/src/libressl/crypto/bn/bn_gf2m.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* $OpenBSD: bn_gf2m.c,v 1.23 2017/01/29 17:49:22 beck Exp $ */ |
2 | | /* ==================================================================== |
3 | | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
4 | | * |
5 | | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included |
6 | | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed |
7 | | * to the OpenSSL project. |
8 | | * |
9 | | * The ECC Code is licensed pursuant to the OpenSSL open source |
10 | | * license provided below. |
11 | | * |
12 | | * In addition, Sun covenants to all licensees who provide a reciprocal |
13 | | * covenant with respect to their own patents if any, not to sue under |
14 | | * current and future patent claims necessarily infringed by the making, |
15 | | * using, practicing, selling, offering for sale and/or otherwise |
16 | | * disposing of the ECC Code as delivered hereunder (or portions thereof), |
17 | | * provided that such covenant shall not apply: |
18 | | * 1) for code that a licensee deletes from the ECC Code; |
19 | | * 2) separates from the ECC Code; or |
20 | | * 3) for infringements caused by: |
21 | | * i) the modification of the ECC Code or |
22 | | * ii) the combination of the ECC Code with other software or |
23 | | * devices where such combination causes the infringement. |
24 | | * |
25 | | * The software is originally written by Sheueling Chang Shantz and |
26 | | * Douglas Stebila of Sun Microsystems Laboratories. |
27 | | * |
28 | | */ |
29 | | |
30 | | /* NOTE: This file is licensed pursuant to the OpenSSL license below |
31 | | * and may be modified; but after modifications, the above covenant |
32 | | * may no longer apply! In such cases, the corresponding paragraph |
33 | | * ["In addition, Sun covenants ... causes the infringement."] and |
34 | | * this note can be edited out; but please keep the Sun copyright |
35 | | * notice and attribution. */ |
36 | | |
37 | | /* ==================================================================== |
38 | | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. |
39 | | * |
40 | | * Redistribution and use in source and binary forms, with or without |
41 | | * modification, are permitted provided that the following conditions |
42 | | * are met: |
43 | | * |
44 | | * 1. Redistributions of source code must retain the above copyright |
45 | | * notice, this list of conditions and the following disclaimer. |
46 | | * |
47 | | * 2. Redistributions in binary form must reproduce the above copyright |
48 | | * notice, this list of conditions and the following disclaimer in |
49 | | * the documentation and/or other materials provided with the |
50 | | * distribution. |
51 | | * |
52 | | * 3. All advertising materials mentioning features or use of this |
53 | | * software must display the following acknowledgment: |
54 | | * "This product includes software developed by the OpenSSL Project |
55 | | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
56 | | * |
57 | | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
58 | | * endorse or promote products derived from this software without |
59 | | * prior written permission. For written permission, please contact |
60 | | * openssl-core@openssl.org. |
61 | | * |
62 | | * 5. Products derived from this software may not be called "OpenSSL" |
63 | | * nor may "OpenSSL" appear in their names without prior written |
64 | | * permission of the OpenSSL Project. |
65 | | * |
66 | | * 6. Redistributions of any form whatsoever must retain the following |
67 | | * acknowledgment: |
68 | | * "This product includes software developed by the OpenSSL Project |
69 | | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
70 | | * |
71 | | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
