrict_value (red, 0.0, 1.0); |
1980 | 13.0k | green = _cairo_restrict_value (green, 0.0, 1.0); |
1981 | 13.0k | blue = _cairo_restrict_value (blue, 0.0, 1.0); |
1982 | 13.0k | alpha = _cairo_restrict_value (alpha, 0.0, 1.0); |
1983 | | |
1984 | 13.0k | _cairo_pattern_add_color_stop ((cairo_gradient_pattern_t *) pattern, |
1985 | 13.0k | offset, red, green, blue, alpha); |
1986 | 13.0k | } |
1987 | | |
1988 | | /** |
1989 | | * cairo_pattern_set_matrix: |
1990 | | * @pattern: a #cairo_pattern_t |
1991 | | * @matrix: a #cairo_matrix_t |
1992 | | * |
1993 | | * Sets the pattern's transformation matrix to @matrix. This matrix is |
1994 | | * a transformation from user space to pattern space. |
1995 | | * |
1996 | | * When a pattern is first created it always has the identity matrix |
1997 | | * for its transformation matrix, which means that pattern space is |
1998 | | * initially identical to user space. |
1999 | | * |
2000 | | * Important: Please note that the direction of this transformation |
2001 | | * matrix is from user space to pattern space. This means that if you |
2002 | | * imagine the flow from a pattern to user space (and on to device |
2003 | | * space), then coordinates in that flow will be transformed by the |
2004 | | * inverse of the pattern matrix. |
2005 | | * |
2006 | | * For example, if you want to make a pattern appear twice as large as |
2007 | | * it does by default the correct code to use is: |
2008 | | * |
2009 | | * <informalexample><programlisting> |
2010 | | * cairo_matrix_init_scale (&matrix, 0.5, 0.5); |
2011 | | * cairo_pattern_set_matrix (pattern, &matrix); |
2012 | | * </programlisting></informalexample> |
2013 | | * |
2014 | | * Meanwhile, using values of 2.0 rather than 0.5 in the code above |
2015 | | * would cause the pattern to appear at half of its default size. |
2016 | | * |
2017 | | * Also, please note the discussion of the user-space locking |
2018 | | * semantics of cairo_set_source(). |
2019 | | * |
2020 | | * Since: 1.0 |
2021 | | **/ |
2022 | | void |
2023 | | cairo_pattern_set_matrix (cairo_pattern_t *pattern, |
2024 | | const cairo_matrix_t *matrix) |
2025 | 516k | { |
2026 | 516k | cairo_matrix_t inverse; |
2027 | 516k | cairo_status_t status; |
2028 | | |
2029 | 516k | if (pattern->status) |
2030 | 0 | return; |
2031 | | |
2032 | 516k | if (memcmp (&pattern->matrix, matrix, sizeof (cairo_matrix_t)) == 0) |
2033 | 0 | return; |
2034 | | |
2035 | 516k | pattern->matrix = *matrix; |
2036 | 516k | _cairo_pattern_notify_observers (pattern, CAIRO_PATTERN_NOTIFY_MATRIX); |
2037 | | |
2038 | 516k | inverse = *matrix; |
2039 | 516k | status = cairo_matrix_invert (&inverse); |
2040 | 516k | if (unlikely (status)) |
2041 | 0 | status = _cairo_pattern_set_error (pattern, status); |
2042 | 516k | } |
2043 | | |
2044 | | /** |
2045 | | * cairo_pattern_get_matrix: |
2046 | | * @pattern: a #cairo_pattern_t |
2047 | | * @matrix: return value for the matrix |
2048 | | * |
2049 | | * Stores the pattern's transformation matrix into @matrix. |
2050 | | * |
2051 | | * Since: 1.0 |
2052 | | **/ |
2053 | | void |
2054 | | cairo_pattern_get_matrix (cairo_pattern_t *pattern, cairo_matrix_t *matrix) |
2055 | 0 | { |
2056 | 0 | *matrix = pattern->matrix; |
2057 | 0 | } |
2058 | | |
2059 | | /** |
2060 | | * cairo_pattern_set_filter: |
2061 | | * @pattern: a #cairo_pattern_t |
2062 | | * @filter: a #cairo_filter_t describing the filter to use for resizing |
2063 | | * the pattern |
2064 | | * |
2065 | | * Sets the filter to be used for resizing when using this pattern. |
2066 | | * See #cairo_filter_t for details on each filter. |
2067 | | * |
2068 | | * * Note that you might want to control filtering even when you do not |
2069 | | * have an explicit #cairo_pattern_t object, (for example when using |
2070 | | * cairo_set_source_surface()). In these cases, it is convenient to |
2071 | | * use cairo_get_source() to get access to the pattern that cairo |
2072 | | * creates implicitly. For example: |
2073 | | * |
2074 | | * <informalexample><programlisting> |
2075 | | * cairo_set_source_surface (cr, image, x, y); |
2076 | | * cairo_pattern_set_filter (cairo_get_source (cr), CAIRO_FILTER_NEAREST); |
2077 | | * </programlisting></informalexample> |
2078 | | * |
2079 | | * Since: 1.0 |
2080 | | **/ |
2081 | | void |
2082 | | cairo_pattern_set_filter (cairo_pattern_t *pattern, cairo_filter_t filter) |
2083 | 1 | { |
2084 | 1 | if (pattern->status) |
2085 | 0 | return; |
2086 | | |
2087 | 1 | pattern->filter = filter; |
2088 | 1 | _cairo_pattern_notify_observers (pattern, CAIRO_PATTERN_NOTIFY_FILTER); |
2089 | 1 | } |
2090 | | |
2091 | | /** |
2092 | | * cairo_pattern_get_filter: |
2093 | | * @pattern: a #cairo_pattern_t |
2094 | | * |
2095 | | * Gets the current filter for a pattern. See #cairo_filter_t |
2096 | | * for details on each filter. |
2097 | | * |
2098 | | * Return value: the current filter used for resizing the pattern. |
2099 | | * |
2100 | | * Since: 1.0 |
2101 | | **/ |
2102 | | cairo_filter_t |
2103 | | cairo_pattern_get_filter (cairo_pattern_t *pattern) |
2104 | 0 | { |
2105 | 0 | return pattern->filter; |
2106 | 0 | } |
2107 | | |
2108 | | /** |
2109 | | * cairo_pattern_get_dither: |
2110 | | * @pattern: a #cairo_pattern_t |
2111 | | * |
2112 | | * Gets the current dithering mode, as set by |
2113 | | * cairo_pattern_set_dither(). |
2114 | | * |
2115 | | * Return value: the current dithering mode. |
2116 | | * |
2117 | | * Since: 1.18 |
2118 | | **/ |
2119 | | cairo_dither_t |
2120 | | cairo_pattern_get_dither (cairo_pattern_t *pattern) |
2121 | 0 | { |
2122 | 0 | return pattern->dither; |
2123 | 0 | } |
2124 | | |
2125 | | /** |
2126 | | * cairo_pattern_set_dither: |
2127 | | * @pattern: a #cairo_pattern_t |
2128 | | * @dither: a #cairo_dither_t describing the new dithering mode |
2129 | | * |
2130 | | * Set the dithering mode of the rasterizer used for drawing shapes. |
2131 | | * This value is a hint, and a particular backend may or may not support |
2132 | | * a particular value. At the current time, only pixman is supported. |
2133 | | * |
2134 | | * Since: 1.18 |
2135 | | **/ |
2136 | | void |
2137 | | cairo_pattern_set_dither (cairo_pattern_t *pattern, cairo_dither_t dither) |
2138 | 0 | { |
2139 | 0 | if (pattern->status) |
2140 | 0 | return; |
2141 | | |
2142 | 0 | pattern->dither = dither; |
2143 | 0 | _cairo_pattern_notify_observers (pattern, CAIRO_PATTERN_NOTIFY_DITHER); |
2144 | |
|
2145 | 0 | } |
2146 | | |
2147 | | /** |
2148 | | * cairo_pattern_set_extend: |
2149 | | * @pattern: a #cairo_pattern_t |
2150 | | * @extend: a #cairo_extend_t describing how the area outside of the |
2151 | | * pattern will be drawn |
2152 | | * |
2153 | | * Sets the mode to be used for drawing outside the area of a pattern. |
2154 | | * See #cairo_extend_t for details on the semantics of each extend |
2155 | | * strategy. |
2156 | | * |
2157 | | * The default extend mode is %CAIRO_EXTEND_NONE for surface patterns |
2158 | | * and %CAIRO_EXTEND_PAD for gradient patterns. |
2159 | | * |
2160 | | * Since: 1.0 |
2161 | | **/ |
2162 | | void |
2163 | | cairo_pattern_set_extend (cairo_pattern_t *pattern, cairo_extend_t extend) |
2164 | 19.2k | { |
2165 | 19.2k | if (pattern->status) |
2166 | 0 | return; |
2167 | | |
2168 | 19.2k | pattern->extend = extend; |
2169 | 19.2k | _cairo_pattern_notify_observers (pattern, CAIRO_PATTERN_NOTIFY_EXTEND); |
2170 | 19.2k | } |
2171 | | |
2172 | | /** |
2173 | | * cairo_pattern_get_extend: |
2174 | | * @pattern: a #cairo_pattern_t |
2175 | | * |
2176 | | * Gets the current extend mode for a pattern. See #cairo_extend_t |
2177 | | * for details on the semantics of each extend strategy. |
2178 | | * |
2179 | | * Return value: the current extend strategy used for drawing the |
2180 | | * pattern. |
2181 | | * |
2182 | | * Since: 1.0 |
2183 | | **/ |
2184 | | cairo_extend_t |
2185 | | cairo_pattern_get_extend (cairo_pattern_t *pattern) |
2186 | 0 | { |
2187 | 0 | return pattern->extend; |
2188 | 0 | } |
2189 | | |
2190 | | void |
2191 | | _cairo_pattern_pretransform (cairo_pattern_t *pattern, |
2192 | | const cairo_matrix_t *ctm) |
2193 | 1 | { |
2194 | 1 | if (pattern->status) |
2195 | 0 | return; |
2196 | | |
2197 | 1 | cairo_matrix_multiply (&pattern->matrix, &pattern->matrix, ctm); |
2198 | 1 | } |
2199 | | |
2200 | | void |
2201 | | _cairo_pattern_transform (cairo_pattern_t *pattern, |
2202 | | const cairo_matrix_t *ctm_inverse) |
2203 | 79.2k | { |
2204 | 79.2k | if (pattern->status) |
2205 | 0 | return; |
2206 | | |
2207 | 79.2k | cairo_matrix_multiply (&pattern->matrix, ctm_inverse, &pattern->matrix); |
2208 | 79.2k | } |
2209 | | |
2210 | | static cairo_bool_t |
2211 | | _linear_pattern_is_degenerate (const cairo_linear_pattern_t *linear) |
2212 | 4.32k | { |
2213 | 4.32k | return fabs (linear->pd1.x - linear->pd2.x) < DBL_EPSILON && |
2214 | 3.73k | fabs (linear->pd1.y - linear->pd2.y) < DBL_EPSILON; |
2215 | 4.32k | } |
2216 | | |
2217 | | static cairo_bool_t |
2218 | | _radial_pattern_is_degenerate (const cairo_radial_pattern_t *radial) |
2219 | 5.73k | { |
2220 | | /* A radial pattern is considered degenerate if it can be |
2221 | | * represented as a solid or clear pattern. This corresponds to |
2222 | | * one of the two cases: |
2223 | | * |
2224 | | * 1) The radii are both very small: |
2225 | | * |dr| < DBL_EPSILON && min (r0, r1) < DBL_EPSILON |
2226 | | * |
2227 | | * 2) The two circles have about the same radius and are very |
2228 | | * close to each other (approximately a cylinder gradient that |
2229 | | * doesn't move with the parameter): |
2230 | | * |dr| < DBL_EPSILON && max (|dx|, |dy|) < 2 * DBL_EPSILON |
2231 | | * |
2232 | | * These checks are consistent with the assumptions used in |
2233 | | * _cairo_radial_pattern_box_to_parameter (). |
2234 | | */ |
2235 | | |
2236 | 5.73k | return fabs (radial->cd1.radius - radial->cd2.radius) < DBL_EPSILON && |
2237 | 0 | (MIN (radial->cd1.radius, radial->cd2.radius) < DBL_EPSILON || |
2238 | 0 | MAX (fabs (radial->cd1.center.x - radial->cd2.center.x), |
2239 | 0 | fabs (radial->cd1.center.y - radial->cd2.center.y)) < 2 * DBL_EPSILON); |
2240 | 5.73k | } |
2241 | | |
2242 | | static void |
2243 | | _cairo_linear_pattern_box_to_parameter (const cairo_linear_pattern_t *linear, |
2244 | | double x0, double y0, |
2245 | | double x1, double y1, |
2246 | | double range[2]) |
2247 | 0 | { |
2248 | 0 | double t0, tdx, tdy; |
2249 | 0 | double p1x, p1y, pdx, pdy, invsqnorm; |
2250 | |
|
2251 | 0 | assert (! _linear_pattern_is_degenerate (linear)); |
2252 | | |
2253 | | /* |
2254 | | * Linear gradients are othrogonal to the line passing through |
2255 | | * their extremes. Because of convexity, the parameter range can |
2256 | | * be computed as the convex hull (one the real line) of the |
2257 | | * parameter values of the 4 corners of the box. |
2258 | | * |
2259 | | * The parameter value t for a point (x,y) can be computed as: |
2260 | | * |
2261 | | * t = (p2 - p1) . (x,y) / |p2 - p1|^2 |
2262 | | * |
2263 | | * t0 is the t value for the top left corner |
2264 | | * tdx is the difference between left and right corners |
2265 | | * tdy is the difference between top and bottom corners |
2266 | | */ |
2267 | |
|
2268 | 0 | p1x = linear->pd1.x; |
2269 | 0 | p1y = linear->pd1.y; |
2270 | 0 | pdx = linear->pd2.x - p1x; |
2271 | 0 | pdy = linear->pd2.y - p1y; |
2272 | 0 | invsqnorm = 1.0 / (pdx * pdx + pdy * pdy); |
2273 | 0 | pdx *= invsqnorm; |
2274 | 0 | pdy *= invsqnorm; |
2275 | |
|
2276 | 0 | t0 = (x0 - p1x) * pdx + (y0 - p1y) * pdy; |
2277 | 0 | tdx = (x1 - x0) * pdx; |
2278 | 0 | tdy = (y1 - y0) * pdy; |
2279 | | |
2280 | | /* |
2281 | | * Because of the linearity of the t value, tdx can simply be |
2282 | | * added the t0 to move along the top edge. After this, range[0] |
2283 | | * and range[1] represent the parameter range for the top edge, so |
2284 | | * extending it to include the whole box simply requires adding |
2285 | | * tdy to the correct extreme. |
2286 | | */ |
2287 | |
|
2288 | 0 | range[0] = range[1] = t0; |
2289 | 0 | if (tdx < 0) |
2290 | 0 | range[0] += tdx; |
2291 | 0 | else |
2292 | 0 | range[1] += tdx; |
2293 | |
|
2294 | 0 | if (tdy < 0) |
2295 | 0 | range[0] += tdy; |
2296 | 0 | else |
2297 | 0 | range[1] += tdy; |
2298 | 0 | } |
2299 | | |
2300 | | static cairo_bool_t |
2301 | | _extend_range (double range[2], double value, cairo_bool_t valid) |
2302 | 0 | { |
2303 | 0 | if (!valid) |
2304 | 0 | range[0] = range[1] = value; |
2305 | 0 | else if (value < range[0]) |
2306 | 0 | range[0] = value; |
2307 | 0 | else if (value > range[1]) |
2308 | 0 | range[1] = value; |
2309 | |
|
2310 | 0 | return TRUE; |
2311 | 0 | } |
2312 | | |
2313 | | /* |
2314 | | * _cairo_radial_pattern_focus_is_inside: |
2315 | | * |
2316 | | * Returns %TRUE if and only if the focus point exists and is |
2317 | | * contained in one of the two extreme circles. This condition is |
2318 | | * equivalent to one of the two extreme circles being completely |
2319 | | * contained in the other one. |
2320 | | * |
2321 | | * Note: if the focus is on the border of one of the two circles (in |
2322 | | * which case the circles are tangent in the focus point), it is not |
2323 | | * considered as contained in the circle, hence this function returns |
2324 | | * %FALSE. |
2325 | | * |
2326 | | */ |
2327 | | cairo_bool_t |
2328 | | _cairo_radial_pattern_focus_is_inside (const cairo_radial_pattern_t *radial) |
2329 | 0 | { |
2330 | 0 | double cx, cy, cr, dx, dy, dr; |
2331 | |
|
2332 | 0 | cx = radial->cd1.center.x; |
2333 | 0 | cy = radial->cd1.center.y; |
2334 | 0 | cr = radial->cd1.radius; |
2335 | 0 | dx = radial->cd2.center.x - cx; |
2336 | 0 | dy = radial->cd2.center.y - cy; |
2337 | 0 | dr = radial->cd2.radius - cr; |
2338 | |
|
2339 | 0 | return dx*dx + dy*dy < dr*dr; |
2340 | 0 | } |
2341 | | |
2342 | | static void |
2343 | | _cairo_radial_pattern_box_to_parameter (const cairo_radial_pattern_t *radial, |
2344 | | double x0, double y0, |
2345 | | double x1, double y1, |
2346 | | double tolerance, |
2347 | | double range[2]) |
2348 | 0 | { |
