Coverage Report

Created: 2026-02-14 09:37

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/work/workdir/UnpackedTarball/libjpeg-turbo/src/jdhuff.c
Line
Count
Source
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
22.6k
{
81
22.6k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
22.6k
  int ci, blkn, dctbl, actbl;
83
22.6k
  d_derived_tbl **pdtbl;
84
22.6k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
22.6k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
7.92k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
15.5k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
70.4k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
47.8k
    compptr = cinfo->cur_comp_info[ci];
96
47.8k
    dctbl = compptr->dc_tbl_no;
97
47.8k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
47.8k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
47.8k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
47.8k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
47.8k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
47.8k
    entropy->saved.last_dc_val[ci] = 0;
106
47.8k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
109k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
86.9k
    ci = cinfo->MCU_membership[blkn];
111
86.9k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
86.9k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
86.9k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
86.9k
    if (compptr->component_needed) {
117
86.9k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
86.9k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
86.9k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
86.9k
  }
124
125
  /* Initialize bitread state variables */
126
22.6k
  entropy->bitstate.bits_left = 0;
127
22.6k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
22.6k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
22.6k
  entropy->restarts_to_go = cinfo->restart_interval;
132
22.6k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
107k
{
146
107k
  JHUFF_TBL *htbl;
147
107k
  d_derived_tbl *dtbl;
148
107k
  int p, i, l, si, numsymbols;
149
107k
  int lookbits, ctr;
150
107k
  char huffsize[257];
151
107k
  unsigned int huffcode[257];
152
107k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
107k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
27
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
107k
  htbl =
162
107k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
107k
  if (htbl == NULL)
164
19
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
107k
  if (*pdtbl == NULL)
168
63.7k
    *pdtbl = (d_derived_tbl *)
169
63.7k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
63.7k
                                  sizeof(d_derived_tbl));
171
107k
  dtbl = *pdtbl;
172
107k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
107k
  p = 0;
177
1.83M
  for (l = 1; l <= 16; l++) {
178
1.72M
    i = (int)htbl->bits[l];
179
1.72M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
10.0M
    while (i--)
182
8.33M
      huffsize[p++] = (char)l;
183
1.72M
  }
184
107k
  huffsize[p] = 0;
185
107k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
107k
  code = 0;
191
107k
  si = huffsize[0];
192
107k
  p = 0;
193
1.28M
  while (huffsize[p]) {
194
9.50M
    while (((int)huffsize[p]) == si) {
195
8.33M
      huffcode[p++] = code;
196
8.33M
      code++;
197
8.33M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
1.17M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
20
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
1.17M
    code <<= 1;
204
1.17M
    si++;
205
1.17M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
107k
  p = 0;
210
1.83M
  for (l = 1; l <= 16; l++) {
211
1.72M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
1.03M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
1.03M
      p += htbl->bits[l];
217
1.03M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
1.03M
    } else {
219
691k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
691k
    }
221
1.72M
  }
222
107k
  dtbl->valoffset[17] = 0;
223
107k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
27.6M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
27.5M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
107k
  p = 0;
236
969k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
2.36M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
1.50M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
25.5M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
24.0M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
24.0M
        lookbits++;
244
24.0M
      }
245
1.50M
    }
246
861k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
107k
  if (isDC) {
255
684k
    for (i = 0; i < numsymbols; i++) {
256
628k
      int sym = htbl->huffval[i];
257
628k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
27
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
628k
    }
260
56.4k
  }
261
107k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
19.8M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
9.93M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
9.93M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
9.93M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
9.93M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
9.93M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
