/src/libreoffice/vcl/source/gdi/sallayout.cxx
Line | Count | Source |
1 | | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | /* |
3 | | * This file is part of the LibreOffice project. |
4 | | * |
5 | | * This Source Code Form is subject to the terms of the Mozilla Public |
6 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
7 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. |
8 | | * |
9 | | * This file incorporates work covered by the following license notice: |
10 | | * |
11 | | * Licensed to the Apache Software Foundation (ASF) under one or more |
12 | | * contributor license agreements. See the NOTICE file distributed |
13 | | * with this work for additional information regarding copyright |
14 | | * ownership. The ASF licenses this file to you under the Apache |
15 | | * License, Version 2.0 (the "License"); you may not use this file |
16 | | * except in compliance with the License. You may obtain a copy of |
17 | | * the License at http://www.apache.org/licenses/LICENSE-2.0 . |
18 | | */ |
19 | | |
20 | | #include <sal/config.h> |
21 | | |
22 | | #include <iostream> |
23 | | #include <iomanip> |
24 | | |
25 | | #include <sal/log.hxx> |
26 | | |
27 | | #include <cstdio> |
28 | | |
29 | | #include <math.h> |
30 | | |
31 | | #include <ImplLayoutArgs.hxx> |
32 | | #include <salgdi.hxx> |
33 | | #include <sallayout.hxx> |
34 | | #include <basegfx/polygon/b2dpolypolygon.hxx> |
35 | | #include <basegfx/matrix/b2dhommatrixtools.hxx> |
36 | | |
37 | | #include <i18nlangtag/lang.h> |
38 | | |
39 | | #include <vcl/svapp.hxx> |
40 | | |
41 | | #include <algorithm> |
42 | | #include <memory> |
43 | | |
44 | | #include <impglyphitem.hxx> |
45 | | |
46 | | // Glyph Flags |
47 | 0 | #define GF_FONTMASK 0xF0000000 |
48 | 0 | #define GF_FONTSHIFT 28 |
49 | | |
50 | | namespace |
51 | | { |
52 | | |
53 | | int GetLocalizedDigitOffset( LanguageType eLang ) |
54 | 29.2M | { |
55 | | // eLang & LANGUAGE_MASK_PRIMARY catches language independent of region. |
56 | | // CAVEAT! To some like Mongolian MS assigned the same primary language |
57 | | // although the script type is different! |
58 | 29.2M | LanguageType pri = primary(eLang); |
59 | 29.2M | if( pri == primary(LANGUAGE_ARABIC_SAUDI_ARABIA) ) |
60 | 44 | return 0x0660 - '0'; // arabic-indic digits |
61 | 29.2M | else if ( pri.anyOf( |
62 | 29.2M | primary(LANGUAGE_FARSI), |
63 | 29.2M | primary(LANGUAGE_URDU_PAKISTAN), |
64 | 29.2M | primary(LANGUAGE_PUNJABI), //??? |
65 | 29.2M | primary(LANGUAGE_SINDHI))) |
66 | 63 | return 0x06F0 - '0'; // eastern arabic-indic digits |
67 | 29.2M | else if ( pri == primary(LANGUAGE_BENGALI) ) |
68 | 0 | return 0x09E6 - '0'; // bengali |
69 | 29.2M | else if ( pri == primary(LANGUAGE_HINDI) ) |
70 | 0 | return 0x0966 - '0'; // devanagari |
71 | 29.2M | else if ( pri.anyOf( |
72 | 29.2M | primary(LANGUAGE_AMHARIC_ETHIOPIA), |
73 | 29.2M | primary(LANGUAGE_TIGRIGNA_ETHIOPIA))) |
74 | | // TODO case: |
75 | 0 | return 0x1369 - '0'; // ethiopic |
76 | 29.2M | else if ( pri == primary(LANGUAGE_GUJARATI) ) |
77 | 30 | return 0x0AE6 - '0'; // gujarati |
78 | | #ifdef LANGUAGE_GURMUKHI // TODO case: |
79 | | else if ( pri == primary(LANGUAGE_GURMUKHI) ) |
80 | | return 0x0A66 - '0'; // gurmukhi |
81 | | #endif |
82 | 29.2M | else if ( pri == primary(LANGUAGE_KANNADA) ) |
83 | 0 | return 0x0CE6 - '0'; // kannada |
84 | 29.2M | else if ( pri == primary(LANGUAGE_KHMER)) |
85 | 0 | return 0x17E0 - '0'; // khmer |
86 | 29.2M | else if ( pri == primary(LANGUAGE_LAO) ) |
87 | 0 | return 0x0ED0 - '0'; // lao |
88 | 29.2M | else if ( pri == primary(LANGUAGE_MALAYALAM) ) |
89 | 0 | return 0x0D66 - '0'; // malayalam |
90 | 29.2M | else if ( pri == primary(LANGUAGE_MONGOLIAN_MONGOLIAN_LSO)) |
91 | 0 | { |
92 | 0 | if (eLang.anyOf( |
93 | 0 | LANGUAGE_MONGOLIAN_MONGOLIAN_MONGOLIA, |
94 | 0 | LANGUAGE_MONGOLIAN_MONGOLIAN_CHINA, |
95 | 0 | LANGUAGE_MONGOLIAN_MONGOLIAN_LSO)) |
96 | 0 | return 0x1810 - '0'; // mongolian |
97 | 0 | else |
98 | 0 | return 0; // mongolian cyrillic |
99 | 0 | } |
100 | 29.2M | else if ( pri == primary(LANGUAGE_BURMESE) ) |
101 | 0 | return 0x1040 - '0'; // myanmar |
102 | 29.2M | else if ( pri == primary(LANGUAGE_ODIA) ) |
103 | 0 | return 0x0B66 - '0'; // odia |
104 | 29.2M | else if ( pri == primary(LANGUAGE_TAMIL) ) |
105 | 5 | return 0x0BE7 - '0'; // tamil |
106 | 29.2M | else if ( pri == primary(LANGUAGE_TELUGU) ) |
107 | 0 | return 0x0C66 - '0'; // telugu |
108 | 29.2M | else if ( pri == primary(LANGUAGE_THAI) ) |
109 | 0 | return 0x0E50 - '0'; // thai |
110 | 29.2M | else if ( pri == primary(LANGUAGE_TIBETAN) ) |
111 | 0 | return 0x0F20 - '0'; // tibetan |
112 | 29.2M | else |
113 | 29.2M | return 0; |
114 | 29.2M | } |
115 | | |
116 | | } |
117 | | |
118 | | OUString LocalizeDigitsInString( const OUString& sStr, LanguageType eTextLanguage, |
119 | | sal_Int32 nStart, sal_Int32& nLen ) |
120 | 29.2M | { |
121 | 29.2M | int digitOffset = GetLocalizedDigitOffset(eTextLanguage); |
122 | | |
123 | | // If we’re already using arabic digits then we can shortcut the function just return the |
124 | | // original string |
125 | 29.2M | if (digitOffset == 0) |
126 | 29.2M | return sStr; |
127 | | |
128 | 142 | sal_Int32 nEnd = nStart + nLen; |
129 | | |
130 | 971 | for (sal_Int32 i = nStart; i < nEnd; ++i) |
131 | 880 | { |
132 | 880 | sal_Unicode nChar = sStr[i]; |
133 | | |
134 | | // The first time we encounter a character that needs to change we’ll make a copy of the |
135 | | // string so we can return a new modified one |
136 | 880 | if (nChar >= '0' && nChar <= '9') |
137 | 51 | { |
138 | | // The new string is very likely to have the same length as the old one |
139 | 51 | OUStringBuffer xTmpStr(sStr.getLength()); |
140 | 51 | xTmpStr.append(sStr.subView(0, i)); |
141 | | |
142 | | // Convert the remainder of the range |
143 | 38.7k | for (; i < nEnd; ++i) |
144 | 38.7k | { |
145 | 38.7k | nChar = sStr[i]; |
146 | 38.7k | if (nChar >= '0' && nChar <= '9') |
147 | 736 | xTmpStr.appendUtf32(nChar + digitOffset); |
148 | 37.9k | else |
149 | 37.9k | xTmpStr.append(nChar); |
150 | 38.7k | } |
151 | | |
152 | | // Add the rest of the string outside of the range |
153 | 51 | xTmpStr.append(sStr.subView(nEnd)); |
154 | | |
155 | | // The length of the string might have changed if the offset makes the character need |
156 | | // surrogate pairs |
157 | 51 | nLen += xTmpStr.getLength() - sStr.getLength(); |
158 | | |
159 | 51 | return xTmpStr.makeStringAndClear(); |