2349 | 0 | double cx, cy, cr, dx, dy, dr; |
2350 | 0 | double a, x_focus, y_focus; |
2351 | 0 | double mindr, minx, miny, maxx, maxy; |
2352 | 0 | cairo_bool_t valid; |
2353 | |
|
2354 | 0 | assert (! _radial_pattern_is_degenerate (radial)); |
2355 | 0 | assert (x0 < x1); |
2356 | 0 | assert (y0 < y1); |
2357 | |
|
2358 | 0 | tolerance = MAX (tolerance, DBL_EPSILON); |
2359 | |
|
2360 | 0 | range[0] = range[1] = 0; |
2361 | 0 | valid = FALSE; |
2362 | |
|
2363 | 0 | x_focus = y_focus = 0; /* silence gcc */ |
2364 | |
|
2365 | 0 | cx = radial->cd1.center.x; |
2366 | 0 | cy = radial->cd1.center.y; |
2367 | 0 | cr = radial->cd1.radius; |
2368 | 0 | dx = radial->cd2.center.x - cx; |
2369 | 0 | dy = radial->cd2.center.y - cy; |
2370 | 0 | dr = radial->cd2.radius - cr; |
2371 | | |
2372 | | /* translate by -(cx, cy) to simplify computations */ |
2373 | 0 | x0 -= cx; |
2374 | 0 | y0 -= cy; |
2375 | 0 | x1 -= cx; |
2376 | 0 | y1 -= cy; |
2377 | | |
2378 | | /* enlarge boundaries slightly to avoid rounding problems in the |
2379 | | * parameter range computation */ |
2380 | 0 | x0 -= DBL_EPSILON; |
2381 | 0 | y0 -= DBL_EPSILON; |
2382 | 0 | x1 += DBL_EPSILON; |
2383 | 0 | y1 += DBL_EPSILON; |
2384 | | |
2385 | | /* enlarge boundaries even more to avoid rounding problems when |
2386 | | * testing if a point belongs to the box */ |
2387 | 0 | minx = x0 - DBL_EPSILON; |
2388 | 0 | miny = y0 - DBL_EPSILON; |
2389 | 0 | maxx = x1 + DBL_EPSILON; |
2390 | 0 | maxy = y1 + DBL_EPSILON; |
2391 | | |
2392 | | /* we don't allow negative radiuses, so we will be checking that |
2393 | | * t*dr >= mindr to consider t valid */ |
2394 | 0 | mindr = -(cr + DBL_EPSILON); |
2395 | | |
2396 | | /* |
2397 | | * After the previous transformations, the start circle is |
2398 | | * centered in the origin and has radius cr. A 1-unit change in |
2399 | | * the t parameter corresponds to dx,dy,dr changes in the x,y,r of |
2400 | | * the circle (center coordinates, radius). |
2401 | | * |
2402 | | * To compute the minimum range needed to correctly draw the |
2403 | | * pattern, we start with an empty range and extend it to include |
2404 | | * the circles touching the bounding box or within it. |
2405 | | */ |
2406 | | |
2407 | | /* |
2408 | | * Focus, the point where the circle has radius == 0. |
2409 | | * |
2410 | | * r = cr + t * dr = 0 |
2411 | | * t = -cr / dr |
2412 | | * |
2413 | | * If the radius is constant (dr == 0) there is no focus (the |
2414 | | * gradient represents a cylinder instead of a cone). |
2415 | | */ |
2416 | 0 | if (fabs (dr) >= DBL_EPSILON) { |
2417 | 0 | double t_focus; |
2418 | |
|
2419 | 0 | t_focus = -cr / dr; |
2420 | 0 | x_focus = t_focus * dx; |
2421 | 0 | y_focus = t_focus * dy; |
2422 | 0 | if (minx <= x_focus && x_focus <= maxx && |
2423 | 0 | miny <= y_focus && y_focus <= maxy) |
2424 | 0 | { |
2425 | 0 | valid = _extend_range (range, t_focus, valid); |
2426 | 0 | } |
2427 | 0 | } |
2428 | | |
2429 | | /* |
2430 | | * Circles externally tangent to box edges. |
2431 | | * |
2432 | | * All circles have center in (dx, dy) * t |
2433 | | * |
2434 | | * If the circle is tangent to the line defined by the edge of the |
2435 | | * box, then at least one of the following holds true: |
2436 | | * |
2437 | | * (dx*t) + (cr + dr*t) == x0 (left edge) |
2438 | | * (dx*t) - (cr + dr*t) == x1 (right edge) |
2439 | | * (dy*t) + (cr + dr*t) == y0 (top edge) |
2440 | | * (dy*t) - (cr + dr*t) == y1 (bottom edge) |
2441 | | * |
2442 | | * The solution is only valid if the tangent point is actually on |
2443 | | * the edge, i.e. if its y coordinate is in [y0,y1] for left/right |
2444 | | * edges and if its x coordinate is in [x0,x1] for top/bottom |
2445 | | * edges. |
2446 | | * |
2447 | | * For the first equation: |
2448 | | * |
2449 | | * (dx + dr) * t = x0 - cr |
2450 | | * t = (x0 - cr) / (dx + dr) |
2451 | | * y = dy * t |
2452 | | * |
2453 | | * in the code this becomes: |
2454 | | * |
2455 | | * t_edge = (num) / (den) |
2456 | | * v = (delta) * t_edge |
2457 | | * |
2458 | | * If the denominator in t is 0, the pattern is tangent to a line |
2459 | | * parallel to the edge under examination. The corner-case where |
2460 | | * the boundary line is the same as the edge is handled by the |
2461 | | * focus point case and/or by the a==0 case. |
2462 | | */ |
2463 | 0 | #define T_EDGE(num,den,delta,lower,upper) \ |
2464 | 0 | if (fabs (den) >= DBL_EPSILON) { \ |
2465 | 0 | double t_edge, v; \ |
2466 | 0 | \ |
2467 | 0 | t_edge = (num) / (den); \ |
2468 | 0 | v = t_edge * (delta); \ |
2469 | 0 | if (t_edge * dr >= mindr && (lower) <= v && v <= (upper)) \ |
2470 | 0 | valid = _extend_range (range, t_edge, valid); \ |
2471 | 0 | } |
2472 | | |
2473 | | /* circles tangent (externally) to left/right/top/bottom edge */ |
2474 | 0 | T_EDGE (x0 - cr, dx + dr, dy, miny, maxy); |
2475 | 0 | T_EDGE (x1 + cr, dx - dr, dy, miny, maxy); |
2476 | 0 | T_EDGE (y0 - cr, dy + dr, dx, minx, maxx); |
2477 | 0 | T_EDGE (y1 + cr, dy - dr, dx, minx, maxx); |
2478 | |
|
2479 | 0 | #undef T_EDGE |
2480 | | |
2481 | | /* |
2482 | | * Circles passing through a corner. |
2483 | | * |
2484 | | * A circle passing through the point (x,y) satisfies: |
2485 | | * |
2486 | | * (x-t*dx)^2 + (y-t*dy)^2 == (cr + t*dr)^2 |
2487 | | * |
2488 | | * If we set: |
2489 | | * a = dx^2 + dy^2 - dr^2 |
2490 | | * b = x*dx + y*dy + cr*dr |
2491 | | * c = x^2 + y^2 - cr^2 |
2492 | | * we have: |
2493 | | * a*t^2 - 2*b*t + c == 0 |
2494 | | */ |
2495 | 0 | a = dx * dx + dy * dy - dr * dr; |
2496 | 0 | if (fabs (a) < DBL_EPSILON * DBL_EPSILON) { |
2497 | 0 | double b, maxd2; |
2498 | | |
2499 | | /* Ensure that gradients with both a and dr small are |
2500 | | * considered degenerate. |
2501 | | * The floating point version of the degeneracy test implemented |
2502 | | * in _radial_pattern_is_degenerate() is: |
2503 | | * |
2504 | | * 1) The circles are practically the same size: |
2505 | | * |dr| < DBL_EPSILON |
2506 | | * AND |
2507 | | * 2a) The circles are both very small: |
2508 | | * min (r0, r1) < DBL_EPSILON |
2509 | | * OR |
2510 | | * 2b) The circles are very close to each other: |
2511 | | * max (|dx|, |dy|) < 2 * DBL_EPSILON |
2512 | | * |
2513 | | * Assuming that the gradient is not degenerate, we want to |
2514 | | * show that |a| < DBL_EPSILON^2 implies |dr| >= DBL_EPSILON. |
2515 | | * |
2516 | | * If the gradient is not degenerate yet it has |dr| < |
2517 | | * DBL_EPSILON, (2b) is false, thus: |
2518 | | * |
2519 | | * max (|dx|, |dy|) >= 2*DBL_EPSILON |
2520 | | * which implies: |
2521 | | * 4*DBL_EPSILON^2 <= max (|dx|, |dy|)^2 <= dx^2 + dy^2 |
2522 | | * |
2523 | | * From the definition of a, we get: |
2524 | | * a = dx^2 + dy^2 - dr^2 < DBL_EPSILON^2 |
2525 | | * dx^2 + dy^2 - DBL_EPSILON^2 < dr^2 |
2526 | | * 3*DBL_EPSILON^2 < dr^2 |
2527 | | * |
2528 | | * which is inconsistent with the hypotheses, thus |dr| < |
2529 | | * DBL_EPSILON is false or the gradient is degenerate. |
2530 | | */ |
2531 | 0 | assert (fabs (dr) >= DBL_EPSILON); |
2532 | | |
2533 | | /* |
2534 | | * If a == 0, all the circles are tangent to a line in the |
2535 | | * focus point. If this line is within the box extents, we |
2536 | | * should add the circle with infinite radius, but this would |
2537 | | * make the range unbounded, so we add the smallest circle whose |
2538 | | * distance to the desired (degenerate) circle within the |
2539 | | * bounding box does not exceed tolerance. |
2540 | | * |
2541 | | * The equation of the line is b==0, i.e.: |
2542 | | * x*dx + y*dy + cr*dr == 0 |
2543 | | * |
2544 | | * We compute the intersection of the line with the box and |
2545 | | * keep the intersection with maximum square distance (maxd2) |
2546 | | * from the focus point. |
2547 | | * |
2548 | | * In the code the intersection is represented in another |
2549 | | * coordinate system, whose origin is the focus point and |
2550 | | * which has a u,v axes, which are respectively orthogonal and |
2551 | | * parallel to the edge being intersected. |
2552 | | * |
2553 | | * The intersection is valid only if it belongs to the box, |
2554 | | * otherwise it is ignored. |
2555 | | * |
2556 | | * For example: |
2557 | | * |
2558 | | * y = y0 |
2559 | | * x*dx + y0*dy + cr*dr == 0 |
2560 | | * x = -(y0*dy + cr*dr) / dx |
2561 | | * |
2562 | | * which in (u,v) is: |
2563 | | * u = y0 - y_focus |
2564 | | * v = -(y0*dy + cr*dr) / dx - x_focus |
2565 | | * |
2566 | | * In the code: |
2567 | | * u = (edge) - (u_origin) |
2568 | | * v = -((edge) * (delta) + cr*dr) / (den) - v_focus |
2569 | | */ |
2570 | 0 | #define T_EDGE(edge,delta,den,lower,upper,u_origin,v_origin) \ |
2571 | 0 | if (fabs (den) >= DBL_EPSILON) { \ |
2572 | 0 | double v; \ |
2573 | 0 | \ |
2574 | 0 | v = -((edge) * (delta) + cr * dr) / (den); \ |
2575 | 0 | if ((lower) <= v && v <= (upper)) { \ |
2576 | 0 | double u, d2; \ |
2577 | 0 | \ |
2578 | 0 | u = (edge) - (u_origin); \ |
2579 | 0 | v -= (v_origin); \ |
2580 | 0 | d2 = u*u + v*v; \ |
2581 | 0 | if (maxd2 < d2) \ |
2582 | 0 | maxd2 = d2; \ |
2583 | 0 | } \ |
2584 | 0 | } |
2585 | |
|
2586 | 0 | maxd2 = 0; |
2587 | | |
2588 | | /* degenerate circles (lines) passing through each edge */ |
2589 | 0 | T_EDGE (y0, dy, dx, minx, maxx, y_focus, x_focus); |
2590 | 0 | T_EDGE (y1, dy, dx, minx, maxx, y_focus, x_focus); |
2591 | 0 | T_EDGE (x0, dx, dy, miny, maxy, x_focus, y_focus); |
2592 | 0 | T_EDGE (x1, dx, dy, miny, maxy, x_focus, y_focus); |
2593 | |
|
2594 | 0 | #undef T_EDGE |
2595 | | |
2596 | | /* |
2597 | | * The limit circle can be transformed rigidly to the y=0 line |
2598 | | * and the circles tangent to it in (0,0) are: |
2599 | | * |
2600 | | * x^2 + (y-r)^2 = r^2 <=> x^2 + y^2 - 2*y*r = 0 |
2601 | | * |
2602 | | * y is the distance from the line, in our case tolerance; |
2603 | | * x is the distance along the line, i.e. sqrt(maxd2), |
2604 | | * so: |
2605 | | * |
2606 | | * r = cr + dr * t = (maxd2 + tolerance^2) / (2*tolerance) |
2607 | | * t = (r - cr) / dr = |
2608 | | * (maxd2 + tolerance^2 - 2*tolerance*cr) / (2*tolerance*dr) |
2609 | | */ |
2610 | 0 | if (maxd2 > 0) { |
2611 | 0 | double t_limit = maxd2 + tolerance*tolerance - 2*tolerance*cr; |
2612 | 0 | t_limit /= 2 * tolerance * dr; |
2613 | 0 | valid = _extend_range (range, t_limit, valid); |
2614 | 0 | } |
2615 | | |
2616 | | /* |
2617 | | * Nondegenerate, nonlimit circles passing through the corners. |
2618 | | * |
2619 | | * a == 0 && a*t^2 - 2*b*t + c == 0 |
2620 | | * |
2621 | | * t = c / (2*b) |
2622 | | * |
2623 | | * The b == 0 case has just been handled, so we only have to |
2624 | | * compute this if b != 0. |
2625 | | */ |
2626 | 0 | #define T_CORNER(x,y) \ |
2627 | 0 | b = (x) * dx + (y) * dy + cr * dr; \ |
2628 | 0 | if (fabs (b) >= DBL_EPSILON) { \ |
2629 | 0 | double t_corner; \ |
2630 | 0 | double x2 = (x) * (x); \ |
2631 | 0 | double y2 = (y) * (y); \ |
2632 | 0 | double cr2 = (cr) * (cr); \ |
2633 | 0 | double c = x2 + y2 - cr2; \ |
2634 | 0 | \ |
2635 | 0 | t_corner = 0.5 * c / b; \ |
2636 | 0 | if (t_corner * dr >= mindr) \ |
2637 | 0 | valid = _extend_range (range, t_corner, valid); \ |
2638 | 0 | } |
2639 | | |
2640 | | /* circles touching each corner */ |
2641 | 0 | T_CORNER (x0, y0); |
2642 | 0 | T_CORNER (x0, y1); |
2643 | 0 | T_CORNER (x1, y0); |
2644 | 0 | T_CORNER (x1, y1); |
2645 | |
|
2646 | 0 | #undef T_CORNER |
2647 | 0 | } else { |
2648 | 0 | double inva, b, c, d; |
2649 | |
|
2650 | 0 | inva = 1 / a; |
2651 | | |
2652 | | /* |
2653 | | * Nondegenerate, nonlimit circles passing through the corners. |
2654 | | * |
2655 | | * a != 0 && a*t^2 - 2*b*t + c == 0 |
2656 | | * |
2657 | | * t = (b +- sqrt (b*b - a*c)) / a |
2658 | | * |
2659 | | * If the argument of sqrt() is negative, then no circle |
2660 | | * passes through the corner. |
2661 | | */ |
2662 | 0 | #define T_CORNER(x,y) \ |
2663 | 0 | b = (x) * dx + (y) * dy + cr * dr; \ |
2664 | 0 | c = (x) * (x) + (y) * (y) - cr * cr; \ |
2665 | 0 | d = b * b - a * c; \ |
2666 | 0 | if (d >= 0) { \ |
2667 | 0 | double t_corner; \ |
2668 | 0 | \ |
2669 | 0 | d = sqrt (d); \ |
2670 | 0 | t_corner = (b + d) * inva; \ |
2671 | 0 | if (t_corner * dr >= mindr) \ |
2672 | 0 | valid = _extend_range (range, t_corner, valid); \ |
2673 | 0 | t_corner = (b - d) * inva; \ |
2674 | 0 | if (t_corner * dr >= mindr) \ |
2675 | 0 | valid = _extend_range (range, t_corner, valid); \ |
2676 | 0 | } |
2677 | | |
2678 | | /* circles touching each corner */ |
2679 | 0 | T_CORNER (x0, y0); |
2680 | 0 | T_CORNER (x0, y1); |
2681 | 0 | T_CORNER (x1, y0); |
2682 | 0 | T_CORNER (x1, y1); |
2683 | |
|
2684 | 0 | #undef T_CORNER |
2685 | 0 | } |
2686 | 0 | } |
2687 | | |
2688 | | /** |
2689 | | * _cairo_gradient_pattern_box_to_parameter: |
2690 | | * |
2691 | | * Compute a interpolation range sufficient to draw (within the given |
2692 | | * tolerance) the gradient in the given box getting the same result as |
2693 | | * using the (-inf, +inf) range. |
2694 | | * |
2695 | | * Assumes that the pattern is not degenerate. This can be guaranteed |
2696 | | * by simplifying it to a solid clear if _cairo_pattern_is_clear or to |
2697 | | * a solid color if _cairo_gradient_pattern_is_solid. |
2698 | | * |
2699 | | * The range isn't guaranteed to be minimal, but it tries to. |
2700 | | **/ |
2701 | | void |
2702 | | _cairo_gradient_pattern_box_to_parameter (const cairo_gradient_pattern_t *gradient, |
2703 | | double x0, double y0, |
2704 | | double x1, double y1, |
2705 | | double tolerance, |
2706 | | double out_range[2]) |
2707 | 0 | { |
2708 | 0 | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || |
2709 | 0 | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL); |
2710 | |
|
2711 | 0 | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
2712 | 0 | _cairo_linear_pattern_box_to_parameter ((cairo_linear_pattern_t *) gradient, |
2713 | 0 | x0, y0, x1, y1, out_range); |
2714 | 0 | } else { |
2715 | 0 | _cairo_radial_pattern_box_to_parameter ((cairo_radial_pattern_t *) gradient, |
2716 | 0 | x0, y0, x1, y1, tolerance, out_range); |
2717 | 0 | } |
2718 | 0 | } |
2719 | | |
2720 | | /** |
