Coverage Report

Created: 2025-11-16 09:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/work/workdir/UnpackedTarball/cairo/src/cairo-pen.c
Line
Count
Source
1
/* cairo - a vector graphics library with display and print output
2
 *
3
 * Copyright © 2002 University of Southern California
4
 * Copyright © 2008 Chris Wilson
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it either under the terms of the GNU Lesser General Public
8
 * License version 2.1 as published by the Free Software Foundation
9
 * (the "LGPL") or, at your option, under the terms of the Mozilla
10
 * Public License Version 1.1 (the "MPL"). If you do not alter this
11
 * notice, a recipient may use your version of this file under either
12
 * the MPL or the LGPL.
13
 *
14
 * You should have received a copy of the LGPL along with this library
15
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
16
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
17
 * You should have received a copy of the MPL along with this library
18
 * in the file COPYING-MPL-1.1
19
 *
20
 * The contents of this file are subject to the Mozilla Public License
21
 * Version 1.1 (the "License"); you may not use this file except in
22
 * compliance with the License. You may obtain a copy of the License at
23
 * http://www.mozilla.org/MPL/
24
 *
25
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
26
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
27
 * the specific language governing rights and limitations.
28
 *
29
 * The Original Code is the cairo graphics library.
30
 *
31
 * The Initial Developer of the Original Code is University of Southern
32
 * California.
33
 *
34
 * Contributor(s):
35
 *  Carl D. Worth <cworth@cworth.org>
36
 *  Chris Wilson <chris@chris-wilson.co.uk>
37
 */
38
39
#include "cairoint.h"
40
41
#include "cairo-error-private.h"
42
#include "cairo-slope-private.h"
43
44
static void
45
_cairo_pen_compute_slopes (cairo_pen_t *pen);
46
47
cairo_status_t
48
_cairo_pen_init (cairo_pen_t  *pen,
49
     double    radius,
50
     double    tolerance,
51
     const cairo_matrix_t *ctm)
52
73.3k
{
53
73.3k
    int i;
54
73.3k
    int reflect;
55
56
73.3k
    if (CAIRO_INJECT_FAULT ())
57
0
  return _cairo_error (CAIRO_STATUS_NO_MEMORY);
58
59
73.3k
    VG (VALGRIND_MAKE_MEM_UNDEFINED (pen, sizeof (cairo_pen_t)));
60
61
73.3k
    pen->radius = radius;
62
73.3k
    pen->tolerance = tolerance;
63
64
73.3k
    reflect = _cairo_matrix_compute_determinant (ctm) < 0.;
65
66
73.3k
    pen->num_vertices = _cairo_pen_vertices_needed (tolerance,
67
73.3k
                radius,
68
73.3k
                ctm);
69
70
73.3k
    if (pen->num_vertices > ARRAY_LENGTH (pen->vertices_embedded)) {
71
26
  pen->vertices = _cairo_malloc_ab (pen->num_vertices,
72
26
            sizeof (cairo_pen_vertex_t));
73
26
  if (unlikely (pen->vertices == NULL))
74
0
      return _cairo_error (CAIRO_STATUS_NO_MEMORY);
75
73.2k
    } else {
76
73.2k
  pen->vertices = pen->vertices_embedded;
77
73.2k
    }
78
79
    /*
80
     * Compute pen coordinates.  To generate the right ellipse, compute points around
81
     * a circle in user space and transform them to device space.  To get a consistent
82
     * orientation in device space, flip the pen if the transformation matrix
83
     * is reflecting
84
     */
85
808k
    for (i=0; i < pen->num_vertices; i++) {
86
734k
  cairo_pen_vertex_t *v = &pen->vertices[i];
87
734k