160 | 51 | } |
161 | 880 | } |
162 | | |
163 | | // Nothing changed so we can just return the original string |
164 | 91 | return sStr; |
165 | 142 | } |
166 | | |
167 | | SalLayout::SalLayout() |
168 | 31.6M | : mnMinCharPos( -1 ), |
169 | 31.6M | mnEndCharPos( -1 ), |
170 | 31.6M | maLanguageTag( LANGUAGE_DONTKNOW ), |
171 | 31.6M | mnOrientation( 0 ), |
172 | 31.6M | maDrawOffset( 0, 0 ), |
173 | 31.6M | mbSubpixelPositioning(false) |
174 | 31.6M | {} |
175 | | |
176 | | SalLayout::~SalLayout() |
177 | 31.6M | {} |
178 | | |
179 | | void SalLayout::AdjustLayout( vcl::text::ImplLayoutArgs& rArgs ) |
180 | 26.1M | { |
181 | 26.1M | mnMinCharPos = rArgs.mnMinCharPos; |
182 | 26.1M | mnEndCharPos = rArgs.mnEndCharPos; |
183 | 26.1M | mnOrientation = rArgs.mnOrientation; |
184 | 26.1M | maLanguageTag = rArgs.maLanguageTag; |
185 | 26.1M | } |
186 | | |
187 | | basegfx::B2DPoint SalLayout::GetDrawPosition(const basegfx::B2DPoint& rRelative) const |
188 | 88.9M | { |
189 | 88.9M | basegfx::B2DPoint aPos{maDrawBase}; |
190 | 88.9M | basegfx::B2DPoint aOfs = rRelative + maDrawOffset; |
191 | | |
192 | 88.9M | if( mnOrientation == 0_deg10 ) |
193 | 69.0M | aPos += aOfs; |
194 | 19.8M | else |
195 | 19.8M | { |
196 | | // cache trigonometric results |
197 | 19.8M | static Degree10 nOldOrientation(0); |
198 | 19.8M | static double fCos = 1.0, fSin = 0.0; |
199 | 19.8M | if( nOldOrientation != mnOrientation ) |
200 | 1.24k | { |
201 | 1.24k | nOldOrientation = mnOrientation; |
202 | 1.24k | double fRad = toRadians(mnOrientation); |
203 | 1.24k | fCos = cos( fRad ); |
204 | 1.24k | fSin = sin( fRad ); |
205 | 1.24k | } |
206 | | |
207 | 19.8M | double fX = aOfs.getX(); |
208 | 19.8M | double fY = aOfs.getY(); |
209 | 19.8M | if (mbSubpixelPositioning) |
210 | 14.4M | { |
211 | 14.4M | double nX = +fCos * fX + fSin * fY; |
212 | 14.4M | double nY = +fCos * fY - fSin * fX; |
213 | 14.4M | aPos += basegfx::B2DPoint(nX, nY); |
214 | 14.4M | } |
215 | 5.42M | else |
216 | 5.42M | { |
217 | 5.42M | tools::Long nX = static_cast<tools::Long>( +fCos * fX + fSin * fY ); |
218 | 5.42M | tools::Long nY = static_cast<tools::Long>( +fCos * fY - fSin * fX ); |
219 | 5.42M | aPos += basegfx::B2DPoint(nX, nY); |
220 | 5.42M | } |
221 | 19.8M | } |
222 | | |
223 | 88.9M | return aPos; |
224 | 88.9M | } |
225 | | |
226 | | bool SalLayout::GetOutline(basegfx::B2DPolyPolygonVector& rVector) const |
227 | 550 | { |
228 | 550 | bool bAllOk = true; |
229 | 550 | bool bOneOk = false; |
230 | | |
231 | 550 | basegfx::B2DPolyPolygon aGlyphOutline; |
232 | | |
233 | 550 | basegfx::B2DPoint aPos; |
234 | 550 | const GlyphItem* pGlyph; |
235 | 550 | int nStart = 0; |
236 | 550 | const LogicalFontInstance* pGlyphFont; |
237 | 1.13k | while (GetNextGlyph(&pGlyph, aPos, nStart, &pGlyphFont)) |
238 | 580 | { |
239 | | // get outline of individual glyph, ignoring "empty" glyphs |
240 | 580 | bool bSuccess = pGlyph->GetGlyphOutline(pGlyphFont, aGlyphOutline); |
241 | 580 | bAllOk &= bSuccess; |
242 | 580 | bOneOk |= bSuccess; |
243 | | // only add non-empty outlines |
244 | 580 | if( bSuccess && (aGlyphOutline.count() > 0) ) |
245 | 448 | { |
246 | 448 | if( aPos.getX() || aPos.getY() ) |
247 | 30 | { |
248 | 30 | aGlyphOutline.transform(basegfx::utils::createTranslateB2DHomMatrix(aPos.getX(), aPos.getY())); |
249 | 30 | } |
250 | | |
251 | | // insert outline at correct position |
252 | 448 | rVector.push_back( aGlyphOutline ); |
253 | 448 | } |
254 | 580 | } |
255 | | |
256 | 550 | return (bAllOk && bOneOk); |
257 | 550 | } |
258 | | |
259 | | // No need to expand to the next pixel, when the character only covers its tiny fraction |
260 | | static double trimInsignificant(double n) |
261 | 22.4M | { |
262 | 22.4M | return std::abs(n) >= 0x1p53 ? n : std::round(n * 1e5) / 1e5; |
263 | 22.4M | } |
264 | | |
265 | | bool SalLayout::GetBoundRect(basegfx::B2DRectangle& rRect) const |
266 | 5.63M | { |
267 | 5.63M | bool bRet = false; |
268 | 5.63M | rRect.reset(); |
269 | 5.63M | basegfx::B2DRectangle aRectangle; |
270 | | |
271 | 5.63M | basegfx::B2DPoint aPos; |
272 | 5.63M | const GlyphItem* pGlyph; |
273 | 5.63M | int nStart = 0; |
274 | 5.63M | const LogicalFontInstance* pGlyphFont; |
275 | 48.8M | while (GetNextGlyph(&pGlyph, aPos, nStart, &pGlyphFont)) |
276 | 43.1M | { |
277 | | // get bounding rectangle of individual glyph |
278 | 43.1M | if (pGlyph->GetGlyphBoundRect(pGlyphFont, aRectangle)) |
279 | 43.1M | { |
280 | 43.1M | if (!aRectangle.isEmpty()) |
281 | 43.1M | { |
282 | | // translate rectangle to correct position |
283 | 43.1M | aRectangle.translate(aPos); |
284 | | // merge rectangle |
285 | 43.1M | rRect.expand(aRectangle); |
286 | 43.1M | } |
287 | 43.1M | bRet = true; |
288 | 43.1M | } |
289 | 43.1M | } |
290 | | |
291 | 5.63M | return bRet; |
292 | 5.63M | } |
293 | | |
294 | | tools::Rectangle SalLayout::BoundRect2Rectangle(const basegfx::B2DRectangle& rRect) |
295 | 5.61M | { |
296 | 5.61M | if (rRect.isEmpty()) |
297 | 12.8k | return {}; |
298 | | |
299 | 5.60M | double l = rtl::math::approxFloor(trimInsignificant(rRect.getMinX())), |
300 | 5.60M | t = rtl::math::approxFloor(trimInsignificant(rRect.getMinY())), |
301 | 5.60M | r = rtl::math::approxCeil(trimInsignificant(rRect.getMaxX())), |
302 | 5.60M | b = rtl::math::approxCeil(trimInsignificant(rRect.getMaxY())); |
303 | 5.60M | assert(std::isfinite(l) && std::isfinite(t) && std::isfinite(r) && std::isfinite(b)); |
304 | 5.60M | return tools::Rectangle(l, t, r, b); |
305 | 5.61M | } |
306 | | |
307 | | SalLayoutGlyphs SalLayout::GetGlyphs() const |
308 | 0 | { |
309 | 0 | return SalLayoutGlyphs(); // invalid |
310 | 0 | } |
311 | | |
312 | | double GenericSalLayout::FillDXArray( std::vector<double>* pCharWidths, const OUString& rStr ) const |
313 | 20.1M | { |
314 | 20.1M | if (pCharWidths) |
315 | 8.93M | GetCharWidths(*pCharWidths, rStr); |
316 | | |
317 | 20.1M | return GetTextWidth(); |
318 | 20.1M | } |
319 | | |
320 | | double GenericSalLayout::FillPartialDXArray(std::vector<double>* pCharWidths, const OUString& rStr, |
321 | | sal_Int32 skipStart, sal_Int32 amt) const |
322 | 393k | { |
323 | 393k | if (pCharWidths) |
324 | 393k | { |
325 | 393k | GetCharWidths(*pCharWidths, rStr); |
326 | | |
327 | | // Strip excess characters from the array |
328 | 393k | if (skipStart < static_cast<sal_Int32>(pCharWidths->size())) |
329 | 393k | { |
330 | 393k | std::copy(pCharWidths->begin() + skipStart, pCharWidths->end(), pCharWidths->begin()); |