2721 | | * _cairo_gradient_pattern_interpolate: |
2722 | | * |
2723 | | * Interpolate between the start and end objects of linear or radial |
2724 | | * gradients. The interpolated object is stored in out_circle, with |
2725 | | * the radius being zero in the linear gradient case. |
2726 | | **/ |
2727 | | void |
2728 | | _cairo_gradient_pattern_interpolate (const cairo_gradient_pattern_t *gradient, |
2729 | | double t, |
2730 | | cairo_circle_double_t *out_circle) |
2731 | 0 | { |
2732 | 0 | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || |
2733 | 0 | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL); |
2734 | |
|
2735 | 0 | #define lerp(a,b) (a)*(1-t) + (b)*t |
2736 | |
|
2737 | 0 | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
2738 | 0 | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient; |
2739 | 0 | out_circle->center.x = lerp (linear->pd1.x, linear->pd2.x); |
2740 | 0 | out_circle->center.y = lerp (linear->pd1.y, linear->pd2.y); |
2741 | 0 | out_circle->radius = 0; |
2742 | 0 | } else { |
2743 | 0 | cairo_radial_pattern_t *radial = (cairo_radial_pattern_t *) gradient; |
2744 | 0 | out_circle->center.x = lerp (radial->cd1.center.x, radial->cd2.center.x); |
2745 | 0 | out_circle->center.y = lerp (radial->cd1.center.y, radial->cd2.center.y); |
2746 | 0 | out_circle->radius = lerp (radial->cd1.radius , radial->cd2.radius); |
2747 | 0 | } |
2748 | |
|
2749 | 0 | #undef lerp |
2750 | 0 | } |
2751 | | |
2752 | | /** |
2753 | | * _cairo_gradient_pattern_fit_to_range: |
2754 | | * |
2755 | | * Scale the extremes of a gradient to guarantee that the coordinates |
2756 | | * and their deltas are within the range (-max_value, max_value). The |
2757 | | * new extremes are stored in out_circle. |
2758 | | * |
2759 | | * The pattern matrix is scaled to guarantee that the aspect of the |
2760 | | * gradient is the same and the result is stored in out_matrix. |
2761 | | * |
2762 | | **/ |
2763 | | void |
2764 | | _cairo_gradient_pattern_fit_to_range (const cairo_gradient_pattern_t *gradient, |
2765 | | double max_value, |
2766 | | cairo_matrix_t *out_matrix, |
2767 | | cairo_circle_double_t out_circle[2]) |
2768 | 2.47k | { |
2769 | 2.47k | double dim; |
2770 | | |
2771 | 2.47k | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || |
2772 | 2.47k | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL); |
2773 | | |
2774 | 2.47k | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
2775 | 603 | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient; |
2776 | | |
2777 | 603 | out_circle[0].center = linear->pd1; |
2778 | 603 | out_circle[0].radius = 0; |
2779 | 603 | out_circle[1].center = linear->pd2; |
2780 | 603 | out_circle[1].radius = 0; |
2781 | | |
2782 | 603 | dim = fabs (linear->pd1.x); |
2783 | 603 | dim = MAX (dim, fabs (linear->pd1.y)); |
2784 | 603 | dim = MAX (dim, fabs (linear->pd2.x)); |
2785 | 603 | dim = MAX (dim, fabs (linear->pd2.y)); |
2786 | 603 | dim = MAX (dim, fabs (linear->pd1.x - linear->pd2.x)); |
2787 | 603 | dim = MAX (dim, fabs (linear->pd1.y - linear->pd2.y)); |
2788 | 1.86k | } else { |
2789 | 1.86k | cairo_radial_pattern_t *radial = (cairo_radial_pattern_t *) gradient; |
2790 | | |
2791 | 1.86k | out_circle[0] = radial->cd1; |
2792 | 1.86k | out_circle[1] = radial->cd2; |
2793 | | |
2794 | 1.86k | dim = fabs (radial->cd1.center.x); |
2795 | 1.86k | dim = MAX (dim, fabs (radial->cd1.center.y)); |
2796 | 1.86k | dim = MAX (dim, fabs (radial->cd1.radius)); |
2797 | 1.86k | dim = MAX (dim, fabs (radial->cd2.center.x)); |
2798 | 1.86k | dim = MAX (dim, fabs (radial->cd2.center.y)); |
2799 | 1.86k | dim = MAX (dim, fabs (radial->cd2.radius)); |
2800 | 1.86k | dim = MAX (dim, fabs (radial->cd1.center.x - radial->cd2.center.x)); |
2801 | 1.86k | dim = MAX (dim, fabs (radial->cd1.center.y - radial->cd2.center.y)); |
2802 | 1.86k | dim = MAX (dim, fabs (radial->cd1.radius - radial->cd2.radius)); |
2803 | 1.86k | } |
2804 | 2.47k | dim = MAX (dim, fabs (gradient->base.matrix.xx)); |
2805 | 2.47k | dim = MAX (dim, fabs (gradient->base.matrix.xy)); |
2806 | 2.47k | dim = MAX (dim, fabs (gradient->base.matrix.x0)); |
2807 | 2.47k | dim = MAX (dim, fabs (gradient->base.matrix.yx)); |
2808 | 2.47k | dim = MAX (dim, fabs (gradient->base.matrix.yy)); |
2809 | 2.47k | dim = MAX (dim, fabs (gradient->base.matrix.y0)); |
2810 | | |
2811 | 2.47k | if (unlikely (dim > max_value)) { |
2812 | 1.80k | cairo_matrix_t scale; |
2813 | | |
2814 | 1.80k | dim = max_value / dim; |
2815 | | |
2816 | 1.80k | out_circle[0].center.x *= dim; |
2817 | 1.80k | out_circle[0].center.y *= dim; |
2818 | 1.80k | out_circle[0].radius *= dim; |
2819 | 1.80k | out_circle[1].center.x *= dim; |
2820 | 1.80k | out_circle[1].center.y *= dim; |
2821 | 1.80k | out_circle[1].radius *= dim; |
2822 | | |
2823 | 1.80k | cairo_matrix_init_scale (&scale, dim, dim); |
2824 | 1.80k | cairo_matrix_multiply (out_matrix, &gradient->base.matrix, &scale); |
2825 | 1.80k | } else { |
2826 | 668 | *out_matrix = gradient->base.matrix; |
2827 | 668 | } |
2828 | 2.47k | } |
2829 | | |
2830 | | static cairo_bool_t |
2831 | | _gradient_is_clear (const cairo_gradient_pattern_t *gradient, |
2832 | | const cairo_rectangle_int_t *extents) |
2833 | 8.75k | { |
2834 | 8.75k | unsigned int i; |
2835 | | |
2836 | 8.75k | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || |
2837 | 8.75k | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL); |
2838 | | |
2839 | 8.75k | if (gradient->n_stops == 0 || |
2840 | 8.75k | (gradient->base.extend == CAIRO_EXTEND_NONE && |
2841 | 0 | gradient->stops[0].offset == gradient->stops[gradient->n_stops - 1].offset)) |
2842 | 0 | return TRUE; |
2843 | | |
2844 | 8.75k | if (gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) { |
2845 | | /* degenerate radial gradients are clear */ |
2846 | 3.82k | if (_radial_pattern_is_degenerate ((cairo_radial_pattern_t *) gradient)) |
2847 | 0 | return TRUE; |
2848 | 4.92k | } else if (gradient->base.extend == CAIRO_EXTEND_NONE) { |
2849 | | /* EXTEND_NONE degenerate linear gradients are clear */ |
2850 | 0 | if (_linear_pattern_is_degenerate ((cairo_linear_pattern_t *) gradient)) |
2851 | 0 | return TRUE; |
2852 | 0 | } |
2853 | | |
2854 | | /* Check if the extents intersect the drawn part of the pattern. */ |
2855 | 8.75k | if (extents != NULL && |
2856 | 0 | (gradient->base.extend == CAIRO_EXTEND_NONE || |
2857 | 0 | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL)) |
2858 | 0 | { |
2859 | 0 | double t[2]; |
2860 | |
|
2861 | 0 | _cairo_gradient_pattern_box_to_parameter (gradient, |
2862 | 0 | extents->x, |
2863 | 0 | extents->y, |
2864 | 0 | extents->x + extents->width, |
2865 | 0 | extents->y + extents->height, |
2866 | 0 | DBL_EPSILON, |
2867 | 0 | t); |
2868 | |
|
2869 | 0 | if (gradient->base.extend == CAIRO_EXTEND_NONE && |
2870 | 0 | (t[0] >= gradient->stops[gradient->n_stops - 1].offset || |
2871 | 0 | t[1] <= gradient->stops[0].offset)) |
2872 | 0 | { |
2873 | 0 | return TRUE; |
2874 | 0 | } |
2875 | | |
2876 | 0 | if (t[0] == t[1]) |
2877 | 0 | return TRUE; |
2878 | 0 | } |
2879 | | |
2880 | 8.75k | for (i = 0; i < gradient->n_stops; i++) |
2881 | 8.75k | if (! CAIRO_COLOR_IS_CLEAR (&gradient->stops[i].color)) |
2882 | 8.75k | return FALSE; |
2883 | | |
2884 | 0 | return TRUE; |
2885 | 8.75k | } |
2886 | | |
2887 | | static void |
2888 | | _gradient_color_average (const cairo_gradient_pattern_t *gradient, |
2889 | | cairo_color_t *color) |
2890 | 0 | { |
2891 | 0 | double delta0, delta1; |
2892 | 0 | double r, g, b, a; |
2893 | 0 | unsigned int i, start = 1, end; |
2894 | |
|
2895 | 0 | assert (gradient->n_stops > 0); |
2896 | 0 | assert (gradient->base.extend != CAIRO_EXTEND_NONE); |
2897 | |
|
2898 | 0 | if (gradient->n_stops == 1) { |
2899 | 0 | _cairo_color_init_rgba (color, |
2900 | 0 | gradient->stops[0].color.red, |
2901 | 0 | gradient->stops[0].color.green, |
2902 | 0 | gradient->stops[0].color.blue, |
2903 | 0 | gradient->stops[0].color.alpha); |
2904 | 0 | return; |
2905 | 0 | } |
2906 | | |
2907 | 0 | end = gradient->n_stops - 1; |
2908 | |
|
2909 | 0 | switch (gradient->base.extend) { |
2910 | 0 | case CAIRO_EXTEND_REPEAT: |
2911 | | /* |
2912 | | * Sa, Sb and Sy, Sz are the first two and last two stops respectively. |
2913 | | * The weight of the first and last stop can be computed as the area of |
2914 | | * the following triangles (taken with height 1, since the whole [0-1] |
2915 | | * will have total weight 1 this way): b*h/2 |
2916 | | * |
2917 | | * + + |
2918 | | * / |\ / | \ |
2919 | | * / | \ / | \ |
2920 | | * / | \ / | \ |
2921 | | * ~~~~~+---+---+---+~~~~~~~+-------+---+---+~~~~~ |
2922 | | * -1+Sz 0 Sa Sb Sy Sz 1 1+Sa |
2923 | | * |
2924 | | * For the first stop: (Sb-(-1+Sz)/2 = (1+Sb-Sz)/2 |
2925 | | * For the last stop: ((1+Sa)-Sy)/2 = (1+Sa-Sy)/2 |
2926 | | * Halving the result is done after summing up all the areas. |
2927 | | */ |
2928 | 0 | delta0 = 1.0 + gradient->stops[1].offset - gradient->stops[end].offset; |
2929 | 0 | delta1 = 1.0 + gradient->stops[0].offset - gradient->stops[end-1].offset; |
2930 | 0 | break; |
2931 | | |
2932 | 0 | case CAIRO_EXTEND_REFLECT: |
2933 | | /* |
2934 | | * Sa, Sb and Sy, Sz are the first two and last two stops respectively. |
2935 | | * The weight of the first and last stop can be computed as the area of |
2936 | | * the following trapezoids (taken with height 1, since the whole [0-1] |
2937 | | * will have total weight 1 this way): (b+B)*h/2 |
2938 | | * |
2939 | | * +-------+ +---+ |
2940 | | * | |\ / | | |
2941 | | * | | \ / | | |
2942 | | * | | \ / | | |
2943 | | * +-------+---+~~~~~~~+-------+---+ |
2944 | | * 0 Sa Sb Sy Sz 1 |
2945 | | * |
2946 | | * For the first stop: (Sa+Sb)/2 |
2947 | | * For the last stop: ((1-Sz) + (1-Sy))/2 = (2-Sy-Sz)/2 |
2948 | | * Halving the result is done after summing up all the areas. |
2949 | | */ |
2950 | 0 | delta0 = gradient->stops[0].offset + gradient->stops[1].offset; |
2951 | 0 | delta1 = 2.0 - gradient->stops[end-1].offset - gradient->stops[end].offset; |
2952 | 0 | break; |
2953 | | |
2954 | 0 | case CAIRO_EXTEND_PAD: |
2955 | | /* PAD is computed as the average of the first and last stop: |
2956 | | * - take both of them with weight 1 (they will be halved |
2957 | | * after the whole sum has been computed). |
2958 | | * - avoid summing any of the inner stops. |
2959 | | */ |
2960 | 0 | delta0 = delta1 = 1.0; |
2961 | 0 | start = end; |
2962 | 0 | break; |
2963 | | |
2964 | 0 | case CAIRO_EXTEND_NONE: |
2965 | 0 | default: |
2966 | 0 | ASSERT_NOT_REACHED; |
2967 | 0 | _cairo_color_init_rgba (color, 0, 0, 0, 0); |
2968 | 0 | return; |
2969 | 0 | } |
2970 | | |
2971 | 0 | r = delta0 * gradient->stops[0].color.red; |
2972 | 0 | g = delta0 * gradient->stops[0].color.green; |
2973 | 0 | b = delta0 * gradient->stops[0].color.blue; |
2974 | 0 | a = delta0 * gradient->stops[0].color.alpha; |
2975 | |
|
2976 | 0 | for (i = start; i < end; ++i) { |
2977 | | /* Inner stops weight is the same as the area of the triangle they influence |
2978 | | * (which goes from the stop before to the stop after), again with height 1 |
2979 | | * since the whole must sum up to 1: b*h/2 |
2980 | | * Halving is done after the whole sum has been computed. |
2981 | | */ |
2982 | 0 | double delta = gradient->stops[i+1].offset - gradient->stops[i-1].offset; |
2983 | 0 | r += delta * gradient->stops[i].color.red; |
2984 | 0 | g += delta * gradient->stops[i].color.green; |
2985 | 0 | b += delta * gradient->stops[i].color.blue; |
2986 | 0 | a += delta * gradient->stops[i].color.alpha; |
2987 | 0 | } |
2988 | |
|
2989 | 0 | r += delta1 * gradient->stops[end].color.red; |
2990 | 0 | g += delta1 * gradient->stops[end].color.green; |
2991 | 0 | b += delta1 * gradient->stops[end].color.blue; |
2992 | 0 | a += delta1 * gradient->stops[end].color.alpha; |
2993 | |
|
2994 | 0 | _cairo_color_init_rgba (color, r * .5, g * .5, b * .5, a * .5); |
2995 | 0 | } |
2996 | | |
2997 | | /** |
2998 | | * _cairo_pattern_alpha_range: |
2999 | | * |
3000 | | * Convenience function to determine the minimum and maximum alpha in |
3001 | | * the drawn part of a pattern (i.e. ignoring clear parts caused by |
3002 | | * extend modes and/or pattern shape). |
3003 | | * |
3004 | | * If not NULL, out_min and out_max will be set respectively to the |
3005 | | * minimum and maximum alpha value of the pattern. |
3006 | | **/ |
3007 | | void |
3008 | | _cairo_pattern_alpha_range (const cairo_pattern_t *pattern, |
3009 | | double *out_min, |
3010 | | double *out_max) |
3011 | 0 | { |
3012 | 0 | double alpha_min, alpha_max; |
3013 | |
|
3014 | 0 | switch (pattern->type) { |
3015 | 0 | case CAIRO_PATTERN_TYPE_SOLID: { |
3016 | 0 | const cairo_solid_pattern_t *solid = (cairo_solid_pattern_t *) pattern; |
3017 | 0 | alpha_min = alpha_max = solid->color.alpha; |
3018 | 0 | break; |
3019 | 0 | } |
3020 | | |
3021 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
3022 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: { |
3023 | 0 | const cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t *) pattern; |
3024 | 0 | unsigned int i; |
3025 | |
|
3026 | 0 | assert (gradient->n_stops >= 1); |
3027 | |
|
3028 | 0 | alpha_min = alpha_max = gradient->stops[0].color.alpha; |
3029 | 0 | for (i = 1; i < gradient->n_stops; i++) { |
3030 | 0 | if (alpha_min > gradient->stops[i].color.alpha) |
3031 | 0 | alpha_min = gradient->stops[i].color.alpha; |
3032 | 0 | else if (alpha_max < gradient->stops[i].color.alpha) |
3033 | 0 | alpha_max = gradient->stops[i].color.alpha; |
3034 | 0 | } |
3035 | |
|
3036 | 0 | break; |
3037 | 0 | } |
3038 | | |
3039 | 0 | case CAIRO_PATTERN_TYPE_MESH: { |
3040 | 0 | const cairo_mesh_pattern_t *mesh = (const cairo_mesh_pattern_t *) pattern; |
3041 | 0 | const cairo_mesh_patch_t *patch = _cairo_array_index_const (&mesh->patches, 0); |
3042 | 0 | unsigned int i, j, n = _cairo_array_num_elements (&mesh->patches); |
3043 | |
|
3044 | 0 | assert (n >= 1); |
3045 | |
|
3046 | 0 | alpha_min = alpha_max = patch[0].colors[0].alpha; |
3047 | 0 | for (i = 0; i < n; i++) { |
3048 | 0 | for (j = 0; j < 4; j++) { |