72 | | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
73 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
74 | | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
75 | | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
76 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
77 | | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
78 | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
79 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
80 | | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
81 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
82 | | * OF THE POSSIBILITY OF SUCH DAMAGE. |
83 | | * ==================================================================== |
84 | | * |
85 | | * This product includes cryptographic software written by Eric Young |
86 | | * (eay@cryptsoft.com). This product includes software written by Tim |
87 | | * Hudson (tjh@cryptsoft.com). |
88 | | * |
89 | | */ |
90 | | |
91 | | #include <limits.h> |
92 | | #include <stdio.h> |
93 | | |
94 | | #include <openssl/opensslconf.h> |
95 | | |
96 | | #include <openssl/err.h> |
97 | | |
98 | | #include "bn_lcl.h" |
99 | | |
100 | | #ifndef OPENSSL_NO_EC2M |
101 | | |
102 | | /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */ |
103 | 0 | #define MAX_ITERATIONS 50 |
104 | | |
105 | | static const BN_ULONG SQR_tb[16] = |
106 | | { 0, 1, 4, 5, 16, 17, 20, 21, |
107 | | 64, 65, 68, 69, 80, 81, 84, 85 }; |
108 | | /* Platform-specific macros to accelerate squaring. */ |
109 | | #ifdef _LP64 |
110 | | #define SQR1(w) \ |
111 | 0 | SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \ |
112 | 0 | SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \ |
113 | 0 | SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \ |
114 | 0 | SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF] |
115 | | #define SQR0(w) \ |
116 | 0 | SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \ |
117 | 0 | SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \ |
118 | 0 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ |
119 | 0 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] |
120 | | #else |
121 | | #define SQR1(w) \ |
122 | | SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \ |
123 | | SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF] |
124 | | #define SQR0(w) \ |
125 | | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ |
126 | | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] |
127 | | #endif |
128 | | |
129 | | #if !defined(OPENSSL_BN_ASM_GF2m) |
130 | | /* Product of two polynomials a, b each with degree < BN_BITS2 - 1, |
131 | | * result is a polynomial r with degree < 2 * BN_BITS - 1 |
132 | | * The caller MUST ensure that the variables have the right amount |
133 | | * of space allocated. |
134 | | */ |
135 | | static void |
136 | | bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) |
137 | | { |
138 | | #ifndef _LP64 |
139 | | BN_ULONG h, l, s; |
140 | | BN_ULONG tab[8], top2b = a >> 30; |
141 | | BN_ULONG a1, a2, a4; |
142 | | |
143 | | a1 = a & (0x3FFFFFFF); |
144 | | a2 = a1 << 1; |
145 | | a4 = a2 << 1; |
146 | | |
147 | | tab[0] = 0; |
148 | | tab[1] = a1; |
149 | | tab[2] = a2; |
150 | | tab[3] = a1 ^ a2; |
151 | | tab[4] = a4; |
152 | | tab[5] = a1 ^ a4; |
153 | | tab[6] = a2 ^ a4; |
154 | | tab[7] = a1 ^ a2 ^ a4; |
155 | | |
156 | | s = tab[b & 0x7]; |
157 | | l = s; |
158 | | s = tab[b >> 3 & 0x7]; |
159 | | l ^= s << 3; |
160 | | h = s >> 29; |
161 | | s = tab[b >> 6 & 0x7]; |
162 | | l ^= s << 6; |
163 | | h ^= s >> 26; |
164 | | s = tab[b >> 9 & 0x7]; |
165 | | l ^= s << 9; |
166 | | h ^= s >> 23; |
167 | | s = tab[b >> 12 & 0x7]; |
168 | | l ^= s << 12; |
169 | | h ^= s >> 20; |
170 | | s = tab[b >> 15 & 0x7]; |
171 | | l ^= s << 15; |
172 | | h ^= s >> 17; |
173 | | s = tab[b >> 18 & 0x7]; |
174 | | l ^= s << 18; |
175 | | h ^= s >> 14; |