331 | 393k | } |
332 | | |
333 | 393k | pCharWidths->resize(amt, 0.0); |
334 | 393k | } |
335 | | |
336 | 393k | return GetPartialTextWidth(skipStart, amt); |
337 | 393k | } |
338 | | |
339 | | // the text width is the maximum logical extent of all glyphs |
340 | | double GenericSalLayout::GetTextWidth() const |
341 | 20.7M | { |
342 | 20.7M | if (!m_GlyphItems.IsValid()) |
343 | 0 | return 0; |
344 | | |
345 | 20.7M | double nWidth = 0; |
346 | 20.7M | for (auto const& aGlyphItem : m_GlyphItems) |
347 | 809M | nWidth += aGlyphItem.newWidth(); |
348 | | |
349 | 20.7M | return nWidth; |
350 | 20.7M | } |
351 | | |
352 | | double GenericSalLayout::GetPartialTextWidth(sal_Int32 skipStart, sal_Int32 amt) const |
353 | 393k | { |
354 | 393k | if (!m_GlyphItems.IsValid()) |
355 | 0 | { |
356 | 0 | return 0; |
357 | 0 | } |
358 | | |
359 | 393k | auto skipEnd = skipStart + amt; |
360 | 393k | double nWidth = 0.0; |
361 | 393k | for (auto const& aGlyphItem : m_GlyphItems) |
362 | 4.88M | { |
363 | 4.88M | auto pos = aGlyphItem.charPos(); |
364 | 4.88M | if (pos >= skipStart && pos < skipEnd) |
365 | 101k | { |
366 | 101k | nWidth += aGlyphItem.newWidth(); |
367 | 101k | } |
368 | 4.88M | } |
369 | | |
370 | 393k | return nWidth; |
371 | 393k | } |
372 | | |
373 | | void GenericSalLayout::Justify(double nNewWidth) |
374 | 1.59k | { |
375 | 1.59k | double nOldWidth = GetTextWidth(); |
376 | 1.59k | if( !nOldWidth || nNewWidth==nOldWidth ) |
377 | 144 | return; |
378 | | |
379 | 1.45k | if (!m_GlyphItems.IsValid()) |
380 | 0 | { |
381 | 0 | return; |
382 | 0 | } |
383 | | // find rightmost glyph, it won't get stretched |
384 | 1.45k | std::vector<GlyphItem>::iterator pGlyphIterRight = m_GlyphItems.begin(); |
385 | 1.45k | pGlyphIterRight += m_GlyphItems.size() - 1; |
386 | 1.45k | std::vector<GlyphItem>::iterator pGlyphIter; |
387 | | // count stretchable glyphs |
388 | 1.45k | int nStretchable = 0; |
389 | 1.45k | double nMaxGlyphWidth = 0.0; |
390 | 1.94M | for(pGlyphIter = m_GlyphItems.begin(); pGlyphIter != pGlyphIterRight; ++pGlyphIter) |
391 | 1.94M | { |
392 | 1.94M | if( !pGlyphIter->IsInCluster() ) |
393 | 1.91M | ++nStretchable; |
394 | 1.94M | if (nMaxGlyphWidth < pGlyphIter->origWidth()) |
395 | 3.84k | nMaxGlyphWidth = pGlyphIter->origWidth(); |
396 | 1.94M | } |
397 | | |
398 | | // move rightmost glyph to requested position |
399 | 1.45k | auto nRightGlyphOffset = nOldWidth - pGlyphIterRight->linearPos().getX(); |
400 | 1.45k | nOldWidth -= nRightGlyphOffset; |
401 | | |
402 | 1.45k | if( nOldWidth <= 0.0 ) |
403 | 4 | return; |
404 | 1.44k | if( nNewWidth < nMaxGlyphWidth) |
405 | 911 | nNewWidth = nMaxGlyphWidth; |
406 | 1.44k | nNewWidth -= nRightGlyphOffset; |
407 | 1.44k | pGlyphIterRight->setLinearPosX( nNewWidth ); |
408 | | |
409 | | // justify glyph widths and positions |
410 | 1.44k | double nDiffWidth = nNewWidth - nOldWidth; |
411 | 1.44k | if( nDiffWidth >= 0.0 ) // expanded case |
412 | 106 | { |
413 | | // expand width by distributing space between glyphs evenly |
414 | 106 | double nDeltaSum = 0.0; |
415 | 62.1k | for( pGlyphIter = m_GlyphItems.begin(); pGlyphIter != pGlyphIterRight; ++pGlyphIter ) |
416 | 62.0k | { |
417 | | // move glyph to justified position |
418 | 62.0k | pGlyphIter->adjustLinearPosX(nDeltaSum); |
419 | | |
420 | | // do not stretch non-stretchable glyphs |
421 | 62.0k | if( pGlyphIter->IsInCluster() || (nStretchable <= 0) ) |
422 | 886 | continue; |
423 | | |
424 | | // distribute extra space equally to stretchable glyphs |
425 | 61.1k | double nDeltaWidth = nDiffWidth / nStretchable--; |
426 | 61.1k | nDiffWidth -= nDeltaWidth; |
427 | 61.1k | pGlyphIter->addNewWidth(nDeltaWidth); |
428 | 61.1k | nDeltaSum += nDeltaWidth; |
429 | 61.1k | } |
430 | 106 | } |
431 | 1.34k | else // condensed case |
432 | 1.34k | { |
433 | | // squeeze width by moving glyphs proportionally |
434 | 1.34k | double fSqueeze = nNewWidth / nOldWidth; |
435 | 1.34k | if(m_GlyphItems.size() > 1) |
436 | 1.34k | { |
437 | 1.88M | for( pGlyphIter = m_GlyphItems.begin(); ++pGlyphIter != pGlyphIterRight;) |
438 | 1.88M | { |
439 | 1.88M | double nX = pGlyphIter->linearPos().getX(); |
440 | 1.88M | nX = nX * fSqueeze; |
441 | 1.88M | pGlyphIter->setLinearPosX( nX ); |
442 | 1.88M | } |
443 | 1.34k | } |
444 | | // adjust glyph widths to new positions |
445 | 1.88M | for( pGlyphIter = m_GlyphItems.begin(); pGlyphIter != pGlyphIterRight; ++pGlyphIter ) |
446 | 1.88M | pGlyphIter->setNewWidth( pGlyphIter[1].linearPos().getX() - pGlyphIter[0].linearPos().getX()); |
447 | 1.34k | } |
448 | 1.44k | } |
449 | | |
450 | | // returns asian kerning values in quarter of character width units |
451 | | // to enable automatic halfwidth substitution for fullwidth punctuation |
452 | | // return value is negative for l, positive for r, zero for neutral |
453 | | // TODO: handle vertical layout as proposed in commit 43bf2ad49c2b3989bbbe893e4fee2e032a3920f5? |
454 | | static int lcl_CalcAsianKerning(sal_Unicode c, bool bLeft) |
455 | 9.52k | { |
456 | | // http://www.asahi-net.or.jp/~sd5a-ucd/freetexts/jis/x4051/1995/appendix.html |
457 | 9.52k | static const signed char nTable[0x30] = |
458 | 9.52k | { |
459 | 9.52k | 0, -2, -2, 0, 0, 0, 0, 0, +2, -2, +2, -2, +2, -2, +2, -2, |
460 | 9.52k | +2, -2, 0, 0, +2, -2, +2, -2, 0, 0, 0, 0, 0, +2, -2, -2, |
461 | 9.52k | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, +2, +2, -2, -2 |
462 | 9.52k | }; |
463 | | |
464 | 9.52k | int nResult = 0; |
465 | 9.52k | if( (c >= 0x3000) && (c < 0x3030) ) |
466 | 71 | nResult = nTable[ c - 0x3000 ]; |
467 | 9.45k | else switch( c ) |
468 | 9.45k | { |
469 | 0 | case 0x30FB: |
470 | 0 | nResult = bLeft ? -1 : +1; // 25% left/right/top/bottom |
471 | 0 | break; |
472 | 1.28k | case 0x2019: case 0x201D: |
473 | 1.54k | case 0xFF01: case 0xFF09: case 0xFF0C: |
474 | 1.61k | case 0xFF1A: case 0xFF1B: |
475 | 1.61k | nResult = -2; |
476 | 1.61k | break; |
477 | 4.05k | case 0x2018: case 0x201C: |
478 | 4.19k | case 0xFF08: |
479 | 4.19k | nResult = +2; |
480 | 4.19k | break; |
481 | 3.65k | default: |
482 | 3.65k | break; |
483 | 9.45k | } |
484 | | |
485 | 9.52k | return nResult; |
486 | 9.52k | } |
487 | | |
488 | | static bool lcl_CanApplyAsianKerning(sal_Unicode cp) |
489 | 1.49M | { |
490 | 1.49M | return (0x3000 == (cp & 0xFF00)) || (0xFF00 == (cp & 0xFF00)) || (0x2010 == (cp & 0xFFF0)); |
491 | 1.49M | } |
492 | | |
493 | | void GenericSalLayout::ApplyAsianKerning(std::u16string_view rStr) |