10.4M
    while (bits_left < MIN_GET_BITS) {
303
9.12M
      register int c;
304
305
      /* Attempt to read a byte */
306
9.12M
      if (bytes_in_buffer == 0) {
307
19.8k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
19.8k
        next_input_byte = cinfo->src->next_input_byte;
310
19.8k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
19.8k
      }
312
9.12M
      bytes_in_buffer--;
313
9.12M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
9.12M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
833k
        do {
323
833k
          if (bytes_in_buffer == 0) {
324
2.93k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
2.93k
            next_input_byte = cinfo->src->next_input_byte;
327
2.93k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
2.93k
          }
329
833k
          bytes_in_buffer--;
330
833k
          c = *next_input_byte++;
331
833k
        } while (c == 0xFF);
332
333
143k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
102k
          c = 0xFF;
336
102k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
41.3k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
41.3k
          goto no_more_bytes;
348
41.3k
        }
349
143k
      }
350
351
      /* OK, load c into get_buffer */
352
9.08M
      get_buffer = (get_buffer << 8) | c;
353
9.08M
      bits_left += 8;
354
9.08M
    } /* end while */
355
8.61M
  } else {
356
8.65M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
8.65M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
4.71M
      if (!cinfo->entropy->insufficient_data) {
368
41.9k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
41.9k
        cinfo->entropy->insufficient_data = TRUE;
370
41.9k
      }
371
      /* Fill the buffer with zero bits */
372
4.71M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
4.71M
      bits_left = MIN_GET_BITS;
374
4.71M
    }
375
8.65M
  }
376
377
  /* Unload the local registers */
378
9.93M
  state->next_input_byte = next_input_byte;
379
9.93M
  state->bytes_in_buffer = bytes_in_buffer;
380
9.93M
  state->get_buffer = get_buffer;
381
9.93M
  state->bits_left = bits_left;
382
383
9.93M
  return TRUE;
384
9.93M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
1.14M
#define GET_BYTE { \
392
1.14M
  register int c0, c1; \
393
1.14M
  c0 = *buffer++; \
394
1.14M
  c1 = *buffer; \
395
1.14M
  /* Pre-execute most common case */ \
396
1.14M
  get_buffer = (get_buffer << 8) | c0; \
397
1.14M
  bits_left += 8; \
398
1.14M
  if (c0 == 0xFF) { \
399
189k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
189k
    buffer++; \
401
189k
    if (c1 != 0) { \
402
141k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
141k
      cinfo->unread_marker = c1; \
404
141k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
141k
      buffer -= 2; \
406
141k
      get_buffer &= ~0xFF; \
407
141k
    } \
408
189k
  } \
409
1.14M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
2.64M
  if (bits_left <= 16) { \
416
191k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
191k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
5.58M
{
440
5.58M
  register int l = min_bits;
441
5.58M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
5.58M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
5.58M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
21.0M
  while (code > htbl->maxcode[l]) {
453
15.4M
    code <<= 1;
454
15.4M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
15.4M
    code |= GET_BITS(1);
456
15.4M
    l++;
457
15.4M
  }
458
459
  /* Unload the local registers */
460
5.58M
  state->get_buffer = get_buffer;
461
5.58M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
5.58M
  if (l > 16) {
466
248k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
248k
    return 0;                   /* fake a zero as the safest result */
468
248k
  }
469
470
5.33M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
5.58M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
10.3M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
10.3M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
26.6k
{
514
26.6k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
26.6k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
26.6k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
26.6k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
26.6k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
94.7k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
68.1k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
26.6k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
26.6k
  if (cinfo->unread_marker == 0)
539
10.2k
    entropy->pub.insufficient_data = FALSE;
540
541
26.6k
  return TRUE;
542
26.6k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
465k
{
554
465k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
465k
  BITREAD_STATE_VARS;
556
465k
  int blkn;
557
465k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
465k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
465k
  state = entropy->saved;
563
564
1.37M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
906k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
906k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
906k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
906k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
906k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