176 | | s = tab[b >> 21 & 0x7]; |
177 | | l ^= s << 21; |
178 | | h ^= s >> 11; |
179 | | s = tab[b >> 24 & 0x7]; |
180 | | l ^= s << 24; |
181 | | h ^= s >> 8; |
182 | | s = tab[b >> 27 & 0x7]; |
183 | | l ^= s << 27; |
184 | | h ^= s >> 5; |
185 | | s = tab[b >> 30]; |
186 | | l ^= s << 30; |
187 | | h ^= s >> 2; |
188 | | |
189 | | /* compensate for the top two bits of a */ |
190 | | if (top2b & 01) { |
191 | | l ^= b << 30; |
192 | | h ^= b >> 2; |
193 | | } |
194 | | if (top2b & 02) { |
195 | | l ^= b << 31; |
196 | | h ^= b >> 1; |
197 | | } |
198 | | |
199 | | *r1 = h; |
200 | | *r0 = l; |
201 | | #else |
202 | | BN_ULONG h, l, s; |
203 | | BN_ULONG tab[16], top3b = a >> 61; |
204 | | BN_ULONG a1, a2, a4, a8; |
205 | | |
206 | | a1 = a & (0x1FFFFFFFFFFFFFFFULL); |
207 | | a2 = a1 << 1; |
208 | | a4 = a2 << 1; |
209 | | a8 = a4 << 1; |
210 | | |
211 | | tab[0] = 0; |
212 | | tab[1] = a1; |
213 | | tab[2] = a2; |
214 | | tab[3] = a1 ^ a2; |
215 | | tab[4] = a4; |
216 | | tab[5] = a1 ^ a4; |
217 | | tab[6] = a2 ^ a4; |
218 | | tab[7] = a1 ^ a2 ^ a4; |
219 | | tab[8] = a8; |
220 | | tab[9] = a1 ^ a8; |
221 | | tab[10] = a2 ^ a8; |
222 | | tab[11] = a1 ^ a2 ^ a8; |
223 | | tab[12] = a4 ^ a8; |
224 | | tab[13] = a1 ^ a4 ^ a8; |
225 | | tab[14] = a2 ^ a4 ^ a8; |
226 | | tab[15] = a1 ^ a2 ^ a4 ^ a8; |
227 | | |
228 | | s = tab[b & 0xF]; |
229 | | l = s; |
230 | | s = tab[b >> 4 & 0xF]; |
231 | | l ^= s << 4; |
232 | | h = s >> 60; |
233 | | s = tab[b >> 8 & 0xF]; |
234 | | l ^= s << 8; |
235 | | h ^= s >> 56; |
236 | | s = tab[b >> 12 & 0xF]; |
237 | | l ^= s << 12; |
238 | | h ^= s >> 52; |
239 | | s = tab[b >> 16 & 0xF]; |
240 | | l ^= s << 16; |
241 | | h ^= s >> 48; |
242 | | s = tab[b >> 20 & 0xF]; |
243 | | l ^= s << 20; |
244 | | h ^= s >> 44; |
245 | | s = tab[b >> 24 & 0xF]; |
246 | | l ^= s << 24; |
247 | | h ^= s >> 40; |
248 | | s = tab[b >> 28 & 0xF]; |
249 | | l ^= s << 28; |
250 | | h ^= s >> 36; |
251 | | s = tab[b >> 32 & 0xF]; |
252 | | l ^= s << 32; |
253 | | h ^= s >> 32; |
254 | | s = tab[b >> 36 & 0xF]; |
255 | | l ^= s << 36; |
256 | | h ^= s >> 28; |
257 | | s = tab[b >> 40 & 0xF]; |
258 | | l ^= s << 40; |
259 | | h ^= s >> 24; |
260 | | s = tab[b >> 44 & 0xF]; |
261 | | l ^= s << 44; |
262 | | h ^= s >> 20; |
263 | | s = tab[b >> 48 & 0xF]; |
264 | | l ^= s << 48; |
265 | | h ^= s >> 16; |
266 | | s = tab[b >> 52 & 0xF]; |
267 | | l ^= s << 52; |
268 | | h ^= s >> 12; |
269 | | s = tab[b >> 56 & 0xF]; |
270 | | l ^= s << 56; |
271 | | h ^= s >> 8; |
272 | | s = tab[b >> 60]; |
273 | | l ^= s << 60; |
274 | | h ^= s >> 4; |
275 | | |
276 | | /* compensate for the top three bits of a */ |
277 | | if (top3b & 01) { |
278 | | l ^= b << 61; |
279 | | h ^= b >> 3; |
280 | | } |
281 | | if (top3b & 02) { |
282 | | l ^= b << 62; |
283 | | h ^= b >> 2; |
284 | | } |
285 | | if (top3b & 04) { |
286 | | l ^= b << 63; |
287 | | h ^= b >> 1; |
288 | | } |
289 | | |
290 | | *r1 = h; |
291 | | *r0 = l; |
292 | | #endif |
293 | | } |
294 | | |
295 | | /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, |
296 | | * result is a polynomial r with degree < 4 * BN_BITS2 - 1 |
297 | | * The caller MUST ensure that the variables have the right amount |
298 | | * of space allocated. |
299 | | */ |
300 | | static void |
301 | | bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, |
302 | | const BN_ULONG b1, const BN_ULONG b0) |
303 | | { |
304 | | BN_ULONG m1, m0; |
305 | | |
306 | | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ |
307 | | bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); |
308 | | bn_GF2m_mul_1x1(r + 1, r, a0, b0); |
309 | | bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); |
310 | | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ |
311 | | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ |
312 | | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ |
313 | | } |
314 | | #else |
315 | | void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, |
316 | | BN_ULONG b0); |
317 | | #endif |
318 | | |
319 | | /* Add polynomials a and b and store result in r; r could be a or b, a and b |
320 | | * could be equal; r is the bitwise XOR of a and b. |
321 | | */ |
322 | | int |
323 | | BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) |
324 | 0 | { |
325 | 0 | int i; |
326 | 0 | const BIGNUM *at, *bt; |
327 | |
|
328 | 0 | bn_check_top(a); |
329 | 0 | bn_check_top(b); |
330 | |
|
331 | 0 | if (a->top < b->top) { |
332 | 0 | at = b; |
333 | 0 | bt = a; |
334 | 0 | } else { |
335 | 0 | at = a; |
336 | 0 | bt = b; |
337 | 0 | } |
338 | |
|
339 | 0 | if (bn_wexpand(r, at->top) == NULL) |
340 | 0 | return 0; |
341 | | |
342 | 0 | for (i = 0; i < bt->top; i++) { |
343 | 0 | r->d[i] = at->d[i] ^ bt->d[i]; |
344 | 0 | } |
345 | 0 | for (; i < at->top; i++) { |
346 | 0 | r->d[i] = at->d[i]; |
347 | 0 | } |
348 | |
|
349 | 0 | r->top = at->top; |
350 | 0 | bn_correct_top(r); |
351 | |
|
352 | 0 | return 1; |
353 | 0 | } |
354 | | |
355 | | |
356 | | /* Some functions allow for representation of the irreducible polynomials |
357 | | * as an int[], say p. The irreducible f(t) is then of the form: |
358 | | * t^p[0] + t^p[1] + ... + t^p[k] |
359 | | * where m = p[0] > p[1] > ... > p[k] = 0. |
360 | | */ |
361 | | |
362 | | |
363 | | /* Performs modular reduction of a and store result in r. r could be a. */ |
364 | | int |
365 | | BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) |
366 | 0 | { |
367 | 0 | int j, k; |
368 | 0 | int n, dN, d0, d1; |
369 | 0 | BN_ULONG zz, *z; |
370 | |
|
371 | 0 | bn_check_top(a); |
372 | |
|
373 | 0 | if (!p[0]) { |
374 | | /* reduction mod 1 => return 0 */ |
375 | 0 | BN_zero(r); |
376 | 0 | return 1; |
377 | 0 | } |
378 | | |
379 | | /* Since the algorithm does reduction in the r value, if a != r, copy |
380 | | * the contents of a into r so we can do reduction in r. |
381 | | */ |
382 | 0 | if (a != r) { |
383 | 0 | if (!bn_wexpand(r, a->top)) |
384 | 0 | return 0; |
385 | 0 | for (j = 0; j < a->top; j++) { |
386 | 0 | r->d[j] = a->d[j]; |
387 | 0 | } |
388 | 0 | r->top = a->top; |
389 | 0 | } |
390 | 0 | z = r->d; |
391 | | |
392 | | /* start reduction */ |
393 | 0 | dN = p[0] / BN_BITS2; |
394 | 0 | for (j = r->top - 1; j > dN; ) { |
395 | 0 | zz = z[j]; |
396 | 0 | if (z[j] == 0) { |
397 | 0 | j--; |
398 | 0 | continue; |
399 | 0 | } |
400 | 0 | z[j] = 0; |
401 | |
|
402 | 0 | for (k = 1; p[k] != 0; k++) { |
403 | | /* reducing component t^p[k] */ |
404 | 0 | n = p[0] - p[k]; |
405 | 0 | d0 = n % BN_BITS2; |
406 | 0 | d1 = BN_BITS2 - d0; |
407 | 0 | n /= BN_BITS2; |
408 | 0 | z[j - n] ^= (zz >> d0); |
409 | 0 | if (d0) |
410 | 0 | z[j - n - 1] ^= (zz << d1); |
411 | 0 | } |
412 | | |
413 | | /* reducing component t^0 */ |
414 | 0 | n = dN; |
415 | 0 | d0 = p[0] % BN_BITS2; |
416 | 0 | d1 = BN_BITS2 - d0; |
417 | 0 | z[j - n] ^= (zz >> d0); |
418 | 0 | if (d0) |
419 | 0 | z[j - n - 1] ^= (zz << d1); |
420 | 0 | } |
421 | | |
422 | | /* final round of reduction */ |
423 | 0 | while (j == dN) { |
424 | |
|
425 | 0 | d0 = p[0] % BN_BITS2; |
426 | 0 | zz = z[dN] >> d0; |
427 | 0 | if (zz == 0) |
428 | 0 | break; |
429 | 0 | d1 = BN_BITS2 - d0; |
430 | | |
431 | | /* clear up the top d1 bits */ |
432 | 0 | if (d0) |
433 | 0 | z[dN] = (z[dN] << d1) >> d1; |
434 | 0 | else |
435 | 0 | z[dN] = 0; |
436 | 0 | z[0] ^= zz; /* reduction t^0 component */ |
437 | |
|
438 | 0 | for (k = 1; p[k] != 0; k++) { |
439 | 0 | BN_ULONG tmp_ulong; |
440 | | |
441 | | /* reducing component t^p[k]*/ |
442 | 0 | n = p[k] / BN_BITS2; |
443 | 0 | d0 = p[k] % BN_BITS2; |
444 | 0 | d1 = BN_BITS2 - d0; |
445 | 0 | z[n] ^= (zz << d0); |
446 | 0 | if (d0 && (tmp_ulong = zz >> d1)) |
