Coverage Report

Created: 2025-11-16 09:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/work/workdir/UnpackedTarball/libjpeg-turbo/src/jdhuff.c
Line
Count
Source
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
23.0k
{
81
23.0k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
23.0k
  int ci, blkn, dctbl, actbl;
83
23.0k
  d_derived_tbl **pdtbl;
84
23.0k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
23.0k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
6.10k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
18.0k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
75.9k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
52.9k
    compptr = cinfo->cur_comp_info[ci];
96
52.9k
    dctbl = compptr->dc_tbl_no;
97
52.9k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
52.9k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
52.9k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
52.9k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
52.9k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
52.9k
    entropy->saved.last_dc_val[ci] = 0;
106
52.9k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
122k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
99.0k
    ci = cinfo->MCU_membership[blkn];
111
99.0k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
99.0k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
99.0k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
99.0k
    if (compptr->component_needed) {
117
99.0k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
99.0k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
99.0k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
99.0k
  }
124
125
  /* Initialize bitread state variables */
126
23.0k
  entropy->bitstate.bits_left = 0;
127
23.0k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
23.0k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
23.0k
  entropy->restarts_to_go = cinfo->restart_interval;
132
23.0k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
117k
{
146
117k
  JHUFF_TBL *htbl;
147
117k
  d_derived_tbl *dtbl;
148
117k
  int p, i, l, si, numsymbols;
149
117k
  int lookbits, ctr;
150
117k
  char huffsize[257];
151
117k
  unsigned int huffcode[257];
152
117k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
117k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
19
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
117k
  htbl =
162
117k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
117k
  if (htbl == NULL)
164
25
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
117k
  if (*pdtbl == NULL)
168
68.7k
    *pdtbl = (d_derived_tbl *)
169
68.7k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
68.7k
                                  sizeof(d_derived_tbl));
171
117k
  dtbl = *pdtbl;
172
117k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
117k
  p = 0;
177
1.99M
  for (l = 1; l <= 16; l++) {
178
1.87M
    i = (int)htbl->bits[l];
179
1.87M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
10.9M
    while (i--)
182
9.05M
      huffsize[p++] = (char)l;
183
1.87M
  }
184
117k
  huffsize[p] = 0;
185
117k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
117k
  code = 0;
191
117k
  si = huffsize[0];
192
117k
  p = 0;
193
1.42M
  while (huffsize[p]) {
194
10.3M
    while (((int)huffsize[p]) == si) {
195
9.05M
      huffcode[p++] = code;
196
9.05M
      code++;
197
9.05M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
1.30M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
25
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
1.30M
    code <<= 1;
204
1.30M
    si++;
205
1.30M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
117k
  p = 0;
210
1.99M
  for (l = 1; l <= 16; l++) {
211
1.87M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
1.15M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
1.15M
      p += htbl->bits[l];
217
1.15M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
1.15M
    } else {
219
717k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
717k
    }
221
1.87M
  }
222
117k
  dtbl->valoffset[17] = 0;
223
117k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
30.1M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
30.0M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
117k
  p = 0;
236
1.05M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
2.52M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
1.58M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
29.0M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
27.4M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
27.4M
        lookbits++;
244
27.4M
      }
245
1.58M
    }
246
938k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
117k
  if (isDC) {
255
728k
    for (i = 0; i < numsymbols; i++) {
256
668k
      int sym = htbl->huffval[i];
257
668k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
35
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
668k
    }
260
60.5k
  }
261
117k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
18.1M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
8.64M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
8.64M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
8.64M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
8.64M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
8.64M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