906k
    if (s) {
575
412k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
412k
      r = GET_BITS(s);
577
412k
      s = HUFF_EXTEND(r, s);
578
412k
    }
579
580
906k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
906k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
906k
      s += state.last_dc_val[ci];
592
906k
      state.last_dc_val[ci] = s;
593
906k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
906k
        (*block)[0] = (JCOEF)s;
596
906k
      }
597
906k
    }
598
599
906k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
9.96M
      for (k = 1; k < DCTSIZE2; k++) {
604
9.77M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
9.77M
        r = s >> 4;
607
9.77M
        s &= 15;
608
609
9.77M
        if (s) {
610
9.04M
          k += r;
611
9.04M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
9.04M
          r = GET_BITS(s);
613
9.04M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
9.04M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
9.04M
        } else {
620
734k
          if (r != 15)
621
715k
            break;
622
19.5k
          k += 15;
623
19.5k
        }
624
9.77M
      }
625
626
906k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
22
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
22
    }
647
906k
  }
648
649
  /* Completed MCU, so update state */
650
465k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
465k
  entropy->saved = state;
652
465k
  return TRUE;
653
465k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
430k
{
665
430k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
430k
  BITREAD_STATE_VARS;
667
430k
  JOCTET *buffer;
668
430k
  int blkn;
669
430k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
430k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
430k
  buffer = (JOCTET *)br_state.next_input_byte;
675
430k
  state = entropy->saved;
676
677
868k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
437k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
437k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
437k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
437k
    register int s, k, r, l;
682
683
437k
    HUFF_DECODE_FAST(s, l, dctbl);
684
437k
    if (s) {
685
83.0k
      FILL_BIT_BUFFER_FAST
686
83.0k
      r = GET_BITS(s);
687
83.0k
      s = HUFF_EXTEND(r, s);
688
83.0k
    }
689
690
437k
    if (entropy->dc_needed[blkn]) {
691
437k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
437k
      s += state.last_dc_val[ci];
696
437k
      state.last_dc_val[ci] = s;
697
437k
      if (block)
698
437k
        (*block)[0] = (JCOEF)s;
699
437k
    }
700
701
437k
    if (entropy->ac_needed[blkn] && block) {
702
703
1.29M
      for (k = 1; k < DCTSIZE2; k++) {
704
1.27M
        HUFF_DECODE_FAST(s, l, actbl);
705
1.27M
        r = s >> 4;
706
1.27M
        s &= 15;
707
708
1.27M
        if (s) {
709
846k
          k += r;
710
846k
          FILL_BIT_BUFFER_FAST
711
846k
          r = GET_BITS(s);
712
846k
          s = HUFF_EXTEND(r, s);
713
846k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
846k
        } else {
715
426k
          if (r != 15) break;
716
6.57k
          k += 15;
717
6.57k
        }
718
1.27M
      }
719
720
437k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
437k
  }
738
739
430k
  if (cinfo->unread_marker != 0) {
740
16.0k
    cinfo->unread_marker = 0;
741
16.0k
    return FALSE;
742
16.0k
  }
743
744
414k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
414k
  br_state.next_input_byte = buffer;
746
414k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
414k
  entropy->saved = state;
748
414k
  return TRUE;
749
430k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
37.3M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
37.3M
{
772
37.3M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
37.3M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
37.3M
  if (cinfo->restart_interval) {
777
1.41M
    if (entropy->restarts_to_go == 0)
778
26.6k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
1.41M
    usefast = 0;
781
1.41M
  }
782
783
37.3M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
8.97M
      cinfo->unread_marker != 0)
785
36.8M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
37.3M
  if (!entropy->pub.insufficient_data) {
791
792
880k
    if (usefast) {
793
430k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
449k
    } else {
795
465k
use_slow:
796
465k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
465k
    }
798
799
880k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
37.3M
  if (cinfo->restart_interval)
803
1.41M
    entropy->restarts_to_go--;
804
805
37.3M
  return TRUE;
806
37.3M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
18.1k
{
816
18.1k
  huff_entropy_ptr entropy;
817
18.1k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
18.1k
  std_huff_tables((j_common_ptr)cinfo);
824
825
18.1k
  entropy = (huff_entropy_ptr)
826
18.1k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
18.1k
                                sizeof(huff_entropy_decoder));
828
18.1k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
18.1k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
18.1k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
90.7k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
72.6k
  }
836
18.1k
}