447 | 0 | z[n + 1] ^= tmp_ulong; |
448 | 0 | } |
449 | | |
450 | |
|
451 | 0 | } |
452 | |
|
453 | 0 | bn_correct_top(r); |
454 | 0 | return 1; |
455 | 0 | } |
456 | | |
457 | | /* Performs modular reduction of a by p and store result in r. r could be a. |
458 | | * |
459 | | * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper |
460 | | * function is only provided for convenience; for best performance, use the |
461 | | * BN_GF2m_mod_arr function. |
462 | | */ |
463 | | int |
464 | | BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) |
465 | 0 | { |
466 | 0 | int ret = 0; |
467 | 0 | int arr[6]; |
468 | |
|
469 | 0 | bn_check_top(a); |
470 | 0 | bn_check_top(p); |
471 | 0 | ret = BN_GF2m_poly2arr(p, arr, sizeof(arr) / sizeof(arr[0])); |
472 | 0 | if (!ret || ret > (int)(sizeof(arr) / sizeof(arr[0]))) { |
473 | 0 | BNerror(BN_R_INVALID_LENGTH); |
474 | 0 | return 0; |
475 | 0 | } |
476 | 0 | ret = BN_GF2m_mod_arr(r, a, arr); |
477 | 0 | bn_check_top(r); |
478 | 0 | return ret; |
479 | 0 | } |
480 | | |
481 | | |
482 | | /* Compute the product of two polynomials a and b, reduce modulo p, and store |
483 | | * the result in r. r could be a or b; a could be b. |
484 | | */ |
485 | | int |
486 | | BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], |
487 | | BN_CTX *ctx) |
488 | 0 | { |
489 | 0 | int zlen, i, j, k, ret = 0; |
490 | 0 | BIGNUM *s; |
491 | 0 | BN_ULONG x1, x0, y1, y0, zz[4]; |
492 | |
|
493 | 0 | bn_check_top(a); |
494 | 0 | bn_check_top(b); |
495 | |
|
496 | 0 | if (a == b) { |
497 | 0 | return BN_GF2m_mod_sqr_arr(r, a, p, ctx); |
498 | 0 | } |
499 | | |
500 | 0 | BN_CTX_start(ctx); |
501 | 0 | if ((s = BN_CTX_get(ctx)) == NULL) |
502 | 0 | goto err; |
503 | | |
504 | 0 | zlen = a->top + b->top + 4; |
505 | 0 | if (!bn_wexpand(s, zlen)) |
506 | 0 | goto err; |
507 | 0 | s->top = zlen; |
508 | |
|
509 | 0 | for (i = 0; i < zlen; i++) |
510 | 0 | s->d[i] = 0; |
511 | |
|
512 | 0 | for (j = 0; j < b->top; j += 2) { |
513 | 0 | y0 = b->d[j]; |
514 | 0 | y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; |
515 | 0 | for (i = 0; i < a->top; i += 2) { |
516 | 0 | x0 = a->d[i]; |
517 | 0 | x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; |
518 | 0 | bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); |
519 | 0 | for (k = 0; k < 4; k++) |
520 | 0 | s->d[i + j + k] ^= zz[k]; |
521 | 0 | } |
522 | 0 | } |
523 | |
|
524 | 0 | bn_correct_top(s); |
525 | 0 | if (BN_GF2m_mod_arr(r, s, p)) |
526 | 0 | ret = 1; |
527 | 0 | bn_check_top(r); |
528 | |
|
529 | 0 | err: |
530 | 0 | BN_CTX_end(ctx); |
531 | 0 | return ret; |
532 | 0 | } |
533 | | |
534 | | /* Compute the product of two polynomials a and b, reduce modulo p, and store |
535 | | * the result in r. r could be a or b; a could equal b. |
536 | | * |
537 | | * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper |
538 | | * function is only provided for convenience; for best performance, use the |
539 | | * BN_GF2m_mod_mul_arr function. |
540 | | */ |
541 | | int |
542 | | BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, |
543 | | BN_CTX *ctx) |
544 | 0 | { |
545 | 0 | int ret = 0; |
546 | 0 | const int max = BN_num_bits(p) + 1; |
547 | 0 | int *arr = NULL; |
548 | |
|
549 | 0 | bn_check_top(a); |
550 | 0 | bn_check_top(b); |
551 | 0 | bn_check_top(p); |
552 | 0 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) |
553 | 0 | goto err; |
554 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
555 | 0 | if (!ret || ret > max) { |
556 | 0 | BNerror(BN_R_INVALID_LENGTH); |
557 | 0 | goto err; |
558 | 0 | } |
559 | 0 | ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); |
560 | 0 | bn_check_top(r); |
561 | |
|
562 | 0 | err: |
563 | 0 | free(arr); |
564 | 0 | return ret; |
565 | 0 | } |
566 | | |
567 | | |
568 | | /* Square a, reduce the result mod p, and store it in a. r could be a. */ |