13.2M
    while (bits_left < MIN_GET_BITS) {
303
11.6M
      register int c;
304
305
      /* Attempt to read a byte */
306
11.6M
      if (bytes_in_buffer == 0) {
307
22.6k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
22.6k
        next_input_byte = cinfo->src->next_input_byte;
310
22.6k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
22.6k
      }
312
11.6M
      bytes_in_buffer--;
313
11.6M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
11.6M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
1.01M
        do {
323
1.01M
          if (bytes_in_buffer == 0) {
324
4.80k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
4.80k
            next_input_byte = cinfo->src->next_input_byte;
327
4.80k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
4.80k
          }
329
1.01M
          bytes_in_buffer--;
330
1.01M
          c = *next_input_byte++;
331
1.01M
        } while (c == 0xFF);
332
333
168k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
120k
          c = 0xFF;
336
120k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
48.2k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
48.2k
          goto no_more_bytes;
348
48.2k
        }
349
168k
      }
350
351
      /* OK, load c into get_buffer */
352
11.5M
      get_buffer = (get_buffer << 8) | c;
353
11.5M
      bits_left += 8;
354
11.5M
    } /* end while */
355
6.97M
  } else {
356
7.02M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
7.02M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
2.44M
      if (!cinfo->entropy->insufficient_data) {
368
46.7k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
46.7k
        cinfo->entropy->insufficient_data = TRUE;
370
46.7k
      }
371
      /* Fill the buffer with zero bits */
372
2.44M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
2.44M
      bits_left = MIN_GET_BITS;
374
2.44M
    }
375
7.02M
  }
376
377
  /* Unload the local registers */
378
8.64M
  state->next_input_byte = next_input_byte;
379
8.64M
  state->bytes_in_buffer = bytes_in_buffer;
380
8.64M
  state->get_buffer = get_buffer;
381
8.64M
  state->bits_left = bits_left;
382
383
8.64M
  return TRUE;
384
8.64M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
1.43M
#define GET_BYTE { \
392
1.43M
  register int c0, c1; \
393
1.43M
  c0 = *buffer++; \
394
1.43M
  c1 = *buffer; \
395
1.43M
  /* Pre-execute most common case */ \
396
1.43M
  get_buffer = (get_buffer << 8) | c0; \
397
1.43M
  bits_left += 8; \
398
1.43M
  if (c0 == 0xFF) { \
399
347k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
347k
    buffer++; \
401
347k
    if (c1 != 0) { \
402
288k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
288k
      cinfo->unread_marker = c1; \
404
288k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
288k
      buffer -= 2; \
406
288k
      get_buffer &= ~0xFF; \
407
288k
    } \
408
347k
  } \
409
1.43M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
3.08M
  if (bits_left <= 16) { \
416
239k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
239k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
5.73M
{
440
5.73M
  register int l = min_bits;
441
5.73M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
5.73M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
5.73M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
17.3M
  while (code > htbl->maxcode[l]) {
453
11.6M
    code <<= 1;
454
11.6M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
11.6M
    code |= GET_BITS(1);
456
11.6M
    l++;
457
11.6M
  }
458
459
  /* Unload the local registers */
460
5.73M
  state->get_buffer = get_buffer;
461
5.73M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
5.73M
  if (l > 16) {
466
277k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
277k
    return 0;                   /* fake a zero as the safest result */
468
277k
  }
469
470
5.45M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
5.73M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
14.7M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
14.7M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
50.5k
{
514
50.5k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
50.5k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
50.5k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
50.5k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
50.5k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
183k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
132k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
50.5k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
50.5k
  if (cinfo->unread_marker == 0)
539
14.7k
    entropy->pub.insufficient_data = FALSE;
540
541
50.5k
  return TRUE;
542
50.5k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
580k
{
554
580k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
580k
  BITREAD_STATE_VARS;
556
580k
  int blkn;
557
580k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
580k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
580k
  state = entropy->saved;
563
564
1.86M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
1.28M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
1.28M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
1.28M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
1.28M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
1.28M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