3049 | 0 | if (patch[i].colors[j].alpha < alpha_min) |
3050 | 0 | alpha_min = patch[i].colors[j].alpha; |
3051 | 0 | else if (patch[i].colors[j].alpha > alpha_max) |
3052 | 0 | alpha_max = patch[i].colors[j].alpha; |
3053 | 0 | } |
3054 | 0 | } |
3055 | |
|
3056 | 0 | break; |
3057 | 0 | } |
3058 | | |
3059 | 0 | default: |
3060 | 0 | ASSERT_NOT_REACHED; |
3061 | | /* fall through */ |
3062 | |
|
3063 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: |
3064 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3065 | 0 | alpha_min = 0; |
3066 | 0 | alpha_max = 1; |
3067 | 0 | break; |
3068 | 0 | } |
3069 | | |
3070 | 0 | if (out_min) |
3071 | 0 | *out_min = alpha_min; |
3072 | 0 | if (out_max) |
3073 | 0 | *out_max = alpha_max; |
3074 | 0 | } |
3075 | | |
3076 | | /** |
3077 | | * _cairo_mesh_pattern_coord_box: |
3078 | | * |
3079 | | * Convenience function to determine the range of the coordinates of |
3080 | | * the points used to define the patches of the mesh. |
3081 | | * |
3082 | | * This is guaranteed to contain the pattern extents, but might not be |
3083 | | * tight, just like a Bezier curve is always inside the convex hull of |
3084 | | * the control points. |
3085 | | * |
3086 | | * This function cannot be used while the mesh is being constructed. |
3087 | | * |
3088 | | * The function returns TRUE and sets the output parameters to define |
3089 | | * the coordinate range if the mesh pattern contains at least one |
3090 | | * patch, otherwise it returns FALSE. |
3091 | | **/ |
3092 | | cairo_bool_t |
3093 | | _cairo_mesh_pattern_coord_box (const cairo_mesh_pattern_t *mesh, |
3094 | | double *out_xmin, |
3095 | | double *out_ymin, |
3096 | | double *out_xmax, |
3097 | | double *out_ymax) |
3098 | 0 | { |
3099 | 0 | const cairo_mesh_patch_t *patch; |
3100 | 0 | unsigned int num_patches, i, j, k; |
3101 | 0 | double x0, y0, x1, y1; |
3102 | |
|
3103 | 0 | assert (mesh->current_patch == NULL); |
3104 | |
|
3105 | 0 | num_patches = _cairo_array_num_elements (&mesh->patches); |
3106 | |
|
3107 | 0 | if (num_patches == 0) |
3108 | 0 | return FALSE; |
3109 | | |
3110 | 0 | patch = _cairo_array_index_const (&mesh->patches, 0); |
3111 | 0 | x0 = x1 = patch->points[0][0].x; |
3112 | 0 | y0 = y1 = patch->points[0][0].y; |
3113 | |
|
3114 | 0 | for (i = 0; i < num_patches; i++) { |
3115 | 0 | for (j = 0; j < 4; j++) { |
3116 | 0 | for (k = 0; k < 4; k++) { |
3117 | 0 | x0 = MIN (x0, patch[i].points[j][k].x); |
3118 | 0 | y0 = MIN (y0, patch[i].points[j][k].y); |
3119 | 0 | x1 = MAX (x1, patch[i].points[j][k].x); |
3120 | 0 | y1 = MAX (y1, patch[i].points[j][k].y); |
3121 | 0 | } |
3122 | 0 | } |
3123 | 0 | } |
3124 | |
|
3125 | 0 | *out_xmin = x0; |
3126 | 0 | *out_ymin = y0; |
3127 | 0 | *out_xmax = x1; |
3128 | 0 | *out_ymax = y1; |
3129 | |
|
3130 | 0 | return TRUE; |
3131 | 0 | } |
3132 | | |
3133 | | /** |
3134 | | * _cairo_gradient_pattern_is_solid: |
3135 | | * |
3136 | | * Convenience function to determine whether a gradient pattern is |
3137 | | * a solid color within the given extents. In this case the color |
3138 | | * argument is initialized to the color the pattern represents. |
3139 | | * This functions doesn't handle completely transparent gradients, |
3140 | | * thus it should be called only after _cairo_pattern_is_clear has |
3141 | | * returned FALSE. |
3142 | | * |
3143 | | * Return value: %TRUE if the pattern is a solid color. |
3144 | | **/ |
3145 | | cairo_bool_t |
3146 | | _cairo_gradient_pattern_is_solid (const cairo_gradient_pattern_t *gradient, |
3147 | | const cairo_rectangle_int_t *extents, |
3148 | | cairo_color_t *color) |
3149 | 6.23k | { |
3150 | 6.23k | unsigned int i; |
3151 | | |
3152 | 6.23k | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || |
3153 | 6.23k | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL); |
3154 | | |
3155 | | /* TODO: radial */ |
3156 | 6.23k | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
3157 | 4.32k | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient; |
3158 | 4.32k | if (_linear_pattern_is_degenerate (linear)) { |
3159 | 0 | _gradient_color_average (gradient, color); |
3160 | 0 | return TRUE; |
3161 | 0 | } |
3162 | | |
3163 | 4.32k | if (gradient->base.extend == CAIRO_EXTEND_NONE) { |
3164 | 0 | double t[2]; |
3165 | | |
3166 | | /* We already know that the pattern is not clear, thus if some |
3167 | | * part of it is clear, the whole is not solid. |
3168 | | */ |
3169 | |
|
3170 | 0 | if (extents == NULL) |
3171 | 0 | return FALSE; |
3172 | | |
3173 | 0 | _cairo_linear_pattern_box_to_parameter (linear, |
3174 | 0 | extents->x, |
3175 | 0 | extents->y, |
3176 | 0 | extents->x + extents->width, |
3177 | 0 | extents->y + extents->height, |
3178 | 0 | t); |
3179 | |
|
3180 | 0 | if (t[0] < 0.0 || t[1] > 1.0) |
3181 | 0 | return FALSE; |
3182 | 0 | } |
3183 | 4.32k | } else |
3184 | 1.91k | return FALSE; |
3185 | | |
3186 | 8.04k | for (i = 1; i < gradient->n_stops; i++) |
3187 | 4.32k | if (! _cairo_color_stop_equal (&gradient->stops[0].color, |
3188 | 4.32k | &gradient->stops[i].color)) |
3189 | 603 | return FALSE; |
3190 | | |
3191 | 3.72k | _cairo_color_init_rgba (color, |
3192 | 3.72k | gradient->stops[0].color.red, |
3193 | 3.72k | gradient->stops[0].color.green, |
3194 | 3.72k | gradient->stops[0].color.blue, |
3195 | 3.72k | gradient->stops[0].color.alpha); |
3196 | | |
3197 | 3.72k | return TRUE; |
3198 | 4.32k | } |
3199 | | |
3200 | | /** |
3201 | | * _cairo_pattern_is_constant_alpha: |
3202 | | * |
3203 | | * Convenience function to determine whether a pattern has constant |
3204 | | * alpha within the given extents. In this case the alpha argument is |
3205 | | * initialized to the alpha within the extents. |
3206 | | * |
3207 | | * Return value: %TRUE if the pattern has constant alpha. |
3208 | | **/ |
3209 | | cairo_bool_t |
3210 | | _cairo_pattern_is_constant_alpha (const cairo_pattern_t *abstract_pattern, |
3211 | | const cairo_rectangle_int_t *extents, |
3212 | | double *alpha) |
3213 | 0 | { |
3214 | 0 | const cairo_pattern_union_t *pattern; |
3215 | 0 | cairo_color_t color; |
3216 | |
|
3217 | 0 | if (_cairo_pattern_is_clear (abstract_pattern)) { |
3218 | 0 | *alpha = 0.0; |
3219 | 0 | return TRUE; |
3220 | 0 | } |
3221 | | |
3222 | 0 | if (_cairo_pattern_is_opaque (abstract_pattern, extents)) { |
3223 | 0 | *alpha = 1.0; |
3224 | 0 | return TRUE; |
3225 | 0 | } |
3226 | | |
3227 | 0 | pattern = (cairo_pattern_union_t *) abstract_pattern; |
3228 | 0 | switch (pattern->base.type) { |
3229 | 0 | case CAIRO_PATTERN_TYPE_SOLID: |
3230 | 0 | *alpha = pattern->solid.color.alpha; |
3231 | 0 | return TRUE; |
3232 | | |
3233 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
3234 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: |
3235 | 0 | if (_cairo_gradient_pattern_is_solid (&pattern->gradient.base, extents, &color)) { |
3236 | 0 | *alpha = color.alpha; |
3237 | 0 | return TRUE; |
3238 | 0 | } else { |
3239 | 0 | return FALSE; |
3240 | 0 | } |
3241 | | |
3242 | | /* TODO: need to test these as well */ |
3243 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: |
3244 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3245 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
3246 | 0 | return FALSE; |
3247 | 0 | } |
3248 | | |
3249 | 0 | ASSERT_NOT_REACHED; |
3250 | 0 | return FALSE; |
3251 | 0 | } |
3252 | | |
3253 | | static cairo_bool_t |
3254 | | _mesh_is_clear (const cairo_mesh_pattern_t *mesh) |
3255 | 0 | { |
3256 | 0 | double x1, y1, x2, y2; |
3257 | 0 | cairo_bool_t is_valid; |
3258 | |
|
3259 | 0 | is_valid = _cairo_mesh_pattern_coord_box (mesh, &x1, &y1, &x2, &y2); |
3260 | 0 | if (!is_valid) |
3261 | 0 | return TRUE; |
3262 | | |
3263 | 0 | if (x2 - x1 < DBL_EPSILON || y2 - y1 < DBL_EPSILON) |
3264 | 0 | return TRUE; |
3265 | | |
3266 | 0 | return FALSE; |
3267 | 0 | } |
3268 | | |
3269 | | /** |
3270 | | * _cairo_pattern_is_opaque_solid: |
3271 | | * |
3272 | | * Convenience function to determine whether a pattern is an opaque |
3273 | | * (alpha==1.0) solid color pattern. This is done by testing whether |
3274 | | * the pattern's alpha value when converted to a byte is 255, so if a |
3275 | | * backend actually supported deep alpha channels this function might |
3276 | | * not do the right thing. |
3277 | | * |
3278 | | * Return value: %TRUE if the pattern is an opaque, solid color. |
3279 | | **/ |
3280 | | cairo_bool_t |
3281 | | _cairo_pattern_is_opaque_solid (const cairo_pattern_t *pattern) |
3282 | 679k | { |
3283 | 679k | cairo_solid_pattern_t *solid; |
3284 | | |
3285 | 679k | if (pattern->type != CAIRO_PATTERN_TYPE_SOLID) |
3286 | 2.92k | return FALSE; |
3287 | | |
3288 | 676k | solid = (cairo_solid_pattern_t *) pattern; |
3289 | | |
3290 | 676k | return CAIRO_COLOR_IS_OPAQUE (&solid->color); |
3291 | 679k | } |
3292 | | |
3293 | | static cairo_bool_t |
3294 | | _surface_is_opaque (const cairo_surface_pattern_t *pattern, |
3295 | | const cairo_rectangle_int_t *sample) |
3296 | 419 | { |
3297 | 419 | cairo_rectangle_int_t extents; |
3298 | | |
3299 | 419 | if (pattern->surface->content & CAIRO_CONTENT_ALPHA) |
3300 | 419 | return FALSE; |
3301 | | |
3302 | 0 | if (pattern->base.extend != CAIRO_EXTEND_NONE) |
3303 | 0 | return TRUE; |
3304 | | |
3305 | 0 | if (! _cairo_surface_get_extents (pattern->surface, &extents)) |
3306 | 0 | return TRUE; |
3307 | | |
3308 | 0 | if (sample == NULL) |
3309 | 0 | return FALSE; |
3310 | | |
3311 | 0 | return _cairo_rectangle_contains_rectangle (&extents, sample); |
3312 | 0 | } |
3313 | | |
3314 | | static cairo_bool_t |
3315 | | _raster_source_is_opaque (const cairo_raster_source_pattern_t *pattern, |
3316 | | const cairo_rectangle_int_t *sample) |
3317 | 0 | { |
3318 | 0 | if (pattern->content & CAIRO_CONTENT_ALPHA) |
3319 | 0 | return FALSE; |
3320 | | |
3321 | 0 | if (pattern->base.extend != CAIRO_EXTEND_NONE) |
3322 | 0 | return TRUE; |
3323 | | |
3324 | 0 | if (sample == NULL) |
3325 | 0 | return FALSE; |
3326 | | |
3327 | 0 | return _cairo_rectangle_contains_rectangle (&pattern->extents, sample); |
3328 | 0 | } |
3329 | | |
3330 | | static cairo_bool_t |
3331 | | _surface_is_clear (const cairo_surface_pattern_t *pattern) |
3332 | 1.03M | { |
3333 | 1.03M | cairo_rectangle_int_t extents; |
3334 | | |
3335 | 1.03M | if (_cairo_surface_get_extents (pattern->surface, &extents) && |
3336 | 1.03M | (extents.width == 0 || extents.height == 0)) |
3337 | 0 | return TRUE; |
3338 | | |
3339 | 1.03M | return pattern->surface->is_clear && |
3340 | 0 | pattern->surface->content & CAIRO_CONTENT_ALPHA; |
3341 | 1.03M | } |
3342 | | |
3343 | | static cairo_bool_t |
3344 | | _raster_source_is_clear (const cairo_raster_source_pattern_t *pattern) |
3345 | 0 | { |
3346 | 0 | return pattern->extents.width == 0 || pattern->extents.height == 0; |
3347 | 0 | } |
3348 | | |
3349 | | static cairo_bool_t |
3350 | | _gradient_is_opaque (const cairo_gradient_pattern_t *gradient, |
3351 | | const cairo_rectangle_int_t *sample) |
3352 | 2.23k | { |
3353 | 2.23k | unsigned int i; |
3354 | | |
3355 | 2.23k | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || |
3356 | 2.23k | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL); |
3357 | | |
3358 | 2.23k | if (gradient->n_stops == 0 || |
3359 | 2.23k | (gradient->base.extend == CAIRO_EXTEND_NONE && |
3360 | 0 | gradient->stops[0].offset == gradient->stops[gradient->n_stops - 1].offset)) |
3361 | 0 | return FALSE; |
3362 | | |
3363 | 2.23k | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
3364 | 511 | if (gradient->base.extend == CAIRO_EXTEND_NONE) { |
3365 | 0 | double t[2]; |
3366 | 0 | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient; |
3367 | | |
3368 | | /* EXTEND_NONE degenerate radial gradients are clear */ |
3369 | 0 | if (_linear_pattern_is_degenerate (linear)) |
3370 | 0 | return FALSE; |
3371 | | |
3372 | 0 | if (sample == NULL) |
3373 | 0 | return FALSE; |
3374 | | |
3375 | 0 | _cairo_linear_pattern_box_to_parameter (linear, |
3376 | 0 | sample->x, |
3377 | 0 | sample->y, |
3378 | 0 | sample->x + sample->width, |
3379 | 0 | sample->y + sample->height, |
3380 | 0 | t); |
3381 | |
|
3382 | 0 | if (t[0] < 0.0 || t[1] > 1.0) |
3383 | 0 | return FALSE; |
3384 | 0 | } |
3385 | 511 | } else |
3386 | 1.72k | return FALSE; /* TODO: check actual intersection */ |
3387 | | |
3388 | 1.53k | for (i = 0; i < gradient->n_stops; i++) |
3389 | 1.02k | if (! CAIRO_COLOR_IS_OPAQUE (&gradient->stops[i].color)) |
3390 | 0 | return FALSE; |
3391 | | |
3392 | 511 | return TRUE; |
3393 | 511 | } |
3394 | | |
3395 | | /** |
3396 | | * _cairo_pattern_is_opaque: |
3397 | | * |
3398 | | * Convenience function to determine whether a pattern is an opaque |
3399 | | * pattern (of any type). The same caveats that apply to |
3400 | | * _cairo_pattern_is_opaque_solid apply here as well. |
3401 | | * |
3402 | | * Return value: %TRUE if the pattern is a opaque. |
3403 | | **/ |
3404 | | cairo_bool_t |
3405 | | _cairo_pattern_is_opaque (const cairo_pattern_t *abstract_pattern, |
3406 | | const cairo_rectangle_int_t *sample) |
3407 | 466k | { |
3408 | 466k | const cairo_pattern_union_t *pattern; |
3409 | | |
3410 | 466k | if (abstract_pattern->has_component_alpha) |
3411 | 0 | return FALSE; |
3412 | | |
3413 | 466k | pattern = (cairo_pattern_union_t *) abstract_pattern; |
3414 | 466k | switch (pattern->base.type) { |
3415 | 463k | case CAIRO_PATTERN_TYPE_SOLID: |
3416 | 463k | return _cairo_pattern_is_opaque_solid (abstract_pattern); |
3417 | 419 | case CAIRO_PATTERN_TYPE_SURFACE: |
3418 | 419 | return _surface_is_opaque (&pattern->surface, sample); |
3419 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3420 | 0 | return _raster_source_is_opaque (&pattern->raster_source, sample); |
3421 | 511 | case CAIRO_PATTERN_TYPE_LINEAR: |
3422 | 2.23k | case CAIRO_PATTERN_TYPE_RADIAL: |
3423 | 2.23k | return _gradient_is_opaque (&pattern->gradient.base, sample); |
3424 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
3425 | 0 | return FALSE; |
3426 | 466k | } |
3427 | | |
3428 | 0 | ASSERT_NOT_REACHED; |
3429 | 0 | return FALSE; |
3430 | 0 | } |
3431 | | |