569 | | int |
570 | | BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) |
571 | 0 | { |
572 | 0 | int i, ret = 0; |
573 | 0 | BIGNUM *s; |
574 | |
|
575 | 0 | bn_check_top(a); |
576 | 0 | BN_CTX_start(ctx); |
577 | 0 | if ((s = BN_CTX_get(ctx)) == NULL) |
578 | 0 | goto err; |
579 | 0 | if (!bn_wexpand(s, 2 * a->top)) |
580 | 0 | goto err; |
581 | | |
582 | 0 | for (i = a->top - 1; i >= 0; i--) { |
583 | 0 | s->d[2 * i + 1] = SQR1(a->d[i]); |
584 | 0 | s->d[2 * i] = SQR0(a->d[i]); |
585 | 0 | } |
586 | |
|
587 | 0 | s->top = 2 * a->top; |
588 | 0 | bn_correct_top(s); |
589 | 0 | if (!BN_GF2m_mod_arr(r, s, p)) |
590 | 0 | goto err; |
591 | 0 | bn_check_top(r); |
592 | 0 | ret = 1; |
593 | |
|
594 | 0 | err: |
595 | 0 | BN_CTX_end(ctx); |
596 | 0 | return ret; |
597 | 0 | } |
598 | | |
599 | | /* Square a, reduce the result mod p, and store it in a. r could be a. |
600 | | * |
601 | | * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper |
602 | | * function is only provided for convenience; for best performance, use the |
603 | | * BN_GF2m_mod_sqr_arr function. |
604 | | */ |
605 | | int |
606 | | BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
607 | 0 | { |
608 | 0 | int ret = 0; |
609 | 0 | const int max = BN_num_bits(p) + 1; |
610 | 0 | int *arr = NULL; |
611 | |
|
612 | 0 | bn_check_top(a); |
613 | 0 | bn_check_top(p); |
614 | 0 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) |
615 | 0 | goto err; |
616 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
617 | 0 | if (!ret || ret > max) { |
618 | 0 | BNerror(BN_R_INVALID_LENGTH); |
619 | 0 | goto err; |
620 | 0 | } |
621 | 0 | ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); |
622 | 0 | bn_check_top(r); |
623 | |
|
624 | 0 | err: |
625 | 0 | free(arr); |
626 | 0 | return ret; |
627 | 0 | } |
628 | | |
629 | | |
630 | | /* Invert a, reduce modulo p, and store the result in r. r could be a. |
631 | | * Uses Modified Almost Inverse Algorithm (Algorithm 10) from |
632 | | * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation |
633 | | * of Elliptic Curve Cryptography Over Binary Fields". |
634 | | */ |
635 | | int |
636 | | BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
637 | 0 | { |
638 | 0 | BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; |
639 | 0 | int ret = 0; |
640 | |
|
641 | 0 | bn_check_top(a); |
642 | 0 | bn_check_top(p); |
643 | |
|
644 | 0 | BN_CTX_start(ctx); |
645 | |
|
646 | 0 | if ((b = BN_CTX_get(ctx)) == NULL) |
647 | 0 | goto err; |
648 | 0 | if ((c = BN_CTX_get(ctx)) == NULL) |
649 | 0 | goto err; |
650 | 0 | if ((u = BN_CTX_get(ctx)) == NULL) |
651 | 0 | goto err; |
652 | 0 | if ((v = BN_CTX_get(ctx)) == NULL) |
653 | 0 | goto err; |
654 | | |
655 | 0 | if (!BN_GF2m_mod(u, a, p)) |
656 | 0 | goto err; |
657 | 0 | if (BN_is_zero(u)) |
658 | 0 | goto err; |
659 | | |
660 | 0 | if (!BN_copy(v, p)) |
661 | 0 | goto err; |
662 | | #if 0 |
663 | | if (!BN_one(b)) |
664 | | goto err; |
665 | | |
666 | | while (1) { |
667 | | while (!BN_is_odd(u)) { |
668 | | if (BN_is_zero(u)) |
669 | | goto err; |
670 | | if (!BN_rshift1(u, u)) |
671 | | goto err; |
672 | | if (BN_is_odd(b)) { |
673 | | if (!BN_GF2m_add(b, b, p)) |
674 | | goto err; |
675 | | } |
676 | | if (!BN_rshift1(b, b)) |
677 | | goto err; |
678 | | } |
679 | | |
680 | | if (BN_abs_is_word(u, 1)) |
681 | | break; |
682 | | |
683 | | if (BN_num_bits(u) < BN_num_bits(v)) { |
684 | | tmp = u; |
685 | | u = v; |
686 | | v = tmp; |
687 | | tmp = b; |
688 | | b = c; |
689 | | c = tmp; |
690 | | } |
691 | | |
692 | | if (!BN_GF2m_add(u, u, v)) |
693 | | goto err; |
694 | | if (!BN_GF2m_add(b, b, c)) |
695 | | goto err; |
696 | | } |
697 | | #else |
698 | 0 | { |
699 | 0 | int i, ubits = BN_num_bits(u), |
700 | 0 | vbits = BN_num_bits(v), /* v is copy of p */ |