494 | 10.5k | { |
495 | 10.5k | const int nLength = rStr.size(); |
496 | 10.5k | double nOffset = 0; |
497 | | |
498 | 10.5k | for (std::vector<GlyphItem>::iterator pGlyphIter = m_GlyphItems.begin(), |
499 | 10.5k | pGlyphIterEnd = m_GlyphItems.end(); |
500 | 1.48M | pGlyphIter != pGlyphIterEnd; ++pGlyphIter) |
501 | 1.47M | { |
502 | 1.47M | const int n = pGlyphIter->charPos(); |
503 | 1.47M | if (n < nLength - 1) |
504 | 1.46M | { |
505 | | // ignore code ranges that are not affected by asian punctuation compression |
506 | 1.46M | const sal_Unicode cCurrent = rStr[n]; |
507 | 1.46M | if (!lcl_CanApplyAsianKerning(cCurrent)) |
508 | 1.43M | continue; |
509 | 29.0k | const sal_Unicode cNext = rStr[n + 1]; |
510 | 29.0k | if (!lcl_CanApplyAsianKerning(cNext)) |
511 | 22.6k | continue; |
512 | | |
513 | | // calculate compression values |
514 | 6.36k | const int nKernCurrent = +lcl_CalcAsianKerning(cCurrent, true); |
515 | 6.36k | if (nKernCurrent == 0) |
516 | 3.19k | continue; |
517 | 3.16k | const int nKernNext = -lcl_CalcAsianKerning(cNext, false); |
518 | 3.16k | if (nKernNext == 0) |
519 | 521 | continue; |
520 | | |
521 | | // apply punctuation compression to logical glyph widths |
522 | 2.64k | double nDelta = (nKernCurrent < nKernNext) ? nKernCurrent : nKernNext; |
523 | 2.64k | if (nDelta < 0) |
524 | 2.62k | { |
525 | 2.62k | nDelta = (nDelta * pGlyphIter->origWidth() + 2) / 4; |
526 | 2.62k | if( pGlyphIter+1 == pGlyphIterEnd ) |
527 | 1 | pGlyphIter->addNewWidth( nDelta ); |
528 | 2.62k | nOffset += nDelta; |
529 | 2.62k | } |
530 | 2.64k | } |
531 | | |
532 | | // adjust the glyph positions to the new glyph widths |
533 | 12.6k | if( pGlyphIter+1 != pGlyphIterEnd ) |
534 | 2.68k | pGlyphIter->adjustLinearPosX(nOffset); |
535 | 12.6k | } |
536 | 10.5k | } |
537 | | |
538 | | void GenericSalLayout::GetCaretPositions(std::vector<double>& rCaretPositions, |
539 | | const OUString& rStr) const |
540 | 0 | { |
541 | 0 | const int nCaretPositions = (mnEndCharPos - mnMinCharPos) * 2; |
542 | |
|
543 | 0 | rCaretPositions.clear(); |
544 | 0 | rCaretPositions.resize(nCaretPositions, -1); |
545 | |
|
546 | 0 | if (m_GlyphItems.empty()) |
547 | 0 | return; |
548 | | |
549 | 0 | std::vector<double> aCharWidths; |
550 | 0 | GetCharWidths(aCharWidths, rStr); |
551 | | |
552 | | // calculate caret positions using glyph array |
553 | 0 | for (auto const& aGlyphItem : m_GlyphItems) |
554 | 0 | { |
555 | 0 | auto nCurrX = aGlyphItem.linearPos().getX() - aGlyphItem.xOffset(); |
556 | 0 | auto nCharStart = aGlyphItem.charPos(); |
557 | 0 | auto nCharEnd = nCharStart + aGlyphItem.charCount() - 1; |
558 | 0 | if (!aGlyphItem.IsRTLGlyph()) |
559 | 0 | { |
560 | | // unchanged positions for LTR case |
561 | 0 | for (int i = nCharStart; i <= nCharEnd; i++) |
562 | 0 | { |
563 | 0 | int n = i - mnMinCharPos; |
564 | 0 | int nCurrIdx = 2 * n; |
565 | |
|
566 | 0 | auto nLeft = nCurrX; |
567 | 0 | nCurrX += aCharWidths[n]; |
568 | 0 | auto nRight = nCurrX; |
569 | |
|
570 | 0 | rCaretPositions[nCurrIdx] = nLeft; |
571 | 0 | rCaretPositions[nCurrIdx + 1] = nRight; |
572 | 0 | } |
573 | 0 | } |
574 | 0 | else |
575 | 0 | { |
576 | | // reverse positions for RTL case |
577 | 0 | for (int i = nCharEnd; i >= nCharStart; i--) |
578 | 0 | { |
579 | 0 | int n = i - mnMinCharPos; |
580 | 0 | int nCurrIdx = 2 * n; |
581 | |
|
582 | 0 | auto nRight = nCurrX; |
583 | 0 | nCurrX += aCharWidths[n]; |
584 | 0 | auto nLeft = nCurrX; |
585 | |
|
586 | 0 | rCaretPositions[nCurrIdx] = nLeft; |
587 | 0 | rCaretPositions[nCurrIdx + 1] = nRight; |
588 | 0 | } |
589 | 0 | } |
590 | 0 | } |
591 | 0 | } |
592 | | |
593 | | sal_Int32 GenericSalLayout::GetTextBreak(double nMaxWidth, double nCharExtra, int nFactor) const |
594 | 746k | { |
595 | 746k | std::vector<double> aCharWidths; |
596 | 746k | GetCharWidths(aCharWidths, {}); |
597 | | |
598 | 746k | double nWidth = 0; |
599 | 15.4M | for( int i = mnMinCharPos; i < mnEndCharPos; ++i ) |
600 | 15.4M | { |
601 | 15.4M | double nDelta = aCharWidths[ i - mnMinCharPos ] * nFactor; |
602 | | |
603 | 15.4M | if (nDelta != 0) |
604 | 15.1M | { |
605 | 15.1M | nWidth += nDelta; |
606 | 15.1M | if( nWidth > nMaxWidth ) |
607 | 740k | return i; |
608 | | |
609 | 14.4M | nWidth += nCharExtra; |
610 | 14.4M | } |
611 | 15.4M | } |
612 | | |
613 | 5.63k | return -1; |
614 | 746k | } |
615 | | |
616 | | bool GenericSalLayout::GetNextGlyph(const GlyphItem** pGlyph, |
617 | | basegfx::B2DPoint& rPos, int& nStart, |
618 | | const LogicalFontInstance** ppGlyphFont) const |
619 | 90.7M | { |
620 | 90.7M | std::vector<GlyphItem>::const_iterator pGlyphIter = m_GlyphItems.begin(); |
621 | 90.7M | std::vector<GlyphItem>::const_iterator pGlyphIterEnd = m_GlyphItems.end(); |
622 | 90.7M | pGlyphIter += nStart; |
623 | | |
624 | | // find next glyph in substring |
625 | 90.7M | for(; pGlyphIter != pGlyphIterEnd; ++nStart, ++pGlyphIter ) |
626 | 84.6M | { |
627 | 84.6M | int n = pGlyphIter->charPos(); |
628 | 84.6M | if( (mnMinCharPos <= n) && (n < mnEndCharPos) ) |
629 | 84.6M | break; |
630 | 84.6M | } |
631 | | |
632 | | // return zero if no more glyph found |
633 | 90.7M | if( nStart >= static_cast<int>(m_GlyphItems.size()) ) |
634 | 6.16M | return false; |
635 | | |
636 | 84.6M | if( pGlyphIter == pGlyphIterEnd ) |
637 | 0 | return false; |
638 | | |
639 | | // update return data with glyph info |
640 | 84.6M | *pGlyph = &(*pGlyphIter); |
641 | 84.6M | ++nStart; |
642 | 84.6M | if (ppGlyphFont) |
643 | 59.9M | *ppGlyphFont = m_GlyphItems.GetFont().get(); |
644 | | |
645 | | // calculate absolute position in pixel units |
646 | 84.6M | basegfx::B2DPoint aRelativePos = pGlyphIter->linearPos(); |
647 | | |
648 | 84.6M | rPos = GetDrawPosition( aRelativePos ); |
649 | | |
650 | 84.6M | return true; |
651 | 84.6M | } |
652 | | |
653 | | void GenericSalLayout::MoveGlyph(int nStart, double nNewXPos) |
654 | 0 | { |
655 | 0 | if( nStart >= static_cast<int>(m_GlyphItems.size()) ) |
656 | 0 | return; |
657 | | |
658 | 0 | std::vector<GlyphItem>::iterator pGlyphIter = m_GlyphItems.begin(); |
659 | 0 | pGlyphIter += nStart; |
660 | | |
661 | | // the nNewXPos argument determines the new cell position |
662 | | // as RTL-glyphs are right justified in their cell |
663 | | // the cell position needs to be adjusted to the glyph position |
664 | 0 | if( pGlyphIter->IsRTLGlyph() ) |
665 | 0 | nNewXPos += pGlyphIter->newWidth() - pGlyphIter->origWidth(); |