  double theta = 2 * M_PI * i / (double) pen->num_vertices, dx, dy;
88
734k
  if (reflect)
89
0
      theta = -theta;
90
734k
  dx = radius * cos (theta);
91
734k
  dy = radius * sin (theta);
92
734k
  cairo_matrix_transform_distance (ctm, &dx, &dy);
93
734k
  v->point.x = _cairo_fixed_from_double (dx);
94
734k
  v->point.y = _cairo_fixed_from_double (dy);
95
734k
    }
96
97
73.3k
    _cairo_pen_compute_slopes (pen);
98
99
73.3k
    return CAIRO_STATUS_SUCCESS;
100
73.3k
}
101
102
void
103
_cairo_pen_fini (cairo_pen_t *pen)
104
73.3k
{
105
73.3k
    if (pen->vertices != pen->vertices_embedded)
106
26
  free (pen->vertices);
107
108
109
73.3k
    VG (VALGRIND_MAKE_MEM_UNDEFINED (pen, sizeof (cairo_pen_t)));
110
73.3k
}
111
112
cairo_status_t
113
_cairo_pen_init_copy (cairo_pen_t *pen, const cairo_pen_t *other)
114
0
{
115
0
    VG (VALGRIND_MAKE_MEM_UNDEFINED (pen, sizeof (cairo_pen_t)));
116
117
0
    *pen = *other;
118
119
0
    if (CAIRO_INJECT_FAULT ())
120
0
  return _cairo_error (CAIRO_STATUS_NO_MEMORY);
121
122
0
    pen->vertices = pen->vertices_embedded;
123
0
    if (pen->num_vertices) {
124
0
  if (pen->num_vertices > ARRAY_LENGTH (pen->vertices_embedded)) {
125
0
      pen->vertices = _cairo_malloc_ab (pen->num_vertices,
126
0
                sizeof (cairo_pen_vertex_t));
127
0
      if (unlikely (pen->vertices == NULL))
128
0
    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
129
0
  }
130
131
0
  memcpy (pen->vertices, other->vertices,
132
0
    pen->num_vertices * sizeof (cairo_pen_vertex_t));
133
0
    }
134
135
0
    return CAIRO_STATUS_SUCCESS;
136
0
}
137
138
cairo_status_t
139
_cairo_pen_add_points (cairo_pen_t *pen, cairo_point_t *point, int num_points)
140
0
{
141
0
    cairo_status_t status;
142
0
    int num_vertices;
143
0
    int i;
144
145
0
    if (CAIRO_INJECT_FAULT ())
146
0
  return _cairo_error (CAIRO_STATUS_NO_MEMORY);
147
148
0
    num_vertices = pen->num_vertices + num_points;
149
0
    if (num_vertices > ARRAY_LENGTH (pen->vertices_embedded) ||
150
0
  pen->vertices != pen->vertices_embedded)
151
0
    {
152
0
  cairo_pen_vertex_t *vertices;
153
154
0
  if (pen->vertices == pen->vertices_embedded) {
155
0
      vertices = _cairo_malloc_ab (num_vertices,
156
0
                             sizeof (cairo_pen_vertex_t));
157
0
      if (unlikely (vertices == NULL))
158
0
    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
159
160
0
      memcpy (vertices, pen->vertices,
161
0
        pen->num_vertices * sizeof (cairo_pen_vertex_t));
162
0
  } else {
163
0
      vertices = _cairo_realloc_ab (pen->vertices,
164
0
            num_vertices,
165
0
            sizeof (cairo_pen_vertex_t));
166
0
      if (unlikely (vertices == NULL))
167
0
    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
168
0
  }
169
170
0
  pen->vertices = vertices;
171
0
    }
172
173
0
    pen->num_vertices = num_vertices;
174
175
    /* initialize new vertices */
176
0
    for (i=0; i < num_points; i++)
177
0
  pen->vertices[pen->num_vertices-num_points+i].point = point[i];
178
179
0
    status = _cairo_hull_compute (pen->vertices, &pen->num_vertices);
180
0
    if (unlikely (status))
181
0
  return status;
182
183
0
    _cairo_pen_compute_slopes (pen);
184
185
0
    return CAIRO_STATUS_SUCCESS;
186
0
}
187
188
/*
189
The circular pen in user space is transformed into an ellipse in
190
device space.
191
192
We construct the pen by computing points along the circumference
193
using equally spaced angles.