3432 | | cairo_bool_t |
3433 | | _cairo_pattern_is_clear (const cairo_pattern_t *abstract_pattern) |
3434 | 26.4M | { |
3435 | 26.4M | const cairo_pattern_union_t *pattern; |
3436 | | |
3437 | 26.4M | if (abstract_pattern->has_component_alpha) |
3438 | 0 | return FALSE; |
3439 | | |
3440 | 26.4M | pattern = (cairo_pattern_union_t *) abstract_pattern; |
3441 | 26.4M | switch (abstract_pattern->type) { |
3442 | 25.3M | case CAIRO_PATTERN_TYPE_SOLID: |
3443 | 25.3M | return CAIRO_COLOR_IS_CLEAR (&pattern->solid.color); |
3444 | 1.03M | case CAIRO_PATTERN_TYPE_SURFACE: |
3445 | 1.03M | return _surface_is_clear (&pattern->surface); |
3446 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3447 | 0 | return _raster_source_is_clear (&pattern->raster_source); |
3448 | 4.92k | case CAIRO_PATTERN_TYPE_LINEAR: |
3449 | 8.75k | case CAIRO_PATTERN_TYPE_RADIAL: |
3450 | 8.75k | return _gradient_is_clear (&pattern->gradient.base, NULL); |
3451 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
3452 | 0 | return _mesh_is_clear (&pattern->mesh); |
3453 | 26.4M | } |
3454 | | |
3455 | 0 | ASSERT_NOT_REACHED; |
3456 | 0 | return FALSE; |
3457 | 0 | } |
3458 | | |
3459 | | /* |
3460 | | * Will given row of back-translation matrix work with bilinear scale? |
3461 | | * This is true for scales larger than 1. Also it was judged acceptable |
3462 | | * for scales larger than .75. And if there is integer translation |
3463 | | * then a scale of exactly .5 works. |
3464 | | */ |
3465 | | static int |
3466 | | use_bilinear(double x, double y, double t) |
3467 | 390 | { |
3468 | | /* This is the inverse matrix! */ |
3469 | 390 | double h = x*x + y*y; |
3470 | 390 | if (h < 1.0 / (0.75 * 0.75)) |
3471 | 291 | return TRUE; /* scale > .75 */ |
3472 | 99 | if ((h > 3.99 && h < 4.01) /* scale is 1/2 */ |
3473 | 3 | && !_cairo_fixed_from_double(x*y) /* parallel to an axis */ |
3474 | 3 | && _cairo_fixed_is_integer (_cairo_fixed_from_double (t))) |
3475 | 3 | return TRUE; |
3476 | 96 | return FALSE; |
3477 | 99 | } |
3478 | | |
3479 | | /** |
3480 | | * _cairo_pattern_analyze_filter: |
3481 | | * @pattern: surface pattern |
3482 | | * |
3483 | | * Possibly optimize the filter to a simpler value depending on transformation |
3484 | | * |
3485 | | * Returns: the optimized #cairo_filter_t to use with @pattern. |
3486 | | **/ |
3487 | | cairo_filter_t |
3488 | | _cairo_pattern_analyze_filter (const cairo_pattern_t *pattern) |
3489 | 515k | { |
3490 | 515k | switch (pattern->filter) { |
3491 | 515k | case CAIRO_FILTER_GOOD: |
3492 | 515k | case CAIRO_FILTER_BEST: |
3493 | 515k | case CAIRO_FILTER_BILINEAR: |
3494 | 515k | case CAIRO_FILTER_FAST: |
3495 | | /* If source pixels map 1:1 onto destination pixels, we do |
3496 | | * not need to filter (and do not want to filter, since it |
3497 | | * will cause blurriness) |
3498 | | */ |
3499 | 515k | if (_cairo_matrix_is_pixel_exact (&pattern->matrix)) { |
3500 | 515k | return CAIRO_FILTER_NEAREST; |
3501 | 515k | } else { |
3502 | | /* Use BILINEAR for any scale greater than .75 instead |
3503 | | * of GOOD. For scales of 1 and larger this is identical, |
3504 | | * for the smaller sizes it was judged that the artifacts |
3505 | | * were not worse than the artifacts from a box filer. |
3506 | | * BILINEAR can also be used if the scale is exactly .5 |
3507 | | * and the translation in that direction is an integer. |
3508 | | */ |
3509 | 241 | if (pattern->filter == CAIRO_FILTER_GOOD && |
3510 | 241 | use_bilinear (pattern->matrix.xx, pattern->matrix.xy, |
3511 | 241 | pattern->matrix.x0) && |
3512 | 149 | use_bilinear (pattern->matrix.yx, pattern->matrix.yy, |
3513 | 149 | pattern->matrix.y0)) |
3514 | 145 | return CAIRO_FILTER_BILINEAR; |
3515 | 241 | } |
3516 | 96 | break; |
3517 | | |
3518 | 96 | case CAIRO_FILTER_NEAREST: |
3519 | 0 | case CAIRO_FILTER_GAUSSIAN: |
3520 | 0 | default: |
3521 | 0 | break; |
3522 | 515k | } |
3523 | | |
3524 | 96 | return pattern->filter; |
3525 | 515k | } |
3526 | | |
3527 | | /** |
3528 | | * _cairo_hypot: |
3529 | | * Returns: value similar to hypot(@x,@y) |
3530 | | * |
3531 | | * May want to replace this with Manhattan distance (abs(x)+abs(y)) if |
3532 | | * hypot is too slow, as there is no need for accuracy here. |
3533 | | **/ |
3534 | | static inline double |
3535 | | _cairo_hypot(double x, double y) |
3536 | 194 | { |
3537 | 194 | return hypot(x, y); |
3538 | 194 | } |
3539 | | |
3540 | | /** |
3541 | | * _cairo_pattern_sampled_area: |
3542 | | * |
3543 | | * Return region of @pattern that will be sampled to fill @extents, |
3544 | | * based on the transformation and filter. |
3545 | | * |
3546 | | * This does not include pixels that are mulitiplied by values very |
3547 | | * close to zero by the ends of filters. This is so that transforms |
3548 | | * that should be the identity or 90 degree rotations do not expand |
3549 | | * the source unexpectedly. |
3550 | | * |
3551 | | * XXX: We don't actually have any way of querying the backend for |
3552 | | * the filter radius, so we just guess base on what we know that |
3553 | | * backends do currently (see bug #10508) |
3554 | | **/ |
3555 | | void |
3556 | | _cairo_pattern_sampled_area (const cairo_pattern_t *pattern, |
3557 | | const cairo_rectangle_int_t *extents, |
3558 | | cairo_rectangle_int_t *sample) |
3559 | 515k | { |
3560 | 515k | double x1, x2, y1, y2; |
3561 | 515k | double padx, pady; |
3562 | | |
3563 | | /* Assume filters are interpolating, which means identity |
3564 | | cannot change the image */ |
3565 | 515k | if (_cairo_matrix_is_identity (&pattern->matrix)) { |
3566 | 33.5k | *sample = *extents; |
3567 | 33.5k | return; |
3568 | 33.5k | } |
3569 | | |
3570 | | /* Transform the centers of the corner pixels */ |
3571 | 482k | x1 = extents->x + 0.5; |
3572 | 482k | y1 = extents->y + 0.5; |
3573 | 482k | x2 = x1 + (extents->width - 1); |
3574 | 482k | y2 = y1 + (extents->height - 1); |
3575 | 482k | _cairo_matrix_transform_bounding_box (&pattern->matrix, |
3576 | 482k | &x1, &y1, &x2, &y2, |
3577 | 482k | NULL); |
3578 | | |
3579 | | /* How far away from center will it actually sample? |
3580 | | * This is the distance from a transformed pixel center to the |
3581 | | * furthest sample of reasonable size. |
3582 | | */ |
3583 | 482k | switch (pattern->filter) { |
3584 | 482k | case CAIRO_FILTER_NEAREST: |
3585 | 482k | case CAIRO_FILTER_FAST: |
3586 | | /* Correct value is zero, but when the sample is on an integer |
3587 | | * it is unknown if the backend will sample the pixel to the |
3588 | | * left or right. This value makes it include both possible pixels. |
3589 | | */ |
3590 | 482k | padx = pady = 0.004; |
3591 | 482k | break; |
3592 | 145 | case CAIRO_FILTER_BILINEAR: |
3593 | 145 | case CAIRO_FILTER_GAUSSIAN: |
3594 | 145 | default: |
3595 | | /* Correct value is .5 */ |
3596 | 145 | padx = pady = 0.495; |
3597 | 145 | break; |
3598 | 96 | case CAIRO_FILTER_GOOD: |
3599 | | /* Correct value is max(width,1)*.5 */ |
3600 | 96 | padx = _cairo_hypot (pattern->matrix.xx, pattern->matrix.xy); |
3601 | 96 | if (padx <= 1.0) padx = 0.495; |
3602 | 92 | else if (padx >= 16.0) padx = 7.92; |
3603 | 64 | else padx *= 0.495; |
3604 | 96 | pady = _cairo_hypot (pattern->matrix.yx, pattern->matrix.yy); |
3605 | 96 | if (pady <= 1.0) pady = 0.495; |
3606 | 11 | else if (pady >= 16.0) pady = 7.92; |
3607 | 6 | else pady *= 0.495; |
3608 | 96 | break; |
3609 | 0 | case CAIRO_FILTER_BEST: |
3610 | | /* Correct value is width*2 */ |
3611 | 0 | padx = _cairo_hypot (pattern->matrix.xx, pattern->matrix.xy) * 1.98; |
3612 | 0 | if (padx > 7.92) padx = 7.92; |
3613 | 0 | pady = _cairo_hypot (pattern->matrix.yx, pattern->matrix.yy) * 1.98; |
3614 | 0 | if (pady > 7.92) pady = 7.92; |
3615 | 0 | break; |
3616 | 482k | } |
3617 | | |
3618 | | /* round furthest samples to edge of pixels */ |
3619 | 482k | x1 = floor (x1 - padx); |
3620 | 482k | if (x1 < CAIRO_RECT_INT_MIN) x1 = CAIRO_RECT_INT_MIN; |
3621 | 482k | sample->x = x1; |
3622 | | |
3623 | 482k | y1 = floor (y1 - pady); |
3624 | 482k | if (y1 < CAIRO_RECT_INT_MIN) y1 = CAIRO_RECT_INT_MIN; |
3625 | 482k | sample->y = y1; |
3626 | | |
3627 | 482k | x2 = floor (x2 + padx) + 1.0; |
3628 | 482k | if (x2 > CAIRO_RECT_INT_MAX) x2 = CAIRO_RECT_INT_MAX; |
3629 | 482k | sample->width = x2 - x1; |
3630 | | |
3631 | 482k | y2 = floor (y2 + pady) + 1.0; |
3632 | 482k | if (y2 > CAIRO_RECT_INT_MAX) y2 = CAIRO_RECT_INT_MAX; |
3633 | 482k | sample->height = y2 - y1; |
3634 | 482k | } |
3635 | | |
3636 | | /** |
3637 | | * _cairo_pattern_get_extents: |
3638 | | * |
3639 | | * Return the "target-space" extents of @pattern in @extents. |
3640 | | * |
3641 | | * For unbounded patterns, the @extents will be initialized with |
3642 | | * "infinite" extents, (minimum and maximum fixed-point values). |
3643 | | * |
3644 | | * When is_vector is TRUE, avoid rounding to zero widths or heights that |
3645 | | * are less than 1 unit. |
3646 | | * |
3647 | | * XXX: Currently, bounded gradient patterns will also return |
3648 | | * "infinite" extents, though it would be possible to optimize these |
3649 | | * with a little more work. |
3650 | | **/ |
3651 | | void |
3652 | | _cairo_pattern_get_extents (const cairo_pattern_t *pattern, |
3653 | | cairo_rectangle_int_t *extents, |
3654 | | cairo_bool_t is_vector) |
3655 | 13.1M | { |
3656 | 13.1M | double x1, y1, x2, y2; |
3657 | 13.1M | int ix1, ix2, iy1, iy2; |
3658 | 13.1M | cairo_bool_t round_x = FALSE; |
3659 | 13.1M | cairo_bool_t round_y = FALSE; |
3660 | | |
3661 | 13.1M | switch (pattern->type) { |
3662 | 12.6M | case CAIRO_PATTERN_TYPE_SOLID: |
3663 | 12.6M | goto UNBOUNDED; |
3664 | | |
3665 | 513k | case CAIRO_PATTERN_TYPE_SURFACE: |
3666 | 513k | { |
3667 | 513k | cairo_rectangle_int_t surface_extents; |
3668 | 513k | const cairo_surface_pattern_t *surface_pattern = |
3669 | 513k | (const cairo_surface_pattern_t *) pattern; |
3670 | 513k | cairo_surface_t *surface = surface_pattern->surface; |
3671 | | |
3672 | 513k | if (! _cairo_surface_get_extents (surface, &surface_extents)) |
3673 | 0 | goto UNBOUNDED; |
3674 | | |
3675 | 513k | if (surface_extents.width == 0 || surface_extents.height == 0) |
3676 | 0 | goto EMPTY; |
3677 | | |
3678 | 513k | if (pattern->extend != CAIRO_EXTEND_NONE) |
3679 | 16.4k | goto UNBOUNDED; |
3680 | | |
3681 | 496k | x1 = surface_extents.x; |
3682 | 496k | y1 = surface_extents.y; |
3683 | 496k | x2 = surface_extents.x + (int) surface_extents.width; |
3684 | 496k | y2 = surface_extents.y + (int) surface_extents.height; |
3685 | | |
3686 | 496k | goto HANDLE_FILTER; |
3687 | 513k | } |
3688 | 0 | break; |
3689 | | |
3690 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3691 | 0 | { |
3692 | 0 | const cairo_raster_source_pattern_t *raster = |
3693 | 0 | (const cairo_raster_source_pattern_t *) pattern; |
3694 | |
|
3695 | 0 | if (raster->extents.width == 0 || raster->extents.height == 0) |
3696 | 0 | goto EMPTY; |
3697 | | |
3698 | 0 | if (pattern->extend != CAIRO_EXTEND_NONE) |
3699 | 0 | goto UNBOUNDED; |
3700 | | |
3701 | 0 | x1 = raster->extents.x; |
3702 | 0 | y1 = raster->extents.y; |
3703 | 0 | x2 = raster->extents.x + (int) raster->extents.width; |
3704 | 0 | y2 = raster->extents.y + (int) raster->extents.height; |
3705 | 0 | } |
3706 | 496k | HANDLE_FILTER: |
3707 | 496k | switch (pattern->filter) { |
3708 | 496k | case CAIRO_FILTER_NEAREST: |
3709 | 496k | case CAIRO_FILTER_FAST: |
3710 | 496k | round_x = round_y = TRUE; |
3711 | | /* We don't know which way .5 will go, so fudge it slightly. */ |
3712 | 496k | x1 -= 0.004; |
3713 | 496k | y1 -= 0.004; |
3714 | 496k | x2 += 0.004; |
3715 | 496k | y2 += 0.004; |
3716 | 496k | break; |
3717 | 0 | case CAIRO_FILTER_BEST: |
3718 | | /* Assume best filter will produce nice antialiased edges */ |
3719 | 0 | break; |
3720 | 0 | case CAIRO_FILTER_BILINEAR: |
3721 | 0 | case CAIRO_FILTER_GAUSSIAN: |
3722 | 1 | case CAIRO_FILTER_GOOD: |
3723 | 1 | default: |
3724 | | /* These filters can blur the edge out 1/2 pixel when scaling up */ |
3725 | 1 | if (_cairo_hypot (pattern->matrix.xx, pattern->matrix.yx) < 1.0) { |
3726 | 0 | x1 -= 0.5; |
3727 | 0 | x2 += 0.5; |
3728 | 0 | round_x = TRUE; |
3729 | 0 | } |
3730 | 1 | if (_cairo_hypot (pattern->matrix.xy, pattern->matrix.yy) < 1.0) { |
3731 | 0 | y1 -= 0.5; |
3732 | 0 | y2 += 0.5; |
3733 | 0 | round_y = TRUE; |
3734 | 0 | } |
3735 | 1 | break; |
3736 | 496k | } |
3737 | 496k | break; |
3738 | | |
3739 | 496k | case CAIRO_PATTERN_TYPE_RADIAL: |
3740 | 1.91k | { |
3741 | 1.91k | const cairo_radial_pattern_t *radial = |
3742 | 1.91k | (const cairo_radial_pattern_t *) pattern; |
3743 | 1.91k | double cx1, cy1; |
3744 | 1.91k | double cx2, cy2; |
3745 | 1.91k | double r1, r2; |
3746 | | |
3747 | 1.91k | if (_radial_pattern_is_degenerate (radial)) { |
3748 | | /* cairo-gstate should have optimised degenerate |
3749 | | * patterns to solid clear patterns, so we can ignore |
3750 | | * them here. */ |
3751 | 0 | goto EMPTY; |
3752 | 0 | } |
3753 | | |
3754 | | /* TODO: in some cases (focus outside/on the circle) it is |
3755 | | * half-bounded. */ |
3756 | 1.91k | if (pattern->extend != CAIRO_EXTEND_NONE) |
3757 | 1.91k | goto UNBOUNDED; |
3758 | | |
3759 | 0 | cx1 = radial->cd1.center.x; |
3760 | 0 | cy1 = radial->cd1.center.y; |
3761 | 0 | r1 = radial->cd1.radius; |
3762 | |
|
3763 | 0 | cx2 = radial->cd2.center.x; |
3764 | 0 | cy2 = radial->cd2.center.y; |
3765 | 0 | r2 = radial->cd2.radius; |
3766 | |
|
3767 | 0 | x1 = MIN (cx1 - r1, cx2 - r2); |
3768 | 0 | y1 = MIN (cy1 - r1, cy2 - r2); |
3769 | 0 | x2 = MAX (cx1 + r1, cx2 + r2); |
3770 | 0 | y2 = MAX (cy1 + r1, cy2 + r2); |
3771 | 0 | } |
3772 | 0 | break; |
3773 | | |
3774 | 603 | case CAIRO_PATTERN_TYPE_LINEAR: |
3775 | 603 | { |
3776 | 603 | const cairo_linear_pattern_t *linear = |
3777 | 603 | (const cairo_linear_pattern_t *) pattern; |
3778 | | |
3779 | 603 | if (pattern->extend != CAIRO_EXTEND_NONE) |
3780 | 603 | goto UNBOUNDED; |
3781 | | |
3782 | 0 | if (_linear_pattern_is_degenerate (linear)) { |
3783 | | /* cairo-gstate should have optimised degenerate |