666 | | // calculate the x-offset to the old position |
667 | 0 | double nXDelta = nNewXPos - pGlyphIter->linearPos().getX() + pGlyphIter->xOffset(); |
668 | | // adjust all following glyph positions if needed |
669 | 0 | if( nXDelta != 0 ) |
670 | 0 | { |
671 | 0 | for( std::vector<GlyphItem>::iterator pGlyphIterEnd = m_GlyphItems.end(); pGlyphIter != pGlyphIterEnd; ++pGlyphIter ) |
672 | 0 | { |
673 | 0 | pGlyphIter->adjustLinearPosX(nXDelta); |
674 | 0 | } |
675 | 0 | } |
676 | 0 | } |
677 | | |
678 | | void GenericSalLayout::DropGlyph( int nStart ) |
679 | 0 | { |
680 | 0 | if( nStart >= static_cast<int>(m_GlyphItems.size())) |
681 | 0 | return; |
682 | | |
683 | 0 | std::vector<GlyphItem>::iterator pGlyphIter = m_GlyphItems.begin(); |
684 | 0 | pGlyphIter += nStart; |
685 | 0 | pGlyphIter->dropGlyph(); |
686 | 0 | } |
687 | | |
688 | | void GenericSalLayout::Simplify( bool bIsBase ) |
689 | 0 | { |
690 | | // remove dropped glyphs inplace |
691 | 0 | size_t j = 0; |
692 | 0 | for(size_t i = 0; i < m_GlyphItems.size(); i++ ) |
693 | 0 | { |
694 | 0 | if (bIsBase && m_GlyphItems[i].IsDropped()) |
695 | 0 | continue; |
696 | 0 | if (!bIsBase && m_GlyphItems[i].glyphId() == 0) |
697 | 0 | continue; |
698 | | |
699 | 0 | if( i != j ) |
700 | 0 | { |
701 | 0 | m_GlyphItems[j] = m_GlyphItems[i]; |
702 | 0 | } |
703 | 0 | j += 1; |
704 | 0 | } |
705 | 0 | m_GlyphItems.erase(m_GlyphItems.begin() + j, m_GlyphItems.end()); |
706 | 0 | } |
707 | | |
708 | | MultiSalLayout::MultiSalLayout( std::unique_ptr<SalLayout> pBaseLayout ) |
709 | 0 | : mnLevel( 1 ) |
710 | 0 | , mbIncomplete( false ) |
711 | 0 | { |
712 | 0 | assert(dynamic_cast<GenericSalLayout*>(pBaseLayout.get())); |
713 | |
|
714 | 0 | mpLayouts[ 0 ].reset(static_cast<GenericSalLayout*>(pBaseLayout.release())); |
715 | 0 | } |
716 | | |
717 | | std::unique_ptr<SalLayout> MultiSalLayout::ReleaseBaseLayout() |
718 | 0 | { |
719 | 0 | return std::move(mpLayouts[0]); |
720 | 0 | } |
721 | | |
722 | | void MultiSalLayout::SetIncomplete(bool bIncomplete) |
723 | 0 | { |
724 | 0 | mbIncomplete = bIncomplete; |
725 | 0 | maFallbackRuns[mnLevel-1] = ImplLayoutRuns(); |
726 | 0 | } |
727 | | |
728 | | MultiSalLayout::~MultiSalLayout() |
729 | 0 | { |
730 | 0 | } |
731 | | |
732 | | void MultiSalLayout::AddFallback( std::unique_ptr<SalLayout> pFallback, |
733 | | ImplLayoutRuns const & rFallbackRuns) |
734 | 0 | { |
735 | 0 | assert(dynamic_cast<GenericSalLayout*>(pFallback.get())); |
736 | 0 | if( mnLevel >= MAX_FALLBACK ) |
737 | 0 | return; |
738 | | |
739 | 0 | mpLayouts[ mnLevel ].reset(static_cast<GenericSalLayout*>(pFallback.release())); |
740 | 0 | maFallbackRuns[ mnLevel-1 ] = rFallbackRuns; |
741 | 0 | ++mnLevel; |
742 | 0 | } |
743 | | |
744 | | bool MultiSalLayout::LayoutText( vcl::text::ImplLayoutArgs& rArgs, const SalLayoutGlyphsImpl* ) |
745 | 0 | { |
746 | 0 | if( mnLevel <= 1 ) |
747 | 0 | return false; |
748 | 0 | if (!mbIncomplete) |
749 | 0 | maFallbackRuns[ mnLevel-1 ] = rArgs.maRuns; |
750 | 0 | return true; |
751 | 0 | } |
752 | | |
753 | | void MultiSalLayout::AdjustLayout( vcl::text::ImplLayoutArgs& rArgs ) |
754 | 0 | { |
755 | 0 | SalLayout::AdjustLayout( rArgs ); |
756 | 0 | vcl::text::ImplLayoutArgs aMultiArgs = rArgs; |
757 | 0 | std::vector<double> aJustificationArray; |
758 | |
|
759 | 0 | if (!rArgs.mstJustification.empty() && rArgs.mnLayoutWidth) |
760 | 0 | { |
761 | | // for stretched text in a MultiSalLayout the target width needs to be |
762 | | // distributed by individually adjusting its virtual character widths |
763 | 0 | double nTargetWidth = aMultiArgs.mnLayoutWidth; |
764 | 0 | aMultiArgs.mnLayoutWidth = 0; |
765 | | |
766 | | // we need to get the original unmodified layouts ready |
767 | 0 | for( int n = 0; n < mnLevel; ++n ) |
768 | 0 | mpLayouts[n]->SalLayout::AdjustLayout( aMultiArgs ); |
769 | | // then we can measure the unmodified metrics |
770 | 0 | int nCharCount = rArgs.mnEndCharPos - rArgs.mnMinCharPos; |
771 | 0 | FillDXArray( &aJustificationArray, {} ); |
772 | | // #i17359# multilayout is not simplified yet, so calculating the |
773 | | // unjustified width needs handholding; also count the number of |
774 | | // stretchable virtual char widths |
775 | 0 | double nOrigWidth = 0; |
776 | 0 | int nStretchable = 0; |
777 | 0 | for( int i = 0; i < nCharCount; ++i ) |
778 | 0 | { |
779 | | // convert array from widths to sum of widths |
780 | 0 | nOrigWidth += aJustificationArray[i]; |
781 | 0 | if( aJustificationArray[i] > 0 ) |
782 | 0 | ++nStretchable; |
783 | 0 | } |
784 | | |
785 | | // now we are able to distribute the extra width over the virtual char widths |
786 | 0 | if( nOrigWidth && (nTargetWidth != nOrigWidth) ) |
787 | 0 | { |
788 | 0 | double nDiffWidth = nTargetWidth - nOrigWidth; |
789 | 0 | double nWidthSum = 0; |
790 | 0 | for( int i = 0; i < nCharCount; ++i ) |
791 | 0 | { |
792 | 0 | double nJustWidth = aJustificationArray[i]; |
793 | 0 | if( (nJustWidth > 0) && (nStretchable > 0) ) |
794 | 0 | { |
795 | 0 | double nDeltaWidth = nDiffWidth / nStretchable; |
796 | 0 | nJustWidth += nDeltaWidth; |
797 | 0 | nDiffWidth -= nDeltaWidth; |
798 | 0 | --nStretchable; |
799 | 0 | } |
800 | 0 | nWidthSum += nJustWidth; |
801 | 0 | aJustificationArray[i] = nWidthSum; |
802 | 0 | } |
803 | 0 | if( nWidthSum != nTargetWidth ) |
804 | 0 | aJustificationArray[ nCharCount-1 ] = nTargetWidth; |
805 | | |
806 | | // change the DXArray temporarily (just for the justification) |
807 | 0 | JustificationData stJustData{ rArgs.mnMinCharPos, nCharCount }; |
808 | 0 | for (sal_Int32 i = 0; i < nCharCount; ++i) |
809 | 0 | { |
810 | 0 | stJustData.SetTotalAdvance(rArgs.mnMinCharPos + i, aJustificationArray[i]); |
811 | 0 | } |
812 | |
|
813 | 0 | aMultiArgs.SetJustificationData(std::move(stJustData)); |
814 | 0 | } |
815 | 0 | } |
816 | |
|
817 | 0 | ImplAdjustMultiLayout(rArgs, aMultiArgs, aMultiArgs.mstJustification); |
818 | 0 | } |
819 | | |
820 | | void MultiSalLayout::ImplAdjustMultiLayout(vcl::text::ImplLayoutArgs& rArgs, |
821 | | vcl::text::ImplLayoutArgs& rMultiArgs, |
822 | | const JustificationData& rstJustification) |
823 | 0 | { |
824 | | // Compute rtl flags, since in some scripts glyphs/char order can be |
825 | | // reversed for a few character sequences e.g. Myanmar |
826 | 0 | std::vector<bool> vRtl(rArgs.mnEndCharPos - rArgs.mnMinCharPos, false); |
827 | 0 | rArgs.ResetPos(); |
828 | 0 | bool bRtl; |
829 | 0 | int nRunStart, nRunEnd; |