194
195
We show that this approximation to the ellipse has maximum error at the
196
major axis of the ellipse.
197
198
Set
199
200
      M = major axis length
201
      m = minor axis length
202
203
Align 'M' along the X axis and 'm' along the Y axis and draw
204
an ellipse parameterized by angle 't':
205
206
      x = M cos t     y = m sin t
207
208
Perturb t by ± d and compute two new points (x+,y+), (x-,y-).
209
The distance from the average of these two points to (x,y) represents
210
the maximum error in approximating the ellipse with a polygon formed
211
from vertices 2∆ radians apart.
212
213
      x+ = M cos (t+∆)    y+ = m sin (t+∆)
214
      x- = M cos (t-∆)    y- = m sin (t-∆)
215
216
Now compute the approximation error, E:
217
218
  Ex = (x - (x+ + x-) / 2)
219
  Ex = (M cos(t) - (Mcos(t+∆) + Mcos(t-∆))/2)
220
     = M (cos(t) - (cos(t)cos(∆) + sin(t)sin(∆) +
221
        cos(t)cos(∆) - sin(t)sin(∆))/2)
222
     = M(cos(t) - cos(t)cos(∆))
223
     = M cos(t) (1 - cos(∆))
224
225
  Ey = y - (y+ - y-) / 2
226
     = m sin (t) - (m sin(t+∆) + m sin(t-∆)) / 2
227
     = m (sin(t) - (sin(t)cos(∆) + cos(t)sin(∆) +
228
        sin(t)cos(∆) - cos(t)sin(∆))/2)
229
     = m (sin(t) - sin(t)cos(∆))
230
     = m sin(t) (1 - cos(∆))
231
232
  E² = Ex² + Ey²
233
     = (M cos(t) (1 - cos (∆)))² + (m sin(t) (1-cos(∆)))²
234
     = (1 - cos(∆))² (M² cos²(t) + m² sin²(t))
235
     = (1 - cos(∆))² ((m² + M² - m²) cos² (t) + m² sin²(t))
236
     = (1 - cos(∆))² (M² - m²) cos² (t) + (1 - cos(∆))² m²
237
238
Find the extremum by differentiation wrt t and setting that to zero
239
240
∂(E²)/∂(t) = (1-cos(∆))² (M² - m²) (-2 cos(t) sin(t))
241
242
         0 = 2 cos (t) sin (t)
243
   0 = sin (2t)
244
   t = nπ
245
246
Which is to say that the maximum and minimum errors occur on the
247
axes of the ellipse at 0 and π radians:
248
249
  E²(0) = (1-cos(∆))² (M² - m²) + (1-cos(∆))² m²
250
        = (1-cos(∆))² M²
251
  E²(π) = (1-cos(∆))² m²
252
253
maximum error = M (1-cos(∆))
254
minimum error = m (1-cos(∆))
255
256
We must make maximum error ≤ tolerance, so compute the ∆ needed:
257
258
      tolerance = M (1-cos(∆))
259
  tolerance / M = 1 - cos (∆)
260
         cos(∆) = 1 - tolerance/M
261
                    ∆ = acos (1 - tolerance / M);
262
263
Remembering that ∆ is half of our angle between vertices,
264
the number of vertices is then
265
266
             vertices = ceil(2π/2∆).
267
                      = ceil(π/∆).
268
269
Note that this also equation works for M == m (a circle) as it
270
doesn't matter where on the circle the error is computed.
271
*/
272
273
int
274
_cairo_pen_vertices_needed (double      tolerance,
275
          double      radius,
276
          const cairo_matrix_t  *matrix)
277
1.11M
{
278
    /*
279
     * the pen is a circle that gets transformed to an ellipse by matrix.
280
     * compute major axis length for a pen with the specified radius.
281
     * we don't need the minor axis length.