3784 | | * patterns to solid ones, so we can again ignore |
3785 | | * them here. */ |
3786 | 0 | goto EMPTY; |
3787 | 0 | } |
3788 | | |
3789 | | /* TODO: to get tight extents, use the matrix to transform |
3790 | | * the pattern instead of transforming the extents later. */ |
3791 | 0 | if (pattern->matrix.xy != 0. || pattern->matrix.yx != 0.) |
3792 | 0 | goto UNBOUNDED; |
3793 | | |
3794 | 0 | if (linear->pd1.x == linear->pd2.x) { |
3795 | 0 | x1 = -HUGE_VAL; |
3796 | 0 | x2 = HUGE_VAL; |
3797 | 0 | y1 = MIN (linear->pd1.y, linear->pd2.y); |
3798 | 0 | y2 = MAX (linear->pd1.y, linear->pd2.y); |
3799 | 0 | } else if (linear->pd1.y == linear->pd2.y) { |
3800 | 0 | x1 = MIN (linear->pd1.x, linear->pd2.x); |
3801 | 0 | x2 = MAX (linear->pd1.x, linear->pd2.x); |
3802 | 0 | y1 = -HUGE_VAL; |
3803 | 0 | y2 = HUGE_VAL; |
3804 | 0 | } else { |
3805 | 0 | goto UNBOUNDED; |
3806 | 0 | } |
3807 | | |
3808 | | /* The current linear renderer just point-samples in the middle |
3809 | | of the pixels, similar to the NEAREST filter: */ |
3810 | 0 | round_x = round_y = TRUE; |
3811 | 0 | } |
3812 | 0 | break; |
3813 | | |
3814 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
3815 | 0 | { |
3816 | 0 | const cairo_mesh_pattern_t *mesh = |
3817 | 0 | (const cairo_mesh_pattern_t *) pattern; |
3818 | 0 | if (! _cairo_mesh_pattern_coord_box (mesh, &x1, &y1, &x2, &y2)) |
3819 | 0 | goto EMPTY; |
3820 | 0 | } |
3821 | 0 | break; |
3822 | | |
3823 | 0 | default: |
3824 | 0 | ASSERT_NOT_REACHED; |
3825 | 13.1M | } |
3826 | | |
3827 | 496k | if (_cairo_matrix_is_translation (&pattern->matrix)) { |
3828 | 496k | x1 -= pattern->matrix.x0; x2 -= pattern->matrix.x0; |
3829 | 496k | y1 -= pattern->matrix.y0; y2 -= pattern->matrix.y0; |
3830 | 496k | } else { |
3831 | 1 | cairo_matrix_t imatrix; |
3832 | 1 | cairo_status_t status; |
3833 | | |
3834 | 1 | imatrix = pattern->matrix; |
3835 | 1 | status = cairo_matrix_invert (&imatrix); |
3836 | | /* cairo_pattern_set_matrix ensures the matrix is invertible */ |
3837 | 1 | assert (status == CAIRO_STATUS_SUCCESS); |
3838 | | |
3839 | 1 | _cairo_matrix_transform_bounding_box (&imatrix, |
3840 | 1 | &x1, &y1, &x2, &y2, |
3841 | 1 | NULL); |
3842 | 1 | } |
3843 | | |
3844 | 496k | if (!round_x) { |
3845 | 1 | x1 -= 0.5; |
3846 | 1 | x2 += 0.5; |
3847 | 1 | } |
3848 | 496k | if (x1 < CAIRO_RECT_INT_MIN) |
3849 | 0 | ix1 = CAIRO_RECT_INT_MIN; |
3850 | 496k | else |
3851 | 496k | ix1 = _cairo_lround (x1); |
3852 | 496k | if (x2 > CAIRO_RECT_INT_MAX) |
3853 | 0 | ix2 = CAIRO_RECT_INT_MAX; |
3854 | 496k | else |
3855 | 496k | ix2 = _cairo_lround (x2); |
3856 | 496k | extents->x = ix1; extents->width = ix2 - ix1; |
3857 | 496k | if (is_vector && extents->width == 0 && x1 != x2) |
3858 | 0 | extents->width += 1; |
3859 | | |
3860 | 496k | if (!round_y) { |
3861 | 1 | y1 -= 0.5; |
3862 | 1 | y2 += 0.5; |
3863 | 1 | } |
3864 | 496k | if (y1 < CAIRO_RECT_INT_MIN) |
3865 | 0 | iy1 = CAIRO_RECT_INT_MIN; |
3866 | 496k | else |
3867 | 496k | iy1 = _cairo_lround (y1); |
3868 | 496k | if (y2 > CAIRO_RECT_INT_MAX) |
3869 | 0 | iy2 = CAIRO_RECT_INT_MAX; |
3870 | 496k | else |
3871 | 496k | iy2 = _cairo_lround (y2); |
3872 | 496k | extents->y = iy1; extents->height = iy2 - iy1; |
3873 | 496k | if (is_vector && extents->height == 0 && y1 != y2) |
3874 | 0 | extents->height += 1; |
3875 | | |
3876 | 496k | return; |
3877 | | |
3878 | 12.6M | UNBOUNDED: |
3879 | | /* unbounded patterns -> 'infinite' extents */ |
3880 | 12.6M | _cairo_unbounded_rectangle_init (extents); |
3881 | 12.6M | return; |
3882 | | |
3883 | 0 | EMPTY: |
3884 | 0 | extents->x = extents->y = 0; |
3885 | 0 | extents->width = extents->height = 0; |
3886 | 0 | return; |
3887 | 496k | } |
3888 | | |
3889 | | /** |
3890 | | * _cairo_pattern_get_ink_extents: |
3891 | | * |
3892 | | * Return the "target-space" inked extents of @pattern in @extents. |
3893 | | **/ |
3894 | | cairo_int_status_t |
3895 | | _cairo_pattern_get_ink_extents (const cairo_pattern_t *pattern, |
3896 | | cairo_rectangle_int_t *extents) |
3897 | 0 | { |
3898 | 0 | if (pattern->type == CAIRO_PATTERN_TYPE_SURFACE && |
3899 | 0 | pattern->extend == CAIRO_EXTEND_NONE) |
3900 | 0 | { |
3901 | 0 | const cairo_surface_pattern_t *surface_pattern = |
3902 | 0 | (const cairo_surface_pattern_t *) pattern; |
3903 | 0 | cairo_surface_t *surface = surface_pattern->surface; |
3904 | |
|
3905 | 0 | surface = _cairo_surface_get_source (surface, NULL); |
3906 | 0 | if (_cairo_surface_is_recording (surface)) { |
3907 | 0 | cairo_matrix_t imatrix; |
3908 | 0 | cairo_box_t box; |
3909 | 0 | cairo_status_t status; |
3910 | |
|
3911 | 0 | imatrix = pattern->matrix; |
3912 | 0 | status = cairo_matrix_invert (&imatrix); |
3913 | | /* cairo_pattern_set_matrix ensures the matrix is invertible */ |
3914 | 0 | assert (status == CAIRO_STATUS_SUCCESS); |
3915 | |
|
3916 | 0 | status = _cairo_recording_surface_get_ink_bbox ((cairo_recording_surface_t *)surface, |
3917 | 0 | &box, &imatrix); |
3918 | 0 | if (unlikely (status)) |
3919 | 0 | return status; |
3920 | | |
3921 | 0 | _cairo_box_round_to_rectangle (&box, extents); |
3922 | 0 | return CAIRO_STATUS_SUCCESS; |
3923 | 0 | } |
3924 | 0 | } |
3925 | | |
3926 | 0 | _cairo_pattern_get_extents (pattern, extents, TRUE); |
3927 | 0 | return CAIRO_STATUS_SUCCESS; |
3928 | 0 | } |
3929 | | |
3930 | | static uintptr_t |
3931 | | _cairo_solid_pattern_hash (uintptr_t hash, |
3932 | | const cairo_solid_pattern_t *solid) |
3933 | 0 | { |
3934 | 0 | hash = _cairo_hash_bytes (hash, &solid->color, sizeof (solid->color)); |
3935 | |
|
3936 | 0 | return hash; |
3937 | 0 | } |
3938 | | |
3939 | | static uintptr_t |
3940 | | _cairo_gradient_color_stops_hash (uintptr_t hash, |
3941 | | const cairo_gradient_pattern_t *gradient) |
3942 | 0 | { |
3943 | 0 | unsigned int n; |
3944 | |
|
3945 | 0 | hash = _cairo_hash_bytes (hash, |
3946 | 0 | &gradient->n_stops, |
3947 | 0 | sizeof (gradient->n_stops)); |
3948 | |
|
3949 | 0 | for (n = 0; n < gradient->n_stops; n++) { |
3950 | 0 | hash = _cairo_hash_bytes (hash, |
3951 | 0 | &gradient->stops[n].offset, |
3952 | 0 | sizeof (double)); |
3953 | 0 | hash = _cairo_hash_bytes (hash, |
3954 | 0 | &gradient->stops[n].color, |
3955 | 0 | sizeof (cairo_color_stop_t)); |
3956 | 0 | } |
3957 | |
|
3958 | 0 | return hash; |
3959 | 0 | } |
3960 | | |
3961 | | uintptr_t |
3962 | | _cairo_linear_pattern_hash (uintptr_t hash, |
3963 | | const cairo_linear_pattern_t *linear) |
3964 | 0 | { |
3965 | 0 | hash = _cairo_hash_bytes (hash, &linear->pd1, sizeof (linear->pd1)); |
3966 | 0 | hash = _cairo_hash_bytes (hash, &linear->pd2, sizeof (linear->pd2)); |
3967 | |
|
3968 | 0 | return _cairo_gradient_color_stops_hash (hash, &linear->base); |
3969 | 0 | } |
3970 | | |
3971 | | uintptr_t |
3972 | | _cairo_radial_pattern_hash (uintptr_t hash, |
3973 | | const cairo_radial_pattern_t *radial) |
3974 | 0 | { |
3975 | 0 | hash = _cairo_hash_bytes (hash, &radial->cd1.center, sizeof (radial->cd1.center)); |
3976 | 0 | hash = _cairo_hash_bytes (hash, &radial->cd1.radius, sizeof (radial->cd1.radius)); |
3977 | 0 | hash = _cairo_hash_bytes (hash, &radial->cd2.center, sizeof (radial->cd2.center)); |
3978 | 0 | hash = _cairo_hash_bytes (hash, &radial->cd2.radius, sizeof (radial->cd2.radius)); |
3979 | |
|
3980 | 0 | return _cairo_gradient_color_stops_hash (hash, &radial->base); |
3981 | 0 | } |
3982 | | |
3983 | | static uintptr_t |
3984 | | _cairo_mesh_pattern_hash (uintptr_t hash, const cairo_mesh_pattern_t *mesh) |
3985 | 0 | { |
3986 | 0 | const cairo_mesh_patch_t *patch = _cairo_array_index_const (&mesh->patches, 0); |
3987 | 0 | unsigned int i, n = _cairo_array_num_elements (&mesh->patches); |
3988 | |
|
3989 | 0 | for (i = 0; i < n; i++) |
3990 | 0 | hash = _cairo_hash_bytes (hash, patch + i, sizeof (cairo_mesh_patch_t)); |
3991 | |
|
3992 | 0 | return hash; |
3993 | 0 | } |
3994 | | |
3995 | | static uintptr_t |
3996 | | _cairo_surface_pattern_hash (uintptr_t hash, |
3997 | | const cairo_surface_pattern_t *surface) |
3998 | 0 | { |
3999 | 0 | hash ^= surface->surface->unique_id; |
4000 | |
|
4001 | 0 | return hash; |
4002 | 0 | } |
4003 | | |
4004 | | static uintptr_t |
4005 | | _cairo_raster_source_pattern_hash (uintptr_t hash, |
4006 | | const cairo_raster_source_pattern_t *raster) |
4007 | 0 | { |
4008 | 0 | hash ^= (uintptr_t)raster->user_data; |
4009 | |
|
4010 | 0 | return hash; |
4011 | 0 | } |
4012 | | |
4013 | | uintptr_t |
4014 | | _cairo_pattern_hash (const cairo_pattern_t *pattern) |
4015 | 0 | { |
4016 | 0 | uintptr_t hash = _CAIRO_HASH_INIT_VALUE; |
4017 | |
|
4018 | 0 | if (pattern->status) |
4019 | 0 | return 0; |
4020 | | |
4021 | 0 | hash = _cairo_hash_bytes (hash, &pattern->type, sizeof (pattern->type)); |
4022 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_SOLID) { |
4023 | 0 | hash = _cairo_hash_bytes (hash, |
4024 | 0 | &pattern->matrix, sizeof (pattern->matrix)); |
4025 | 0 | hash = _cairo_hash_bytes (hash, |
4026 | 0 | &pattern->filter, sizeof (pattern->filter)); |
4027 | 0 | hash = _cairo_hash_bytes (hash, |
4028 | 0 | &pattern->extend, sizeof (pattern->extend)); |
4029 | 0 | hash = _cairo_hash_bytes (hash, |
4030 | 0 | &pattern->has_component_alpha, |
4031 | 0 | sizeof (pattern->has_component_alpha)); |
4032 | 0 | } |
4033 | |
|
4034 | 0 | switch (pattern->type) { |
4035 | 0 | case CAIRO_PATTERN_TYPE_SOLID: |
4036 | 0 | return _cairo_solid_pattern_hash (hash, (cairo_solid_pattern_t *) pattern); |
4037 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
4038 | 0 | return _cairo_linear_pattern_hash (hash, (cairo_linear_pattern_t *) pattern); |
4039 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: |
4040 | 0 | return _cairo_radial_pattern_hash (hash, (cairo_radial_pattern_t *) pattern); |
4041 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
4042 | 0 | return _cairo_mesh_pattern_hash (hash, (cairo_mesh_pattern_t *) pattern); |
4043 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: |
4044 | 0 | return _cairo_surface_pattern_hash (hash, (cairo_surface_pattern_t *) pattern); |
4045 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
4046 | 0 | return _cairo_raster_source_pattern_hash (hash, (cairo_raster_source_pattern_t *) pattern); |
4047 | 0 | default: |
4048 | 0 | ASSERT_NOT_REACHED; |
4049 | 0 | return FALSE; |
4050 | 0 | } |
4051 | 0 | } |
4052 | | |
4053 | | static cairo_bool_t |
4054 | | _cairo_solid_pattern_equal (const cairo_solid_pattern_t *a, |
4055 | | const cairo_solid_pattern_t *b) |
4056 | 0 | { |
4057 | 0 | return _cairo_color_equal (&a->color, &b->color); |
4058 | 0 | } |
4059 | | |
4060 | | static cairo_bool_t |
4061 | | _cairo_gradient_color_stops_equal (const cairo_gradient_pattern_t *a, |
4062 | | const cairo_gradient_pattern_t *b) |
4063 | 0 | { |
4064 | 0 | unsigned int n; |
4065 | |
|
4066 | 0 | if (a->n_stops != b->n_stops) |
4067 | 0 | return FALSE; |
4068 | | |
4069 | 0 | for (n = 0; n < a->n_stops; n++) { |
4070 | 0 | if (a->stops[n].offset != b->stops[n].offset) |
4071 | 0 | return FALSE; |
4072 | 0 | if (! _cairo_color_stop_equal (&a->stops[n].color, &b->stops[n].color)) |
4073 | 0 | return FALSE; |
4074 | 0 | } |
4075 | | |
4076 | 0 | return TRUE; |
4077 | 0 | } |
4078 | | |
4079 | | cairo_bool_t |
4080 | | _cairo_linear_pattern_equal (const cairo_linear_pattern_t *a, |
4081 | | const cairo_linear_pattern_t *b) |
4082 | 0 | { |
4083 | 0 | if (a->pd1.x != b->pd1.x) |
4084 | 0 | return FALSE; |
4085 | | |
4086 | 0 | if (a->pd1.y != b->pd1.y) |
4087 | 0 | return FALSE; |
4088 | | |
4089 | 0 | if (a->pd2.x != b->pd2.x) |
4090 | 0 | return FALSE; |
4091 | | |
4092 | 0 | if (a->pd2.y != b->pd2.y) |
4093 | 0 | return FALSE; |
4094 | | |
4095 | 0 | return _cairo_gradient_color_stops_equal (&a->base, &b->base); |
4096 | 0 | } |
4097 | | |
4098 | | cairo_bool_t |
4099 | | _cairo_radial_pattern_equal (const cairo_radial_pattern_t *a, |
4100 | | const cairo_radial_pattern_t *b) |
4101 | 0 | { |
4102 | 0 | if (a->cd1.center.x != b->cd1.center.x) |
4103 | 0 | return FALSE; |
4104 | | |
4105 | 0 | if (a->cd1.center.y != b->cd1.center.y) |
4106 | 0 | return FALSE; |
4107 | | |
4108 | 0 | if (a->cd1.radius != b->cd1.radius) |
4109 | 0 | return FALSE; |
4110 | | |
4111 | 0 | if (a->cd2.center.x != b->cd2.center.x) |
4112 | 0 | return FALSE; |
4113 | | |
4114 | 0 | if (a->cd2.center.y != b->cd2.center.y) |
4115 | 0 | return FALSE; |
4116 | | |
4117 | 0 | if (a->cd2.radius != b->cd2.radius) |
4118 | 0 | return FALSE; |
4119 | | |
4120 | 0 | return _cairo_gradient_color_stops_equal (&a->base, &b->base); |
4121 | 0 | } |
4122 | | |
4123 | | static cairo_bool_t |
4124 | | _cairo_mesh_pattern_equal (const cairo_mesh_pattern_t *a, |
4125 | | const cairo_mesh_pattern_t *b) |
4126 | 0 | { |
4127 | 0 | const cairo_mesh_patch_t *patch_a, *patch_b; |
4128 | 0 | unsigned int i, num_patches_a, num_patches_b; |
4129 | |
|
4130 | 0 | num_patches_a = _cairo_array_num_elements (&a->patches); |
4131 | 0 | num_patches_b = _cairo_array_num_elements (&b->patches); |
4132 | |
|
4133 | 0 | if (num_patches_a != num_patches_b) |
4134 | 0 | return FALSE; |
4135 | | |
4136 | 0 | for (i = 0; i < num_patches_a; i++) { |
4137 | 0 | patch_a = _cairo_array_index_const (&a->patches, i); |
4138 | 0 | patch_b = _cairo_array_index_const (&b->patches, i); |
4139 | 0 | if (memcmp (patch_a, patch_b, sizeof(cairo_mesh_patch_t)) != 0) |
4140 | 0 | return FALSE; |
4141 | 0 | } |
4142 | | |
4143 | 0 | return TRUE; |
4144 | 0 | } |
4145 | | |
4146 | | static cairo_bool_t |
4147 | | _cairo_surface_pattern_equal (const cairo_surface_pattern_t *a, |
4148 | | const cairo_surface_pattern_t *b) |
4149 | 0 | { |
4150 | 0 | return a->surface->unique_id == b->surface->unique_id; |
4151 | 0 | } |
4152 | | |
4153 | | static cairo_bool_t |
4154 | | _cairo_raster_source_pattern_equal (const cairo_raster_source_pattern_t *a, |
4155 | | const cairo_raster_source_pattern_t *b) |
4156 | 0 | { |
4157 | 0 | return a->user_data == b->user_data; |
4158 | 0 | } |
4159 | | |
4160 | | cairo_bool_t |
4161 | | _cairo_pattern_equal (const cairo_pattern_t *a, const cairo_pattern_t *b) |
4162 | 0 | { |