701 | 0 | top = p->top; |
702 | 0 | BN_ULONG *udp, *bdp, *vdp, *cdp; |
703 | |
|
704 | 0 | if (!bn_wexpand(u, top)) |
705 | 0 | goto err; |
706 | 0 | udp = u->d; |
707 | 0 | for (i = u->top; i < top; i++) |
708 | 0 | udp[i] = 0; |
709 | 0 | u->top = top; |
710 | 0 | if (!bn_wexpand(b, top)) |
711 | 0 | goto err; |
712 | 0 | bdp = b->d; |
713 | 0 | bdp[0] = 1; |
714 | 0 | for (i = 1; i < top; i++) |
715 | 0 | bdp[i] = 0; |
716 | 0 | b->top = top; |
717 | 0 | if (!bn_wexpand(c, top)) |
718 | 0 | goto err; |
719 | 0 | cdp = c->d; |
720 | 0 | for (i = 0; i < top; i++) |
721 | 0 | cdp[i] = 0; |
722 | 0 | c->top = top; |
723 | 0 | vdp = v->d; /* It pays off to "cache" *->d pointers, because |
724 | | * it allows optimizer to be more aggressive. |
725 | | * But we don't have to "cache" p->d, because *p |
726 | | * is declared 'const'... */ |
727 | 0 | while (1) { |
728 | 0 | while (ubits && !(udp[0]&1)) { |
729 | 0 | BN_ULONG u0, u1, b0, b1, mask; |
730 | |
|
731 | 0 | u0 = udp[0]; |
732 | 0 | b0 = bdp[0]; |
733 | 0 | mask = (BN_ULONG)0 - (b0 & 1); |
734 | 0 | b0 ^= p->d[0] & mask; |
735 | 0 | for (i = 0; i < top - 1; i++) { |
736 | 0 | u1 = udp[i + 1]; |
737 | 0 | udp[i] = ((u0 >> 1) | |
738 | 0 | (u1 << (BN_BITS2 - 1))) & BN_MASK2; |
739 | 0 | u0 = u1; |
740 | 0 | b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); |
741 | 0 | bdp[i] = ((b0 >> 1) | |
742 | 0 | (b1 << (BN_BITS2 - 1))) & BN_MASK2; |
743 | 0 | b0 = b1; |
744 | 0 | } |
745 | 0 | udp[i] = u0 >> 1; |
746 | 0 | bdp[i] = b0 >> 1; |
747 | 0 | ubits--; |
748 | 0 | } |
749 | |
|
750 | 0 | if (ubits <= BN_BITS2) { |
751 | | /* See if poly was reducible. */ |
752 | 0 | if (udp[0] == 0) |
753 | 0 | goto err; |
754 | 0 | if (udp[0] == 1) |
755 | 0 | break; |
756 | 0 | } |
757 | | |
758 | 0 | if (ubits < vbits) { |
759 | 0 | i = ubits; |
760 | 0 | ubits = vbits; |
761 | 0 | vbits = i; |
762 | 0 | tmp = u; |
763 | 0 | u = v; |
764 | 0 | v = tmp; |
765 | 0 | tmp = b; |
766 | 0 | b = c; |
767 | 0 | c = tmp; |
768 | 0 | udp = vdp; |
769 | 0 | vdp = v->d; |
770 | 0 | bdp = cdp; |
771 | 0 | cdp = c->d; |
772 | 0 | } |
773 | 0 | for (i = 0; i < top; i++) { |
774 | 0 | udp[i] ^= vdp[i]; |
775 | 0 | bdp[i] ^= cdp[i]; |
776 | 0 | } |
777 | 0 | if (ubits == vbits) { |
778 | 0 | BN_ULONG ul; |
779 | 0 | int utop = (ubits - 1) / BN_BITS2; |
780 | |
|
781 | 0 | while ((ul = udp[utop]) == 0 && utop) |
782 | 0 | utop--; |
783 | 0 | ubits = utop*BN_BITS2 + BN_num_bits_word(ul); |
784 | 0 | } |
785 | 0 | } |
786 | 0 | bn_correct_top(b); |
787 | 0 | } |
788 | 0 | #endif |
789 | | |
790 | 0 | if (!BN_copy(r, b)) |
791 | 0 | goto err; |
792 | 0 | bn_check_top(r); |
793 | 0 | ret = 1; |
794 | |
|
795 | 0 | err: |
796 | | #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */ |
797 | | bn_correct_top(c); |
798 | | bn_correct_top(u); |
799 | | bn_correct_top(v); |
800 | | #endif |
801 | 0 | BN_CTX_end(ctx); |
802 | 0 | return ret; |
803 | 0 | } |
804 | | |
805 | | /* Invert xx, reduce modulo p, and store the result in r. r could be xx. |
806 | | * |
807 | | * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper |
808 | | * function is only provided for convenience; for best performance, use the |
809 | | * BN_GF2m_mod_inv function. |
810 | | */ |
811 | | int |
812 | | BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx) |
813 | 0 | { |
814 | 0 | BIGNUM *field; |
815 | 0 | int ret = 0; |
816 | |
|
817 | 0 | bn_check_top(xx); |
818 | 0 | BN_CTX_start(ctx); |
819 | 0 | if ((field = BN_CTX_get(ctx)) == NULL) |
820 | 0 | goto err; |
821 | 0 | if (!BN_GF2m_arr2poly(p, field)) |
822 | 0 | goto err; |
823 | | |
824 | 0 | ret = BN_GF2m_mod_inv(r, xx, field, ctx); |
825 | 0 | bn_check_top(r); |
826 | |
|
827 | 0 | err: |
828 | 0 | BN_CTX_end(ctx); |
829 | 0 | return ret; |
830 | 0 | } |
831 | | |
832 | | |
833 | | #ifndef OPENSSL_SUN_GF2M_DIV |