282
     */
283
1.11M
    double major_axis = _cairo_matrix_transformed_circle_major_axis (matrix,
284
1.11M
                     radius);
285
1.11M
    int num_vertices;
286
287
1.11M
    if (tolerance >= 4*major_axis) { /* XXX relaxed from 2*major for inkscape */
288
389
  num_vertices = 1;
289
1.11M
    } else if (tolerance >= major_axis) {
290
0
  num_vertices = 4;
291
1.11M
    } else {
292
1.11M
  double divisor = acos (1 - tolerance / major_axis);
293
294
1.11M
  if (divisor == 0.0)
295
13
      return 4;
296
297
1.11M
  num_vertices = ceil (2*M_PI / divisor);
298
299
  /* number of vertices must be even */
300
1.11M
  if (num_vertices % 2)
301
2.30k
      num_vertices++;
302
303
  /* And we must always have at least 4 vertices. */
304
1.11M
  if (num_vertices < 4)
305
0
      num_vertices = 4;
306
1.11M
    }
307
308
1.11M
    return num_vertices;
309
1.11M
}
310
311
static void
312
_cairo_pen_compute_slopes (cairo_pen_t *pen)
313
73.3k
{
314
73.3k
    int i, i_prev;
315
73.3k
    cairo_pen_vertex_t *prev, *v, *next;
316
317
73.3k
    for (i=0, i_prev = pen->num_vertices - 1;
318
808k
   i < pen->num_vertices;
319
734k
   i_prev = i++) {
320
734k
  prev = &pen->vertices[i_prev];
321
734k
  v = &pen->vertices[i];
322
734k
  next = &pen->vertices[(i + 1) % pen->num_vertices];
323
324
734k
  _cairo_slope_init (&v->slope_cw, &prev->point, &v->point);
325
734k
  _cairo_slope_init (&v->slope_ccw, &v->point, &next->point);
326
734k
    }
327
73.3k
}
328
/*
329
 * Find active pen vertex for clockwise edge of stroke at the given slope.
330
 *
331
 * The strictness of the inequalities here is delicate. The issue is
332
 * that the slope_ccw member of one pen vertex will be equivalent to
333
 * the slope_cw member of the next pen vertex in a counterclockwise
334
 * order. However, for this function, we care strongly about which
335
 * vertex is returned.
336
 *
337
 * [I think the "care strongly" above has to do with ensuring that the
338
 * pen's "extra points" from the spline's initial and final slopes are
339
 * properly found when beginning the spline stroking.]
340
 */
341
int
342
_cairo_pen_find_active_cw_vertex_index (const cairo_pen_t *pen,
343
          const cairo_slope_t *slope)
344
0
{
345
0
    int i;
346
347
0
    for (i=0; i < pen->num_vertices; i++) {
348
0
  if ((_cairo_slope_compare (slope, &pen->vertices[i].slope_ccw) < 0) &&
349
0
      (_cairo_slope_compare (slope, &pen->vertices[i].slope_cw) >= 0))
350
0
      break;
351
0
    }
352
353
    /* If the desired slope cannot be found between any of the pen
354
     * vertices, then we must have a degenerate pen, (such as a pen
355
     * that's been transformed to a line). In that case, we consider
356
     * the first pen vertex as the appropriate clockwise vertex.
357
     */
358
0
    if (i == pen->num_vertices)
359
0
  i = 0;
360
361
0
    return i;
362
0
}
363
364
/* Find active pen vertex for counterclockwise edge of stroke at the given slope.
365
 *
366
 * Note: See the comments for _cairo_pen_find_active_cw_vertex_index
367
 * for some details about the strictness of the inequalities here.
368
 */
369
int
370
_cairo_pen_find_active_ccw_vertex_index (const cairo_pen_t *pen,
371
           const cairo_slope_t *slope)
372
0
{
373
0
    cairo_slope_t slope_reverse;
374
0
    int i;
375
376
0
    slope_reverse = *slope;
377
0
    slope_reverse.dx = -slope_reverse.dx;
378
0
    slope_reverse.dy = -slope_reverse.dy;
379
380
0
    for (i=pen->num_vertices-1; i >= 0; i--) {
381
0
  if ((_cairo_slope_compare (&pen->vertices[i].slope_ccw, &slope_reverse) >= 0) &&
382
0
      (_cairo_slope_compare (&pen->vertices[i].slope_cw, &slope_reverse) < 0))
383
0
      break;
384
0
    }
385
386
    /* If the desired slope cannot be found between any of the pen
387
     * vertices, then we must have a degenerate pen, (such as a pen
388
     * that's been transformed to a line). In that case, we consider
389
     * the last pen vertex as the appropriate counterclockwise vertex.