4163 | 0 | if (a->status || b->status) |
4164 | 0 | return FALSE; |
4165 | | |
4166 | 0 | if (a == b) |
4167 | 0 | return TRUE; |
4168 | | |
4169 | 0 | if (a->type != b->type) |
4170 | 0 | return FALSE; |
4171 | | |
4172 | 0 | if (a->has_component_alpha != b->has_component_alpha) |
4173 | 0 | return FALSE; |
4174 | | |
4175 | 0 | if (a->type != CAIRO_PATTERN_TYPE_SOLID) { |
4176 | 0 | if (memcmp (&a->matrix, &b->matrix, sizeof (cairo_matrix_t))) |
4177 | 0 | return FALSE; |
4178 | | |
4179 | 0 | if (a->filter != b->filter) |
4180 | 0 | return FALSE; |
4181 | | |
4182 | 0 | if (a->extend != b->extend) |
4183 | 0 | return FALSE; |
4184 | 0 | } |
4185 | | |
4186 | 0 | switch (a->type) { |
4187 | 0 | case CAIRO_PATTERN_TYPE_SOLID: |
4188 | 0 | return _cairo_solid_pattern_equal ((cairo_solid_pattern_t *) a, |
4189 | 0 | (cairo_solid_pattern_t *) b); |
4190 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
4191 | 0 | return _cairo_linear_pattern_equal ((cairo_linear_pattern_t *) a, |
4192 | 0 | (cairo_linear_pattern_t *) b); |
4193 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: |
4194 | 0 | return _cairo_radial_pattern_equal ((cairo_radial_pattern_t *) a, |
4195 | 0 | (cairo_radial_pattern_t *) b); |
4196 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
4197 | 0 | return _cairo_mesh_pattern_equal ((cairo_mesh_pattern_t *) a, |
4198 | 0 | (cairo_mesh_pattern_t *) b); |
4199 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: |
4200 | 0 | return _cairo_surface_pattern_equal ((cairo_surface_pattern_t *) a, |
4201 | 0 | (cairo_surface_pattern_t *) b); |
4202 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
4203 | 0 | return _cairo_raster_source_pattern_equal ((cairo_raster_source_pattern_t *) a, |
4204 | 0 | (cairo_raster_source_pattern_t *) b); |
4205 | 0 | default: |
4206 | 0 | ASSERT_NOT_REACHED; |
4207 | 0 | return FALSE; |
4208 | 0 | } |
4209 | 0 | } |
4210 | | |
4211 | | /** |
4212 | | * cairo_pattern_get_rgba: |
4213 | | * @pattern: a #cairo_pattern_t |
4214 | | * @red: return value for red component of color, or %NULL |
4215 | | * @green: return value for green component of color, or %NULL |
4216 | | * @blue: return value for blue component of color, or %NULL |
4217 | | * @alpha: return value for alpha component of color, or %NULL |
4218 | | * |
4219 | | * Gets the solid color for a solid color pattern. |
4220 | | * |
4221 | | * Note that the color and alpha values are not premultiplied. |
4222 | | * |
4223 | | * Return value: %CAIRO_STATUS_SUCCESS, or |
4224 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if the pattern is not a solid |
4225 | | * color pattern. |
4226 | | * |
4227 | | * Since: 1.4 |
4228 | | **/ |
4229 | | cairo_status_t |
4230 | | cairo_pattern_get_rgba (cairo_pattern_t *pattern, |
4231 | | double *red, double *green, |
4232 | | double *blue, double *alpha) |
4233 | 0 | { |
4234 | 0 | cairo_solid_pattern_t *solid = (cairo_solid_pattern_t*) pattern; |
4235 | 0 | double r0, g0, b0, a0; |
4236 | |
|
4237 | 0 | if (pattern->status) |
4238 | 0 | return pattern->status; |
4239 | | |
4240 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_SOLID) |
4241 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4242 | | |
4243 | 0 | _cairo_color_get_rgba (&solid->color, &r0, &g0, &b0, &a0); |
4244 | |
|
4245 | 0 | if (red) |
4246 | 0 | *red = r0; |
4247 | 0 | if (green) |
4248 | 0 | *green = g0; |
4249 | 0 | if (blue) |
4250 | 0 | *blue = b0; |
4251 | 0 | if (alpha) |
4252 | 0 | *alpha = a0; |
4253 | |
|
4254 | 0 | return CAIRO_STATUS_SUCCESS; |
4255 | 0 | } |
4256 | | |
4257 | | /** |
4258 | | * cairo_pattern_get_surface: |
4259 | | * @pattern: a #cairo_pattern_t |
4260 | | * @surface: return value for surface of pattern, or %NULL |
4261 | | * |
4262 | | * Gets the surface of a surface pattern. The reference returned in |
4263 | | * @surface is owned by the pattern; the caller should call |
4264 | | * cairo_surface_reference() if the surface is to be retained. |
4265 | | * |
4266 | | * Return value: %CAIRO_STATUS_SUCCESS, or |
4267 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if the pattern is not a surface |
4268 | | * pattern. |
4269 | | * |
4270 | | * Since: 1.4 |
4271 | | **/ |
4272 | | cairo_status_t |
4273 | | cairo_pattern_get_surface (cairo_pattern_t *pattern, |
4274 | | cairo_surface_t **surface) |
4275 | 0 | { |
4276 | 0 | cairo_surface_pattern_t *spat = (cairo_surface_pattern_t*) pattern; |
4277 | |
|
4278 | 0 | if (pattern->status) |
4279 | 0 | return pattern->status; |
4280 | | |
4281 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_SURFACE) |
4282 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4283 | | |
4284 | 0 | if (surface) |
4285 | 0 | *surface = spat->surface; |
4286 | |
|
4287 | 0 | return CAIRO_STATUS_SUCCESS; |
4288 | 0 | } |
4289 | | |
4290 | | /** |
4291 | | * cairo_pattern_get_color_stop_rgba: |
4292 | | * @pattern: a #cairo_pattern_t |
4293 | | * @index: index of the stop to return data for |
4294 | | * @offset: return value for the offset of the stop, or %NULL |
4295 | | * @red: return value for red component of color, or %NULL |
4296 | | * @green: return value for green component of color, or %NULL |
4297 | | * @blue: return value for blue component of color, or %NULL |
4298 | | * @alpha: return value for alpha component of color, or %NULL |
4299 | | * |
4300 | | * Gets the color and offset information at the given @index for a |
4301 | | * gradient pattern. Values of @index range from 0 to n-1 |
4302 | | * where n is the number returned |
4303 | | * by cairo_pattern_get_color_stop_count(). |
4304 | | * |
4305 | | * Note that the color and alpha values are not premultiplied. |
4306 | | * |
4307 | | * Return value: %CAIRO_STATUS_SUCCESS, or %CAIRO_STATUS_INVALID_INDEX |
4308 | | * if @index is not valid for the given pattern. If the pattern is |
4309 | | * not a gradient pattern, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH is |
4310 | | * returned. |
4311 | | * |
4312 | | * Since: 1.4 |
4313 | | **/ |
4314 | | cairo_status_t |
4315 | | cairo_pattern_get_color_stop_rgba (cairo_pattern_t *pattern, |
4316 | | int index, double *offset, |
4317 | | double *red, double *green, |
4318 | | double *blue, double *alpha) |
4319 | 0 | { |
4320 | 0 | cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t*) pattern; |
4321 | |
|
4322 | 0 | if (pattern->status) |
4323 | 0 | return pattern->status; |
4324 | | |
4325 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR && |
4326 | 0 | pattern->type != CAIRO_PATTERN_TYPE_RADIAL) |
4327 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4328 | | |
4329 | 0 | if (index < 0 || (unsigned int) index >= gradient->n_stops) |
4330 | 0 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4331 | | |
4332 | 0 | if (offset) |
4333 | 0 | *offset = gradient->stops[index].offset; |
4334 | 0 | if (red) |
4335 | 0 | *red = gradient->stops[index].color.red; |
4336 | 0 | if (green) |
4337 | 0 | *green = gradient->stops[index].color.green; |
4338 | 0 | if (blue) |
4339 | 0 | *blue = gradient->stops[index].color.blue; |
4340 | 0 | if (alpha) |
4341 | 0 | *alpha = gradient->stops[index].color.alpha; |
4342 | |
|
4343 | 0 | return CAIRO_STATUS_SUCCESS; |
4344 | 0 | } |
4345 | | |
4346 | | /** |
4347 | | * cairo_pattern_get_color_stop_count: |
4348 | | * @pattern: a #cairo_pattern_t |
4349 | | * @count: return value for the number of color stops, or %NULL |
4350 | | * |
4351 | | * Gets the number of color stops specified in the given gradient |
4352 | | * pattern. |
4353 | | * |
4354 | | * Return value: %CAIRO_STATUS_SUCCESS, or |
4355 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a gradient |
4356 | | * pattern. |
4357 | | * |
4358 | | * Since: 1.4 |
4359 | | **/ |
4360 | | cairo_status_t |
4361 | | cairo_pattern_get_color_stop_count (cairo_pattern_t *pattern, |
4362 | | int *count) |
4363 | 0 | { |
4364 | 0 | cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t*) pattern; |
4365 | |
|
4366 | 0 | if (pattern->status) |
4367 | 0 | return pattern->status; |
4368 | | |
4369 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR && |
4370 | 0 | pattern->type != CAIRO_PATTERN_TYPE_RADIAL) |
4371 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4372 | | |
4373 | 0 | if (count) |
4374 | 0 | *count = gradient->n_stops; |
4375 | |
|
4376 | 0 | return CAIRO_STATUS_SUCCESS; |
4377 | 0 | } |
4378 | | |
4379 | | /** |
4380 | | * cairo_pattern_get_linear_points: |
4381 | | * @pattern: a #cairo_pattern_t |
4382 | | * @x0: return value for the x coordinate of the first point, or %NULL |
4383 | | * @y0: return value for the y coordinate of the first point, or %NULL |
4384 | | * @x1: return value for the x coordinate of the second point, or %NULL |
4385 | | * @y1: return value for the y coordinate of the second point, or %NULL |
4386 | | * |
4387 | | * Gets the gradient endpoints for a linear gradient. |
4388 | | * |
4389 | | * Return value: %CAIRO_STATUS_SUCCESS, or |
4390 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a linear |
4391 | | * gradient pattern. |
4392 | | * |
4393 | | * Since: 1.4 |
4394 | | **/ |
4395 | | cairo_status_t |
4396 | | cairo_pattern_get_linear_points (cairo_pattern_t *pattern, |
4397 | | double *x0, double *y0, |
4398 | | double *x1, double *y1) |
4399 | 0 | { |
4400 | 0 | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t*) pattern; |
4401 | |
|
4402 | 0 | if (pattern->status) |
4403 | 0 | return pattern->status; |
4404 | | |
4405 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR) |
4406 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4407 | | |
4408 | 0 | if (x0) |
4409 | 0 | *x0 = linear->pd1.x; |
4410 | 0 | if (y0) |
4411 | 0 | *y0 = linear->pd1.y; |
4412 | 0 | if (x1) |
4413 | 0 | *x1 = linear->pd2.x; |
4414 | 0 | if (y1) |
4415 | 0 | *y1 = linear->pd2.y; |
4416 | |
|
4417 | 0 | return CAIRO_STATUS_SUCCESS; |
4418 | 0 | } |
4419 | | |
4420 | | /** |
4421 | | * cairo_pattern_get_radial_circles: |
4422 | | * @pattern: a #cairo_pattern_t |
4423 | | * @x0: return value for the x coordinate of the center of the first circle, or %NULL |
4424 | | * @y0: return value for the y coordinate of the center of the first circle, or %NULL |
4425 | | * @r0: return value for the radius of the first circle, or %NULL |
4426 | | * @x1: return value for the x coordinate of the center of the second circle, or %NULL |
4427 | | * @y1: return value for the y coordinate of the center of the second circle, or %NULL |
4428 | | * @r1: return value for the radius of the second circle, or %NULL |
4429 | | * |
4430 | | * Gets the gradient endpoint circles for a radial gradient, each |
4431 | | * specified as a center coordinate and a radius. |
4432 | | * |
4433 | | * Return value: %CAIRO_STATUS_SUCCESS, or |
4434 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a radial |
4435 | | * gradient pattern. |
4436 | | * |
4437 | | * Since: 1.4 |
4438 | | **/ |
4439 | | cairo_status_t |
4440 | | cairo_pattern_get_radial_circles (cairo_pattern_t *pattern, |
4441 | | double *x0, double *y0, double *r0, |
4442 | | double *x1, double *y1, double *r1) |
4443 | 0 | { |
4444 | 0 | cairo_radial_pattern_t *radial = (cairo_radial_pattern_t*) pattern; |
4445 | |
|
4446 | 0 | if (pattern->status) |
4447 | 0 | return pattern->status; |
4448 | | |
4449 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_RADIAL) |
4450 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4451 | | |
4452 | 0 | if (x0) |
4453 | 0 | *x0 = radial->cd1.center.x; |
4454 | 0 | if (y0) |
4455 | 0 | *y0 = radial->cd1.center.y; |
4456 | 0 | if (r0) |
4457 | 0 | *r0 = radial->cd1.radius; |
4458 | 0 | if (x1) |
4459 | 0 | *x1 = radial->cd2.center.x; |
4460 | 0 | if (y1) |
4461 | 0 | *y1 = radial->cd2.center.y; |
4462 | 0 | if (r1) |
4463 | 0 | *r1 = radial->cd2.radius; |
4464 | |
|
4465 | 0 | return CAIRO_STATUS_SUCCESS; |
4466 | 0 | } |
4467 | | |
4468 | | /** |
4469 | | * cairo_mesh_pattern_get_patch_count: |
4470 | | * @pattern: a #cairo_pattern_t |
4471 | | * @count: return value for the number patches, or %NULL |
4472 | | * |
4473 | | * Gets the number of patches specified in the given mesh pattern. |
4474 | | * |
4475 | | * The number only includes patches which have been finished by |
4476 | | * calling cairo_mesh_pattern_end_patch(). For example it will be 0 |
4477 | | * during the definition of the first patch. |
4478 | | * |
4479 | | * Return value: %CAIRO_STATUS_SUCCESS, or |
4480 | | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a mesh |
4481 | | * pattern. |
4482 | | * |
4483 | | * Since: 1.12 |
4484 | | **/ |
4485 | | cairo_status_t |
4486 | | cairo_mesh_pattern_get_patch_count (cairo_pattern_t *pattern, |
4487 | | unsigned int *count) |
4488 | 0 | { |
4489 | 0 | cairo_mesh_pattern_t *mesh = (cairo_mesh_pattern_t *) pattern; |
4490 | |
|
4491 | 0 | if (unlikely (pattern->status)) |
4492 | 0 | return pattern->status; |
4493 | | |
4494 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) |
4495 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4496 | | |
4497 | 0 | if (count) { |
4498 | 0 | *count = _cairo_array_num_elements (&mesh->patches); |
4499 | 0 | if (mesh->current_patch) |
4500 | 0 | *count -= 1; |
4501 | 0 | } |
4502 | |
|
4503 | 0 | return CAIRO_STATUS_SUCCESS; |
4504 | 0 | } |
4505 | | |
4506 | | /** |
4507 | | * cairo_mesh_pattern_get_path: |
4508 | | * @pattern: a #cairo_pattern_t |
4509 | | * @patch_num: the patch number to return data for |
4510 | | * |
4511 | | * Gets path defining the patch @patch_num for a mesh |
4512 | | * pattern. |
4513 | | * |
4514 | | * @patch_num can range from 0 to n-1 where n is the number returned by |
4515 | | * cairo_mesh_pattern_get_patch_count(). |
4516 | | * |
4517 | | * Return value: the path defining the patch, or a path with status |
4518 | | * %CAIRO_STATUS_INVALID_INDEX if @patch_num or @point_num is not |
4519 | | * valid for @pattern. If @pattern is not a mesh pattern, a path with |
4520 | | * status %CAIRO_STATUS_PATTERN_TYPE_MISMATCH is returned. |
4521 | | * |
4522 | | * Since: 1.12 |
4523 | | **/ |
4524 | | cairo_path_t * |
4525 | | cairo_mesh_pattern_get_path (cairo_pattern_t *pattern, |