830 | 0 | while (rArgs.GetNextRun(&nRunStart, &nRunEnd, &bRtl)) |
831 | 0 | { |
832 | 0 | if (bRtl) std::fill(vRtl.begin() + (nRunStart - rArgs.mnMinCharPos), |
833 | 0 | vRtl.begin() + (nRunEnd - rArgs.mnMinCharPos), true); |
834 | 0 | } |
835 | 0 | rArgs.ResetPos(); |
836 | | |
837 | | // prepare "merge sort" |
838 | 0 | int nStartOld[ MAX_FALLBACK ]; |
839 | 0 | int nStartNew[ MAX_FALLBACK ]; |
840 | 0 | const GlyphItem* pGlyphs[MAX_FALLBACK]; |
841 | 0 | bool bValid[MAX_FALLBACK] = { false }; |
842 | |
|
843 | 0 | basegfx::B2DPoint aPos; |
844 | 0 | int nLevel = 0, n; |
845 | 0 | for( n = 0; n < mnLevel; ++n ) |
846 | 0 | { |
847 | | // now adjust the individual components |
848 | 0 | if( n > 0 ) |
849 | 0 | { |
850 | 0 | rMultiArgs.maRuns = maFallbackRuns[ n-1 ]; |
851 | 0 | rMultiArgs.mnFlags |= SalLayoutFlags::ForFallback; |
852 | 0 | } |
853 | 0 | mpLayouts[n]->AdjustLayout( rMultiArgs ); |
854 | | |
855 | | // remove unused parts of component |
856 | 0 | if( n > 0 ) |
857 | 0 | { |
858 | 0 | if (mbIncomplete && (n == mnLevel-1)) |
859 | 0 | mpLayouts[n]->Simplify( true ); |
860 | 0 | else |
861 | 0 | mpLayouts[n]->Simplify( false ); |
862 | 0 | } |
863 | | |
864 | | // prepare merging components |
865 | 0 | nStartNew[ nLevel ] = nStartOld[ nLevel ] = 0; |
866 | 0 | bValid[nLevel] = mpLayouts[n]->GetNextGlyph(&pGlyphs[nLevel], aPos, nStartNew[nLevel]); |
867 | |
|
868 | 0 | if( (n > 0) && !bValid[ nLevel ] ) |
869 | 0 | { |
870 | | // an empty fallback layout can be released |
871 | 0 | mpLayouts[n].reset(); |
872 | 0 | } |
873 | 0 | else |
874 | 0 | { |
875 | | // reshuffle used fallbacks if needed |
876 | 0 | if( nLevel != n ) |
877 | 0 | { |
878 | 0 | mpLayouts[ nLevel ] = std::move(mpLayouts[ n ]); |
879 | 0 | maFallbackRuns[ nLevel ] = maFallbackRuns[ n ]; |
880 | 0 | } |
881 | 0 | ++nLevel; |
882 | 0 | } |
883 | 0 | } |
884 | 0 | mnLevel = nLevel; |
885 | | |
886 | | // prepare merge the fallback levels |
887 | 0 | double nXPos = 0; |
888 | 0 | for( n = 0; n < nLevel; ++n ) |
889 | 0 | maFallbackRuns[n].ResetPos(); |
890 | |
|
891 | 0 | int nFirstValid = -1; |
892 | 0 | for( n = 0; n < nLevel; ++n ) |
893 | 0 | { |
894 | 0 | if(bValid[n]) |
895 | 0 | { |
896 | 0 | nFirstValid = n; |
897 | 0 | break; |
898 | 0 | } |
899 | 0 | } |
900 | 0 | assert(nFirstValid >= 0); |
901 | | |
902 | | // get the next codepoint index that needs fallback |
903 | 0 | int nActiveCharPos = pGlyphs[nFirstValid]->charPos(); |
904 | 0 | int nActiveCharIndex = nActiveCharPos - mnMinCharPos; |
905 | | // get the end index of the active run |
906 | 0 | int nLastRunEndChar = (nActiveCharIndex >= 0 && vRtl[nActiveCharIndex]) ? |
907 | 0 | rArgs.mnEndCharPos : rArgs.mnMinCharPos - 1; |
908 | 0 | int nRunVisibleEndChar = pGlyphs[nFirstValid]->charPos(); |
909 | | // merge the fallback levels |
910 | 0 | while( bValid[nFirstValid] && (nLevel > 0)) |
911 | 0 | { |
912 | | // find best fallback level |
913 | 0 | for( n = 0; n < nLevel; ++n ) |
914 | 0 | if( bValid[n] && !maFallbackRuns[n].PosIsInAnyRun( nActiveCharPos ) ) |
915 | | // fallback level n wins when it requested no further fallback |
916 | 0 | break; |
917 | 0 | int nFBLevel = n; |
918 | |
|
919 | 0 | if( n < nLevel ) |
920 | 0 | { |
921 | | // use base(n==0) or fallback(n>=1) level |
922 | 0 | mpLayouts[n]->MoveGlyph( nStartOld[n], nXPos ); |
923 | 0 | } |
924 | 0 | else |
925 | 0 | { |
926 | 0 | n = 0; // keep NotDef in base level |
927 | 0 | } |
928 | |
|
929 | 0 | if( n > 0 ) |
930 | 0 | { |
931 | | // drop the NotDef glyphs in the base layout run if a fallback run exists |
932 | | // |
933 | | // tdf#163761: The whole algorithm in this outer loop works by advancing through |
934 | | // all of the glyphs and runs in lock-step. The current glyph in the base layout |
935 | | // must not outpace the fallback runs. The following loop does this by breaking |
936 | | // at the end of the current fallback run (which comes from the previous level). |
937 | 0 | while ((maFallbackRuns[n - 1].PosIsInRun(pGlyphs[nFirstValid]->charPos())) |
938 | 0 | && (!maFallbackRuns[n].PosIsInAnyRun(pGlyphs[nFirstValid]->charPos()))) |
939 | 0 | { |
940 | 0 | mpLayouts[0]->DropGlyph( nStartOld[0] ); |
941 | 0 | nStartOld[0] = nStartNew[0]; |
942 | 0 | bValid[nFirstValid] = mpLayouts[0]->GetNextGlyph(&pGlyphs[nFirstValid], aPos, nStartNew[0]); |
943 | |
|
944 | 0 | if( !bValid[nFirstValid] ) |
945 | 0 | break; |
946 | 0 | } |
947 | 0 | } |
948 | | |
949 | | // skip to end of layout run and calculate its advance width |
950 | 0 | double nRunAdvance = 0; |
951 | 0 | bool bKeepNotDef = (nFBLevel >= nLevel); |
952 | 0 | for(;;) |
953 | 0 | { |
954 | | // check for reordered glyphs |
955 | | // tdf#154104: Moved this up in the loop body to handle the case of single-glyph |
956 | | // runs that start on a reordered glyph. |
957 | 0 | if (!rstJustification.empty()) |
958 | 0 | { |
959 | 0 | if (vRtl[nActiveCharPos - mnMinCharPos]) |
960 | 0 | { |
961 | 0 | if (rstJustification.GetTotalAdvance(nRunVisibleEndChar) |
962 | 0 | >= rstJustification.GetTotalAdvance(pGlyphs[n]->charPos())) |
963 | 0 | { |
964 | 0 | nRunVisibleEndChar = pGlyphs[n]->charPos(); |
965 | 0 | } |
966 | 0 | } |
967 | 0 | else if (rstJustification.GetTotalAdvance(nRunVisibleEndChar) |
968 | 0 | <= rstJustification.GetTotalAdvance(pGlyphs[n]->charPos())) |
969 | 0 | { |
970 | 0 | nRunVisibleEndChar = pGlyphs[n]->charPos(); |
971 | 0 | } |
972 | 0 | } |
973 | |
|
974 | 0 | nRunAdvance += pGlyphs[n]->newWidth(); |
975 | | |
976 | | // proceed to next glyph |
977 | 0 | nStartOld[n] = nStartNew[n]; |
978 | 0 | int nOrigCharPos = pGlyphs[n]->charPos(); |
979 | 0 | bValid[n] = mpLayouts[n]->GetNextGlyph(&pGlyphs[n], aPos, nStartNew[n]); |
980 | | // break after last glyph of active layout |
981 | 0 | if( !bValid[n] ) |
982 | 0 | { |
983 | | // performance optimization (when a fallback layout is no longer needed) |
984 | 0 | if( n >= nLevel-1 ) |
985 | 0 | --nLevel; |
986 | 0 | break; |
987 | 0 | } |
988 | | |
989 | | //If the next character is one which belongs to the next level, then we |
990 | | //are finished here for now, and we'll pick up after the next level has |
991 | | //been processed |
992 | 0 | if ((n+1 < nLevel) && (pGlyphs[n]->charPos() != nOrigCharPos)) |
993 | 0 | { |
994 | 0 | if (nOrigCharPos < pGlyphs[n]->charPos()) |
995 | 0 | { |
996 | 0 | if (pGlyphs[n+1]->charPos() > nOrigCharPos && (pGlyphs[n+1]->charPos() < pGlyphs[n]->charPos())) |
997 | 0 | break; |
998 | 0 | } |