390
     */
391
0
    if (i < 0)
392
0
  i = pen->num_vertices - 1;
393
394
0
    return i;
395
0
}
396
397
void
398
_cairo_pen_find_active_cw_vertices (const cairo_pen_t *pen,
399
            const cairo_slope_t *in,
400
            const cairo_slope_t *out,
401
            int *start, int *stop)
402
89
{
403
404
89
    int lo = 0, hi = pen->num_vertices;
405
89
    int i;
406
407
89
    i = (lo + hi) >> 1;
408
535
    do {
409
535
  if (_cairo_slope_compare (&pen->vertices[i].slope_cw, in) < 0)
410
102
      lo = i;
411
433
  else
412
433
      hi = i;
413
535
  i = (lo + hi) >> 1;
414
535
    } while (hi - lo > 1);
415
89
    if (_cairo_slope_compare (&pen->vertices[i].slope_cw, in) < 0)
416
89
  if (++i == pen->num_vertices)
417
0
      i = 0;
418
89
    *start = i;
419
420
89
    if (_cairo_slope_compare (out, &pen->vertices[i].slope_ccw) >= 0) {
421
89
  lo = i;
422
89
  hi = i + pen->num_vertices;
423
89
  i = (lo + hi) >> 1;
424
619
  do {
425
619
      int j = i;
426
619
      if (j >= pen->num_vertices)
427
80
    j -= pen->num_vertices;
428
619
      if (_cairo_slope_compare (&pen->vertices[j].slope_cw, out) > 0)
429
254
    hi = i;
430
365
      else
431
365
    lo = i;
432
619
      i = (lo + hi) >> 1;
433
619
  } while (hi - lo > 1);
434
89
  if (i >= pen->num_vertices)
435
15
      i -= pen->num_vertices;
436
89
    }
437
89
    *stop = i;
438
89
}
439
440
void
441
_cairo_pen_find_active_ccw_vertices (const cairo_pen_t *pen,
442
             const cairo_slope_t *in,
443
             const cairo_slope_t *out,
444
             int *start, int *stop)
445
121
{
446
121
    int lo = 0, hi = pen->num_vertices;
447
121
    int i;
448
449
121
    i = (lo + hi) >> 1;
450
841
    do {
451
841
  if (_cairo_slope_compare (in, &pen->vertices[i].slope_ccw) < 0)
452
667
      lo = i;
453
174
  else
454
174
      hi = i;
455
841
  i = (lo + hi) >> 1;
456
841
    } while (hi - lo > 1);
457
121
    if (_cairo_slope_compare (in, &pen->vertices[i].slope_ccw) < 0)
458
121
  if (++i == pen->num_vertices)
459
12
      i = 0;
460
121
    *start = i;
461
462
121
    if (_cairo_slope_compare (&pen->vertices[i].slope_cw, out) <= 0) {
463
121
  lo = i;
464
121
  hi = i + pen->num_vertices;
465
121
  i = (lo + hi) >> 1;
466
843
  do {
467
843
      int j = i;
468
843
      if (j >= pen->num_vertices)
469
680
    j -= pen->num_vertices;
470
843
      if (_cairo_slope_compare (out, &pen->vertices[j].slope_ccw) > 0)
471
133
    hi = i;
472
710
      else
473
710
    lo = i;
474
843
      i = (lo + hi) >> 1;
475
843
  } while (hi - lo > 1);
476
121
  if (i >= pen->num_vertices)
477
98
      i -= pen->num_vertices;
478
121
    }
479
121
    *stop = i;
480
121
}