4526 | | unsigned int patch_num) |
4527 | 0 | { |
4528 | 0 | cairo_mesh_pattern_t *mesh = (cairo_mesh_pattern_t *) pattern; |
4529 | 0 | const cairo_mesh_patch_t *patch; |
4530 | 0 | cairo_path_t *path; |
4531 | 0 | cairo_path_data_t *data; |
4532 | 0 | unsigned int patch_count; |
4533 | 0 | int l, current_point; |
4534 | |
|
4535 | 0 | if (unlikely (pattern->status)) |
4536 | 0 | return _cairo_path_create_in_error (pattern->status); |
4537 | | |
4538 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) |
4539 | 0 | return _cairo_path_create_in_error (_cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH)); |
4540 | | |
4541 | 0 | patch_count = _cairo_array_num_elements (&mesh->patches); |
4542 | 0 | if (mesh->current_patch) |
4543 | 0 | patch_count--; |
4544 | |
|
4545 | 0 | if (unlikely (patch_num >= patch_count)) |
4546 | 0 | return _cairo_path_create_in_error (_cairo_error (CAIRO_STATUS_INVALID_INDEX)); |
4547 | | |
4548 | 0 | patch = _cairo_array_index_const (&mesh->patches, patch_num); |
4549 | |
|
4550 | 0 | path = _cairo_calloc (sizeof (cairo_path_t)); |
4551 | 0 | if (path == NULL) |
4552 | 0 | return _cairo_path_create_in_error (_cairo_error (CAIRO_STATUS_NO_MEMORY)); |
4553 | | |
4554 | 0 | path->num_data = 18; |
4555 | 0 | path->data = _cairo_calloc_ab (path->num_data, |
4556 | 0 | sizeof (cairo_path_data_t)); |
4557 | 0 | if (path->data == NULL) { |
4558 | 0 | free (path); |
4559 | 0 | return _cairo_path_create_in_error (_cairo_error (CAIRO_STATUS_NO_MEMORY)); |
4560 | 0 | } |
4561 | | |
4562 | 0 | data = path->data; |
4563 | 0 | data[0].header.type = CAIRO_PATH_MOVE_TO; |
4564 | 0 | data[0].header.length = 2; |
4565 | 0 | data[1].point.x = patch->points[0][0].x; |
4566 | 0 | data[1].point.y = patch->points[0][0].y; |
4567 | 0 | data += data[0].header.length; |
4568 | |
|
4569 | 0 | current_point = 0; |
4570 | |
|
4571 | 0 | for (l = 0; l < 4; l++) { |
4572 | 0 | int i, j, k; |
4573 | |
|
4574 | 0 | data[0].header.type = CAIRO_PATH_CURVE_TO; |
4575 | 0 | data[0].header.length = 4; |
4576 | |
|
4577 | 0 | for (k = 1; k < 4; k++) { |
4578 | 0 | current_point = (current_point + 1) % 12; |
4579 | 0 | i = mesh_path_point_i[current_point]; |
4580 | 0 | j = mesh_path_point_j[current_point]; |
4581 | 0 | data[k].point.x = patch->points[i][j].x; |
4582 | 0 | data[k].point.y = patch->points[i][j].y; |
4583 | 0 | } |
4584 | |
|
4585 | 0 | data += data[0].header.length; |
4586 | 0 | } |
4587 | |
|
4588 | 0 | path->status = CAIRO_STATUS_SUCCESS; |
4589 | |
|
4590 | 0 | return path; |
4591 | 0 | } |
4592 | | |
4593 | | /** |
4594 | | * cairo_mesh_pattern_get_corner_color_rgba: |
4595 | | * @pattern: a #cairo_pattern_t |
4596 | | * @patch_num: the patch number to return data for |
4597 | | * @corner_num: the corner number to return data for |
4598 | | * @red: return value for red component of color, or %NULL |
4599 | | * @green: return value for green component of color, or %NULL |
4600 | | * @blue: return value for blue component of color, or %NULL |
4601 | | * @alpha: return value for alpha component of color, or %NULL |
4602 | | * |
4603 | | * Gets the color information in corner @corner_num of patch |
4604 | | * @patch_num for a mesh pattern. |
4605 | | * |
4606 | | * @patch_num can range from 0 to n-1 where n is the number returned by |
4607 | | * cairo_mesh_pattern_get_patch_count(). |
4608 | | * |
4609 | | * Valid values for @corner_num are from 0 to 3 and identify the |
4610 | | * corners as explained in cairo_pattern_create_mesh(). |
4611 | | * |
4612 | | * Note that the color and alpha values are not premultiplied. |
4613 | | * |
4614 | | * Return value: %CAIRO_STATUS_SUCCESS, or %CAIRO_STATUS_INVALID_INDEX |
4615 | | * if @patch_num or @corner_num is not valid for @pattern. If |
4616 | | * @pattern is not a mesh pattern, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH |
4617 | | * is returned. |
4618 | | * |
4619 | | * Since: 1.12 |
4620 | | **/ |
4621 | | cairo_status_t |
4622 | | cairo_mesh_pattern_get_corner_color_rgba (cairo_pattern_t *pattern, |
4623 | | unsigned int patch_num, |
4624 | | unsigned int corner_num, |
4625 | | double *red, double *green, |
4626 | | double *blue, double *alpha) |
4627 | 0 | { |
4628 | 0 | cairo_mesh_pattern_t *mesh = (cairo_mesh_pattern_t *) pattern; |
4629 | 0 | unsigned int patch_count; |
4630 | 0 | const cairo_mesh_patch_t *patch; |
4631 | |
|
4632 | 0 | if (unlikely (pattern->status)) |
4633 | 0 | return pattern->status; |
4634 | | |
4635 | 0 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)) |
4636 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4637 | | |
4638 | 0 | if (unlikely (corner_num > 3)) |
4639 | 0 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4640 | | |
4641 | 0 | patch_count = _cairo_array_num_elements (&mesh->patches); |
4642 | 0 | if (mesh->current_patch) |
4643 | 0 | patch_count--; |
4644 | |
|
4645 | 0 | if (unlikely (patch_num >= patch_count)) |
4646 | 0 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4647 | | |
4648 | 0 | patch = _cairo_array_index_const (&mesh->patches, patch_num); |
4649 | |
|
4650 | 0 | if (red) |
4651 | 0 | *red = patch->colors[corner_num].red; |
4652 | 0 | if (green) |
4653 | 0 | *green = patch->colors[corner_num].green; |
4654 | 0 | if (blue) |
4655 | 0 | *blue = patch->colors[corner_num].blue; |
4656 | 0 | if (alpha) |
4657 | 0 | *alpha = patch->colors[corner_num].alpha; |
4658 | |
|
4659 | 0 | return CAIRO_STATUS_SUCCESS; |
4660 | 0 | } |
4661 | | |
4662 | | /** |
4663 | | * cairo_mesh_pattern_get_control_point: |
4664 | | * @pattern: a #cairo_pattern_t |
4665 | | * @patch_num: the patch number to return data for |
4666 | | * @point_num: the control point number to return data for |
4667 | | * @x: return value for the x coordinate of the control point, or %NULL |
4668 | | * @y: return value for the y coordinate of the control point, or %NULL |
4669 | | * |
4670 | | * Gets the control point @point_num of patch @patch_num for a mesh |
4671 | | * pattern. |
4672 | | * |
4673 | | * @patch_num can range from 0 to n-1 where n is the number returned by |
4674 | | * cairo_mesh_pattern_get_patch_count(). |
4675 | | * |
4676 | | * Valid values for @point_num are from 0 to 3 and identify the |
4677 | | * control points as explained in cairo_pattern_create_mesh(). |
4678 | | * |
4679 | | * Return value: %CAIRO_STATUS_SUCCESS, or %CAIRO_STATUS_INVALID_INDEX |
4680 | | * if @patch_num or @point_num is not valid for @pattern. If @pattern |
4681 | | * is not a mesh pattern, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH is |
4682 | | * returned. |
4683 | | * |
4684 | | * Since: 1.12 |
4685 | | **/ |
4686 | | cairo_status_t |
4687 | | cairo_mesh_pattern_get_control_point (cairo_pattern_t *pattern, |
4688 | | unsigned int patch_num, |
4689 | | unsigned int point_num, |
4690 | | double *x, double *y) |
4691 | 0 | { |
4692 | 0 | cairo_mesh_pattern_t *mesh = (cairo_mesh_pattern_t *) pattern; |
4693 | 0 | const cairo_mesh_patch_t *patch; |
4694 | 0 | unsigned int patch_count; |
4695 | 0 | int i, j; |
4696 | |
|
4697 | 0 | if (pattern->status) |
4698 | 0 | return pattern->status; |
4699 | | |
4700 | 0 | if (pattern->type != CAIRO_PATTERN_TYPE_MESH) |
4701 | 0 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4702 | | |
4703 | 0 | if (point_num > 3) |
4704 | 0 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4705 | | |
4706 | 0 | patch_count = _cairo_array_num_elements (&mesh->patches); |
4707 | 0 | if (mesh->current_patch) |
4708 | 0 | patch_count--; |
4709 | |
|
4710 | 0 | if (unlikely (patch_num >= patch_count)) |
4711 | 0 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4712 | | |
4713 | 0 | patch = _cairo_array_index_const (&mesh->patches, patch_num); |
4714 | |
|
4715 | 0 | i = mesh_control_point_i[point_num]; |
4716 | 0 | j = mesh_control_point_j[point_num]; |
4717 | |
|
4718 | 0 | if (x) |
4719 | 0 | *x = patch->points[i][j].x; |
4720 | 0 | if (y) |
4721 | 0 | *y = patch->points[i][j].y; |
4722 | |
|
4723 | 0 | return CAIRO_STATUS_SUCCESS; |
4724 | 0 | } |
4725 | | |
4726 | | void |
4727 | | _cairo_pattern_reset_static_data (void) |
4728 | 0 | { |
4729 | 0 | int i; |
4730 | |
|
4731 | 0 | for (i = 0; i < ARRAY_LENGTH (freed_pattern_pool); i++) |
4732 | 0 | _freed_pool_reset (&freed_pattern_pool[i]); |
4733 | 0 | } |
4734 | | |
4735 | | static void |
4736 | | _cairo_debug_print_surface_pattern (FILE *file, |
4737 | | const cairo_surface_pattern_t *pattern) |
4738 | 0 | { |
4739 | 0 | const char *s; |
4740 | 0 | switch (pattern->surface->type) { |
4741 | 0 | case CAIRO_SURFACE_TYPE_IMAGE: s = "image"; break; |
4742 | 0 | case CAIRO_SURFACE_TYPE_PDF: s = "pdf"; break; |
4743 | 0 | case CAIRO_SURFACE_TYPE_PS: s = "ps"; break; |
4744 | 0 | case CAIRO_SURFACE_TYPE_XLIB: s = "xlib"; break; |
4745 | 0 | case CAIRO_SURFACE_TYPE_XCB: s = "xcb"; break; |
4746 | 0 | case CAIRO_SURFACE_TYPE_GLITZ: s = "glitz"; break; |
4747 | 0 | case CAIRO_SURFACE_TYPE_QUARTZ: s = "quartz"; break; |
4748 | 0 | case CAIRO_SURFACE_TYPE_WIN32: s = "win32"; break; |
4749 | 0 | case CAIRO_SURFACE_TYPE_BEOS: s = "beos"; break; |
4750 | 0 | case CAIRO_SURFACE_TYPE_DIRECTFB: s = "directfb"; break; |
4751 | 0 | case CAIRO_SURFACE_TYPE_SVG: s = "svg"; break; |
4752 | 0 | case CAIRO_SURFACE_TYPE_OS2: s = "os2"; break; |
4753 | 0 | case CAIRO_SURFACE_TYPE_WIN32_PRINTING: s = "win32_printing"; break; |
4754 | 0 | case CAIRO_SURFACE_TYPE_QUARTZ_IMAGE: s = "quartz_image"; break; |
4755 | 0 | case CAIRO_SURFACE_TYPE_SCRIPT: s = "script"; break; |
4756 | 0 | case CAIRO_SURFACE_TYPE_QT: s = "qt"; break; |
4757 | 0 | case CAIRO_SURFACE_TYPE_RECORDING: s = "recording"; break; |
4758 | 0 | case CAIRO_SURFACE_TYPE_VG: s = "vg"; break; |
4759 | 0 | case CAIRO_SURFACE_TYPE_GL: s = "gl"; break; |
4760 | 0 | case CAIRO_SURFACE_TYPE_DRM: s = "drm"; break; |
4761 | 0 | case CAIRO_SURFACE_TYPE_TEE: s = "tee"; break; |
4762 | 0 | case CAIRO_SURFACE_TYPE_XML: s = "xml"; break; |
4763 | 0 | case CAIRO_SURFACE_TYPE_SKIA: s = "skia"; break; /* Deprecated */ |
4764 | 0 | case CAIRO_SURFACE_TYPE_SUBSURFACE: s = "subsurface"; break; |
4765 | 0 | case CAIRO_SURFACE_TYPE_COGL: s = "cogl"; break; |
4766 | 0 | default: s = "invalid"; ASSERT_NOT_REACHED; break; |
4767 | 0 | } |
4768 | 0 | fprintf (file, " surface type: %s\n", s); |
4769 | 0 | } |
4770 | | |
4771 | | static void |
4772 | | _cairo_debug_print_raster_source_pattern (FILE *file, |
4773 | | const cairo_raster_source_pattern_t *raster) |
4774 | 0 | { |
4775 | 0 | fprintf (file, " content: %x, size %dx%d\n", raster->content, raster->extents.width, raster->extents.height); |
4776 | 0 | } |
4777 | | |
4778 | | static void |
4779 | | _cairo_debug_print_linear_pattern (FILE *file, |
4780 | | const cairo_linear_pattern_t *pattern) |
4781 | 0 | { |
4782 | 0 | } |
4783 | | |
4784 | | static void |
4785 | | _cairo_debug_print_radial_pattern (FILE *file, |
4786 | | const cairo_radial_pattern_t *pattern) |
4787 | 0 | { |
4788 | 0 | } |
4789 | | |
4790 | | static void |
4791 | | _cairo_debug_print_mesh_pattern (FILE *file, |
4792 | | const cairo_mesh_pattern_t *pattern) |
4793 | 0 | { |
4794 | 0 | } |
4795 | | |
4796 | | void |
4797 | | _cairo_debug_print_pattern (FILE *file, const cairo_pattern_t *pattern) |
4798 | 0 | { |
4799 | 0 | const char *s; |
4800 | 0 | switch (pattern->type) { |
4801 | 0 | case CAIRO_PATTERN_TYPE_SOLID: s = "solid"; break; |
4802 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: s = "surface"; break; |
4803 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: s = "linear"; break; |
4804 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: s = "radial"; break; |
4805 | 0 | case CAIRO_PATTERN_TYPE_MESH: s = "mesh"; break; |
4806 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: s = "raster"; break; |
4807 | 0 | default: s = "invalid"; ASSERT_NOT_REACHED; break; |
4808 | 0 | } |
4809 | | |
4810 | 0 | fprintf (file, "pattern: %s\n", s); |
4811 | 0 | if (pattern->type == CAIRO_PATTERN_TYPE_SOLID) |
4812 | 0 | return; |
4813 | | |
4814 | 0 | switch (pattern->extend) { |
4815 | 0 | case CAIRO_EXTEND_NONE: s = "none"; break; |
4816 | 0 | case CAIRO_EXTEND_REPEAT: s = "repeat"; break; |
4817 | 0 | case CAIRO_EXTEND_REFLECT: s = "reflect"; break; |
4818 | 0 | case CAIRO_EXTEND_PAD: s = "pad"; break; |
4819 | 0 | default: s = "invalid"; ASSERT_NOT_REACHED; break; |
4820 | 0 | } |
4821 | 0 | fprintf (file, " extend: %s\n", s); |
4822 | |
|
4823 | 0 | switch (pattern->filter) { |
4824 | 0 | case CAIRO_FILTER_FAST: s = "fast"; break; |
4825 | 0 | case CAIRO_FILTER_GOOD: s = "good"; break; |
4826 | 0 | case CAIRO_FILTER_BEST: s = "best"; break; |
4827 | 0 | case CAIRO_FILTER_NEAREST: s = "nearest"; break; |
4828 | 0 | case CAIRO_FILTER_BILINEAR: s = "bilinear"; break; |
4829 | 0 | case CAIRO_FILTER_GAUSSIAN: s = "gaussian"; break; |
4830 | 0 | default: s = "invalid"; ASSERT_NOT_REACHED; break; |
4831 | 0 | } |
4832 | 0 | fprintf (file, " filter: %s\n", s); |
4833 | 0 | fprintf (file, " matrix: [%g %g %g %g %g %g]\n", |
4834 | 0 | pattern->matrix.xx, pattern->matrix.yx, |
4835 | 0 | pattern->matrix.xy, pattern->matrix.yy, |
4836 | 0 | pattern->matrix.x0, pattern->matrix.y0); |
4837 | 0 | switch (pattern->type) { |
4838 | 0 | default: |
4839 | 0 | case CAIRO_PATTERN_TYPE_SOLID: |
4840 | 0 | break; |
4841 | 0 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
4842 | 0 | _cairo_debug_print_raster_source_pattern (file, (cairo_raster_source_pattern_t *)pattern); |
4843 | 0 | break; |
4844 | 0 | case CAIRO_PATTERN_TYPE_SURFACE: |
4845 | 0 | _cairo_debug_print_surface_pattern (file, (cairo_surface_pattern_t *)pattern); |
4846 | 0 | break; |
4847 | 0 | case CAIRO_PATTERN_TYPE_LINEAR: |
4848 | 0 | _cairo_debug_print_linear_pattern (file, (cairo_linear_pattern_t *)pattern); |
4849 | 0 | break; |
4850 | 0 | case CAIRO_PATTERN_TYPE_RADIAL: |
4851 | 0 | _cairo_debug_print_radial_pattern (file, (cairo_radial_pattern_t *)pattern); |
4852 | 0 | break; |
4853 | 0 | case CAIRO_PATTERN_TYPE_MESH: |
4854 | 0 | _cairo_debug_print_mesh_pattern (file, (cairo_mesh_pattern_t *)pattern); |
4855 | 0 | break; |
4856 | 0 | } |
4857 | 0 | } |