999 | 0 | else if (nOrigCharPos > pGlyphs[n]->charPos()) |
1000 | 0 | { |
1001 | 0 | if (pGlyphs[n+1]->charPos() > pGlyphs[n]->charPos() && (pGlyphs[n+1]->charPos() < nOrigCharPos)) |
1002 | 0 | break; |
1003 | 0 | } |
1004 | 0 | } |
1005 | | |
1006 | | // break at end of layout run |
1007 | 0 | if( n > 0 ) |
1008 | 0 | { |
1009 | | // skip until end of fallback run |
1010 | 0 | if (!maFallbackRuns[n-1].PosIsInRun(pGlyphs[n]->charPos())) |
1011 | 0 | break; |
1012 | 0 | } |
1013 | 0 | else |
1014 | 0 | { |
1015 | | // break when a fallback is needed and available |
1016 | 0 | bool bNeedFallback = maFallbackRuns[0].PosIsInRun(pGlyphs[nFirstValid]->charPos()); |
1017 | 0 | if( bNeedFallback ) |
1018 | 0 | if (!maFallbackRuns[nLevel-1].PosIsInRun(pGlyphs[nFirstValid]->charPos())) |
1019 | 0 | break; |
1020 | | // break when change from resolved to unresolved base layout run |
1021 | 0 | if( bKeepNotDef && !bNeedFallback ) |
1022 | 0 | { maFallbackRuns[0].NextRun(); break; } |
1023 | 0 | bKeepNotDef = bNeedFallback; |
1024 | 0 | } |
1025 | 0 | } |
1026 | | |
1027 | | // if a justification array is available |
1028 | | // => use it directly to calculate the corresponding run width |
1029 | 0 | if (!rstJustification.empty()) |
1030 | 0 | { |
1031 | | // the run advance is the width from the first char |
1032 | | // in the run to the first char in the next run |
1033 | 0 | nRunAdvance = 0; |
1034 | 0 | nActiveCharIndex = nActiveCharPos - mnMinCharPos; |
1035 | 0 | if (nActiveCharIndex >= 0 && vRtl[nActiveCharIndex]) |
1036 | 0 | { |
1037 | 0 | nRunAdvance -= rstJustification.GetTotalAdvance(nRunVisibleEndChar - 1); |
1038 | 0 | nRunAdvance += rstJustification.GetTotalAdvance(nLastRunEndChar - 1); |
1039 | 0 | } |
1040 | 0 | else |
1041 | 0 | { |
1042 | 0 | nRunAdvance += rstJustification.GetTotalAdvance(nRunVisibleEndChar); |
1043 | 0 | nRunAdvance -= rstJustification.GetTotalAdvance(nLastRunEndChar); |
1044 | 0 | } |
1045 | 0 | nLastRunEndChar = nRunVisibleEndChar; |
1046 | 0 | nRunVisibleEndChar = pGlyphs[nFirstValid]->charPos(); |
1047 | 0 | } |
1048 | | |
1049 | | // calculate new x position |
1050 | 0 | nXPos += nRunAdvance; |
1051 | | |
1052 | | // prepare for next fallback run |
1053 | 0 | nActiveCharPos = pGlyphs[nFirstValid]->charPos(); |
1054 | | // it essential that the runs don't get ahead of themselves and in the |
1055 | | // if( bKeepNotDef && !bNeedFallback ) statement above, the next run may |
1056 | | // have already been reached on the base level |
1057 | 0 | for( int i = nFBLevel; --i >= 0;) |
1058 | 0 | { |
1059 | 0 | if (maFallbackRuns[i].GetRun(&nRunStart, &nRunEnd, &bRtl)) |
1060 | 0 | { |
1061 | | // tdf#165510: Need to use the direction of the current character, |
1062 | | // not the direction of the fallback run. |
1063 | 0 | nActiveCharIndex = nActiveCharPos - mnMinCharPos; |
1064 | 0 | if (nActiveCharIndex >= 0) |
1065 | 0 | { |
1066 | 0 | bRtl = vRtl[nActiveCharIndex]; |
1067 | 0 | } |
1068 | |
|
1069 | 0 | if (bRtl) |
1070 | 0 | { |
1071 | 0 | if (nRunStart > nActiveCharPos) |
1072 | 0 | maFallbackRuns[i].NextRun(); |
1073 | 0 | } |
1074 | 0 | else |
1075 | 0 | { |
1076 | 0 | if (nRunEnd <= nActiveCharPos) |
1077 | 0 | maFallbackRuns[i].NextRun(); |
1078 | 0 | } |
1079 | 0 | } |
1080 | 0 | } |
1081 | 0 | } |
1082 | |
|
1083 | 0 | mpLayouts[0]->Simplify( true ); |
1084 | 0 | } |
1085 | | |
1086 | | void MultiSalLayout::DrawText( SalGraphics& rGraphics ) const |
1087 | 0 | { |
1088 | 0 | for( int i = mnLevel; --i >= 0; ) |
1089 | 0 | { |
1090 | 0 | SalLayout& rLayout = *mpLayouts[ i ]; |
1091 | 0 | rLayout.DrawBase() += maDrawBase; |
1092 | 0 | rLayout.DrawOffset() += maDrawOffset; |
1093 | 0 | rLayout.DrawText( rGraphics ); |
1094 | 0 | rLayout.DrawOffset() -= maDrawOffset; |
1095 | 0 | rLayout.DrawBase() -= maDrawBase; |
1096 | 0 | } |
1097 | | // NOTE: now the baselevel font is active again |
1098 | 0 | } |
1099 | | |
1100 | | sal_Int32 MultiSalLayout::GetTextBreak(double nMaxWidth, double nCharExtra, int nFactor) const |
1101 | 0 | { |
1102 | 0 | if( mnLevel <= 0 ) |
1103 | 0 | return -1; |
1104 | 0 | if( mnLevel == 1 ) |
1105 | 0 | return mpLayouts[0]->GetTextBreak( nMaxWidth, nCharExtra, nFactor ); |
1106 | | |
1107 | 0 | int nCharCount = mnEndCharPos - mnMinCharPos; |
1108 | 0 | std::vector<double> aCharWidths; |
1109 | 0 | std::vector<double> aFallbackCharWidths; |
1110 | 0 | mpLayouts[0]->FillDXArray( &aCharWidths, {} ); |
1111 | |
|
1112 | 0 | for( int n = 1; n < mnLevel; ++n ) |
1113 | 0 | { |
1114 | 0 | SalLayout& rLayout = *mpLayouts[ n ]; |
1115 | 0 | rLayout.FillDXArray( &aFallbackCharWidths, {} ); |
1116 | 0 | for( int i = 0; i < nCharCount; ++i ) |
1117 | 0 | if( aCharWidths[ i ] == 0 ) |
1118 | 0 | aCharWidths[i] = aFallbackCharWidths[i]; |
1119 | 0 | } |
1120 | |
|
1121 | 0 | double nWidth = 0; |
1122 | 0 | for( int i = 0; i < nCharCount; ++i ) |
1123 | 0 | { |
1124 | 0 | nWidth += aCharWidths[ i ] * nFactor; |
1125 | 0 | if( nWidth > nMaxWidth ) |
1126 | 0 | return (i + mnMinCharPos); |
1127 | 0 | nWidth += nCharExtra; |
1128 | 0 | } |
1129 | | |
1130 | 0 | return -1; |
1131 | 0 | } |
1132 | | |
1133 | | double MultiSalLayout::GetTextWidth() const |
1134 | 0 | { |
1135 | | // Measure text width. There might be holes in each SalLayout due to |
1136 | | // missing chars, so we use GetNextGlyph() to get the glyphs across all |
1137 | | // layouts. |
1138 | 0 | int nStart = 0; |
1139 | 0 | basegfx::B2DPoint aPos; |
1140 | 0 | const GlyphItem* pGlyphItem; |
1141 | |
|
1142 | 0 | double nWidth = 0; |
1143 | 0 | while (GetNextGlyph(&pGlyphItem, aPos, nStart)) |
1144 | 0 | nWidth += pGlyphItem->newWidth(); |
1145 | |
|
1146 | 0 | return nWidth; |
1147 | 0 | } |
1148 | | |
1149 | | double MultiSalLayout::GetPartialTextWidth(sal_Int32 skipStart, sal_Int32 amt) const |
1150 | 0 | { |
1151 | | // Measure text width. There might be holes in each SalLayout due to |
1152 | | // missing chars, so we use GetNextGlyph() to get the glyphs across all |
1153 | | // layouts. |
1154 | 0 | int nStart = 0; |
1155 | 0 | basegfx::B2DPoint aPos; |
1156 | 0 | const GlyphItem* pGlyphItem; |
1157 | |
|
1158 | 0 | auto skipEnd = skipStart + amt; |
1159 | 0 | double nWidth = 0; |
1160 | 0 | while (GetNextGlyph(&pGlyphItem, aPos, nStart)) |
1161 | 0 | { |
1162 | 0 | auto cpos = pGlyphItem->charPos(); |
1163 | 0 | if (cpos >= skipStart && cpos < skipEnd) |
1164 | 0 | { |
1165 | 0 | nWidth += pGlyphItem->newWidth(); |
1166 | 0 | } |
1167 | 0 | } |