1.28M
    if (s) {
575
634k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
634k
      r = GET_BITS(s);
577
634k
      s = HUFF_EXTEND(r, s);
578
634k
    }
579
580
1.28M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
1.28M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
1.28M
      s += state.last_dc_val[ci];
592
1.28M
      state.last_dc_val[ci] = s;
593
1.28M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
1.28M
        (*block)[0] = (JCOEF)s;
596
1.28M
      }
597
1.28M
    }
598
599
1.28M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
14.4M
      for (k = 1; k < DCTSIZE2; k++) {
604
14.1M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
14.1M
        r = s >> 4;
607
14.1M
        s &= 15;
608
609
14.1M
        if (s) {
610
13.1M
          k += r;
611
13.1M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
13.1M
          r = GET_BITS(s);
613
13.1M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
13.1M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
13.1M
        } else {
620
1.01M
          if (r != 15)
621
999k
            break;
622
12.0k
          k += 15;
623
12.0k
        }
624
14.1M
      }
625
626
1.28M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
35
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
35
    }
647
1.28M
  }
648
649
  /* Completed MCU, so update state */
650
580k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
580k
  entropy->saved = state;
652
580k
  return TRUE;
653
580k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
645k
{
665
645k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
645k
  BITREAD_STATE_VARS;
667
645k
  JOCTET *buffer;
668
645k
  int blkn;
669
645k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
645k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
645k
  buffer = (JOCTET *)br_state.next_input_byte;
675
645k
  state = entropy->saved;
676
677
1.29M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
649k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
649k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
649k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
649k
    register int s, k, r, l;
682
683
649k
    HUFF_DECODE_FAST(s, l, dctbl);
684
649k
    if (s) {
685
119k
      FILL_BIT_BUFFER_FAST
686
119k
      r = GET_BITS(s);
687
119k
      s = HUFF_EXTEND(r, s);
688
119k
    }
689
690
649k
    if (entropy->dc_needed[blkn]) {
691
649k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
649k
      s += state.last_dc_val[ci];
696
649k
      state.last_dc_val[ci] = s;
697
649k
      if (block)
698
649k
        (*block)[0] = (JCOEF)s;
699
649k
    }
700
701
649k
    if (entropy->ac_needed[blkn] && block) {
702
703
1.49M
      for (k = 1; k < DCTSIZE2; k++) {
704
1.47M
        HUFF_DECODE_FAST(s, l, actbl);
705
1.47M
        r = s >> 4;
706
1.47M
        s &= 15;
707
708
1.47M
        if (s) {
709
835k
          k += r;
710
835k
          FILL_BIT_BUFFER_FAST
711
835k
          r = GET_BITS(s);
712
835k
          s = HUFF_EXTEND(r, s);
713
835k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
835k
        } else {
715
642k
          if (r != 15) break;
716
7.15k
          k += 15;
717
7.15k
        }
718
1.47M
      }
719
720
649k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
649k
  }
738
739
645k
  if (cinfo->unread_marker != 0) {
740
28.8k
    cinfo->unread_marker = 0;
741
28.8k
    return FALSE;
742
28.8k
  }
743
744
616k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
616k
  br_state.next_input_byte = buffer;
746
616k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
616k
  entropy->saved = state;
748
616k
  return TRUE;
749
645k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
46.9M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
46.9M
{
772
46.9M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
46.9M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
46.9M
  if (cinfo->restart_interval) {
777
2.21M
    if (entropy->restarts_to_go == 0)
778
50.5k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
2.21M
    usefast = 0;
781
2.21M
  }
782
783
46.9M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
13.1M
      cinfo->unread_marker != 0)
785
46.2M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
46.9M
  if (!entropy->pub.insufficient_data) {
791
792
1.19M
    if (usefast) {
793
645k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
645k
    } else {
795
580k
use_slow:
796
580k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
580k
    }
798
799
1.19M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
46.9M
  if (cinfo->restart_interval)
803
2.21M
    entropy->restarts_to_go--;
804
805
46.9M
  return TRUE;
806
46.9M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
18.5k
{
816
18.5k
  huff_entropy_ptr entropy;
817
18.5k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
18.5k
  std_huff_tables((j_common_ptr)cinfo);
824
825
18.5k
  entropy = (huff_entropy_ptr)
826
18.5k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
18.5k
                                sizeof(huff_entropy_decoder));
828
18.5k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
18.5k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
18.5k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
92.5k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
74.0k
  }
836
18.5k
}