1168 | |
|
1169 | 0 | return nWidth; |
1170 | 0 | } |
1171 | | |
1172 | | double MultiSalLayout::FillDXArray( std::vector<double>* pCharWidths, const OUString& rStr ) const |
1173 | 0 | { |
1174 | 0 | if (pCharWidths) |
1175 | 0 | { |
1176 | | // prepare merging of fallback levels |
1177 | 0 | std::vector<double> aTempWidths; |
1178 | 0 | const int nCharCount = mnEndCharPos - mnMinCharPos; |
1179 | 0 | pCharWidths->clear(); |
1180 | 0 | pCharWidths->resize(nCharCount, 0); |
1181 | |
|
1182 | 0 | for (int n = mnLevel; --n >= 0;) |
1183 | 0 | { |
1184 | | // query every fallback level |
1185 | 0 | mpLayouts[n]->FillDXArray(&aTempWidths, rStr); |
1186 | | |
1187 | | // calculate virtual char widths using most probable fallback layout |
1188 | 0 | for (int i = 0; i < nCharCount; ++i) |
1189 | 0 | { |
1190 | | // #i17359# restriction: |
1191 | | // one char cannot be resolved from different fallbacks |
1192 | 0 | if ((*pCharWidths)[i] != 0) |
1193 | 0 | continue; |
1194 | 0 | double nCharWidth = aTempWidths[i]; |
1195 | 0 | if (!nCharWidth) |
1196 | 0 | continue; |
1197 | 0 | (*pCharWidths)[i] = nCharWidth; |
1198 | 0 | } |
1199 | 0 | } |
1200 | 0 | } |
1201 | |
|
1202 | 0 | return GetTextWidth(); |
1203 | 0 | } |
1204 | | |
1205 | | double MultiSalLayout::FillPartialDXArray(std::vector<double>* pCharWidths, const OUString& rStr, |
1206 | | sal_Int32 skipStart, sal_Int32 amt) const |
1207 | 0 | { |
1208 | 0 | if (pCharWidths) |
1209 | 0 | { |
1210 | 0 | FillDXArray(pCharWidths, rStr); |
1211 | | |
1212 | | // Strip excess characters from the array |
1213 | 0 | if (skipStart < static_cast<sal_Int32>(pCharWidths->size())) |
1214 | 0 | { |
1215 | 0 | std::copy(pCharWidths->begin() + skipStart, pCharWidths->end(), pCharWidths->begin()); |
1216 | 0 | } |
1217 | |
|
1218 | 0 | pCharWidths->resize(amt); |
1219 | 0 | } |
1220 | |
|
1221 | 0 | return GetPartialTextWidth(skipStart, amt); |
1222 | 0 | } |
1223 | | |
1224 | | void MultiSalLayout::GetCaretPositions(std::vector<double>& rCaretPositions, |
1225 | | const OUString& rStr) const |
1226 | 0 | { |
1227 | | // prepare merging of fallback levels |
1228 | 0 | std::vector<double> aTempPos; |
1229 | 0 | const int nCaretPositions = (mnEndCharPos - mnMinCharPos) * 2; |
1230 | 0 | rCaretPositions.clear(); |
1231 | 0 | rCaretPositions.resize(nCaretPositions, -1); |
1232 | |
|
1233 | 0 | for (int n = mnLevel; --n >= 0;) |
1234 | 0 | { |
1235 | | // query every fallback level |
1236 | 0 | mpLayouts[n]->GetCaretPositions(aTempPos, rStr); |
1237 | | |
1238 | | // calculate virtual char widths using most probable fallback layout |
1239 | 0 | for (int i = 0; i < nCaretPositions; ++i) |
1240 | 0 | { |
1241 | | // one char cannot be resolved from different fallbacks |
1242 | 0 | if (rCaretPositions[i] != -1) |
1243 | 0 | continue; |
1244 | 0 | if (aTempPos[i] >= 0) |
1245 | 0 | rCaretPositions[i] = aTempPos[i]; |
1246 | 0 | } |
1247 | 0 | } |
1248 | 0 | } |
1249 | | |
1250 | | bool MultiSalLayout::GetNextGlyph(const GlyphItem** pGlyph, |
1251 | | basegfx::B2DPoint& rPos, int& nStart, |
1252 | | const LogicalFontInstance** ppGlyphFont) const |
1253 | 0 | { |
1254 | | // NOTE: nStart is tagged with current font index |
1255 | 0 | int nLevel = static_cast<unsigned>(nStart) >> GF_FONTSHIFT; |
1256 | 0 | nStart &= ~GF_FONTMASK; |
1257 | 0 | for(; nLevel < mnLevel; ++nLevel, nStart=0 ) |
1258 | 0 | { |
1259 | 0 | GenericSalLayout& rLayout = *mpLayouts[ nLevel ]; |
1260 | 0 | if (rLayout.GetNextGlyph(pGlyph, rPos, nStart, ppGlyphFont)) |
1261 | 0 | { |
1262 | 0 | int nFontTag = nLevel << GF_FONTSHIFT; |
1263 | 0 | nStart |= nFontTag; |
1264 | 0 | rPos += maDrawBase + maDrawOffset; |
1265 | 0 | return true; |
1266 | 0 | } |
1267 | 0 | } |
1268 | | |
1269 | 0 | return false; |
1270 | 0 | } |
1271 | | |
1272 | | bool MultiSalLayout::GetOutline(basegfx::B2DPolyPolygonVector& rPPV) const |
1273 | 0 | { |
1274 | 0 | bool bRet = false; |
1275 | |
|
1276 | 0 | for( int i = mnLevel; --i >= 0; ) |
1277 | 0 | { |
1278 | 0 | SalLayout& rLayout = *mpLayouts[ i ]; |
1279 | 0 | rLayout.DrawBase() = maDrawBase; |
1280 | 0 | rLayout.DrawOffset() += maDrawOffset; |
1281 | 0 | bRet |= rLayout.GetOutline(rPPV); |
1282 | 0 | rLayout.DrawOffset() -= maDrawOffset; |
1283 | 0 | } |
1284 | |
|
1285 | 0 | return bRet; |
1286 | 0 | } |
1287 | | |
1288 | | bool MultiSalLayout::HasFontKashidaPositions() const |
1289 | 0 | { |
1290 | | // tdf#163215: VCL cannot suggest valid kashida positions for certain fonts (e.g. AAT). |
1291 | | // In order to strictly validate kashida positions, all fallback fonts must allow it. |
1292 | 0 | for (int n = 0; n < mnLevel; ++n) |
1293 | 0 | { |
1294 | 0 | if (!mpLayouts[n]->HasFontKashidaPositions()) |
1295 | 0 | { |
1296 | 0 | return false; |
1297 | 0 | } |
1298 | 0 | } |
1299 | | |
1300 | 0 | return true; |
1301 | 0 | } |
1302 | | |
1303 | | bool MultiSalLayout::IsKashidaPosValid(int nCharPos, int nNextCharPos) const |
1304 | 0 | { |
1305 | | // Check the base layout |
1306 | 0 | bool bValid = mpLayouts[0]->IsKashidaPosValid(nCharPos, nNextCharPos); |
1307 | | |
1308 | | // If base layout returned false, it might be because the character was not |
1309 | | // supported there, so we check fallback layouts. |
1310 | 0 | if (!bValid) |
1311 | 0 | { |
1312 | 0 | for (int i = 1; i < mnLevel; ++i) |
1313 | 0 | { |
1314 | | // - 1 because there is no fallback run for the base layout, IIUC. |
1315 | 0 | if (maFallbackRuns[i - 1].PosIsInAnyRun(nCharPos) && |
1316 | 0 | maFallbackRuns[i - 1].PosIsInAnyRun(nNextCharPos)) |
1317 | 0 | { |
1318 | 0 | bValid = mpLayouts[i]->IsKashidaPosValid(nCharPos, nNextCharPos); |
1319 | 0 | break; |
1320 | 0 | } |
1321 | 0 | } |
1322 | 0 | } |
1323 | |
|
1324 | 0 | return bValid; |
1325 | 0 | } |
1326 | | |
1327 | | SalLayoutGlyphs MultiSalLayout::GetGlyphs() const |
1328 | 0 | { |
1329 | 0 | SalLayoutGlyphs glyphs; |
1330 | 0 | for( int n = 0; n < mnLevel; ++n ) |
1331 | 0 | glyphs.AppendImpl(mpLayouts[n]->GlyphsImpl().clone()); |
1332 | 0 | return glyphs; |
1333 | 0 | } |
1334 | | |
1335 | | void MultiSalLayout::drawSalLayout(void* pSurface, const basegfx::BColor& rTextColor, bool bAntiAliased) const |
1336 | 0 | { |
1337 | 0 | for( int i = mnLevel; --i >= 0; ) |
1338 | 0 | { |
1339 | 0 | Application::GetDefaultDevice()->GetGraphics()->DrawSalLayout(*mpLayouts[ i ], pSurface, rTextColor, bAntiAliased); |
1340 | 0 | } |
1341 | 0 | } |
1342 | | |
1343 | | /* vim:set shiftwidth=4 softtabstop=4 expandtab: */ |