834 | | /* Divide y by x, reduce modulo p, and store the result in r. r could be x |
835 | | * or y, x could equal y. |
836 | | */ |
837 | | int |
838 | | BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, |
839 | | BN_CTX *ctx) |
840 | 0 | { |
841 | 0 | BIGNUM *xinv = NULL; |
842 | 0 | int ret = 0; |
843 | |
|
844 | 0 | bn_check_top(y); |
845 | 0 | bn_check_top(x); |
846 | 0 | bn_check_top(p); |
847 | |
|
848 | 0 | BN_CTX_start(ctx); |
849 | 0 | if ((xinv = BN_CTX_get(ctx)) == NULL) |
850 | 0 | goto err; |
851 | | |
852 | 0 | if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) |
853 | 0 | goto err; |
854 | 0 | if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) |
855 | 0 | goto err; |
856 | 0 | bn_check_top(r); |
857 | 0 | ret = 1; |
858 | |
|
859 | 0 | err: |
860 | 0 | BN_CTX_end(ctx); |
861 | 0 | return ret; |
862 | 0 | } |
863 | | #else |
864 | | /* Divide y by x, reduce modulo p, and store the result in r. r could be x |
865 | | * or y, x could equal y. |
866 | | * Uses algorithm Modular_Division_GF(2^m) from |
867 | | * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to |
868 | | * the Great Divide". |
869 | | */ |
870 | | int |
871 | | BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, |
872 | | BN_CTX *ctx) |
873 | | { |
874 | | BIGNUM *a, *b, *u, *v; |
875 | | int ret = 0; |
876 | | |
877 | | bn_check_top(y); |
878 | | bn_check_top(x); |
879 | | bn_check_top(p); |
880 | | |
881 | | BN_CTX_start(ctx); |
882 | | |
883 | | if ((a = BN_CTX_get(ctx)) == NULL) |
884 | | goto err; |
885 | | if ((b = BN_CTX_get(ctx)) == NULL) |
886 | | goto err; |
887 | | if ((u = BN_CTX_get(ctx)) == NULL) |
888 | | goto err; |
889 | | if ((v = BN_CTX_get(ctx)) == NULL) |
890 | | goto err; |
891 | | |
892 | | /* reduce x and y mod p */ |
893 | | if (!BN_GF2m_mod(u, y, p)) |
894 | | goto err; |
895 | | if (!BN_GF2m_mod(a, x, p)) |
896 | | goto err; |
897 | | if (!BN_copy(b, p)) |
898 | | goto err; |
899 | | |
900 | | while (!BN_is_odd(a)) { |
901 | | if (!BN_rshift1(a, a)) |
902 | | goto err; |
903 | | if (BN_is_odd(u)) |
904 | | if (!BN_GF2m_add(u, u, p)) |
905 | | goto err; |
906 | | if (!BN_rshift1(u, u)) |
907 | | goto err; |
908 | | } |
909 | | |
910 | | do { |
911 | | if (BN_GF2m_cmp(b, a) > 0) { |
912 | | if (!BN_GF2m_add(b, b, a)) |
913 | | goto err; |
914 | | if (!BN_GF2m_add(v, v, u)) |
915 | | goto err; |
916 | | do { |
917 | | if (!BN_rshift1(b, b)) |
918 | | goto err; |
919 | | if (BN_is_odd(v)) |
920 | | if (!BN_GF2m_add(v, v, p)) |
921 | | goto err; |
922 | | if (!BN_rshift1(v, v)) |
923 | | goto err; |
924 | | } while (!BN_is_odd(b)); |
925 | | } else if (BN_abs_is_word(a, 1)) |
926 | | break; |
927 | | else { |
928 | | if (!BN_GF2m_add(a, a, b)) |
929 | | goto err; |
930 | | if (!BN_GF2m_add(u, u, v)) |
931 | | goto err; |
932 | | do { |
933 | | if (!BN_rshift1(a, a)) |
934 | | goto err; |
935 | | if (BN_is_odd(u)) |
936 | | if (!BN_GF2m_add(u, u, p)) |
937 | | goto err; |
938 | | if (!BN_rshift1(u, u)) |
939 | | goto err; |
940 | | } while (!BN_is_odd(a)); |
941 | | } |
942 | | } while (1); |
943 | | |
944 | | if (!BN_copy(r, u)) |
945 | | goto err; |
946 | | bn_check_top(r); |
947 | | ret = 1; |
948 | | |
949 | | err: |
950 | | BN_CTX_end(ctx); |
951 | | return ret; |
952 | | } |
953 | | #endif |
954 | | |
955 | | /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx |
956 | | * or yy, xx could equal yy. |
957 | | * |
958 | | * This function calls down to the BN_GF2m_mod_div implementation; this wrapper |
959 | | * function is only provided for convenience; for best performance, use the |
960 | | * BN_GF2m_mod_div function. |
961 | | */ |
962 | | int |
963 | | BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, |
964 | | const int p[], BN_CTX *ctx) |
965 | 0 | { |
966 | 0 | BIGNUM *field; |
967 | 0 | int ret = 0; |
968 | |
|
969 | 0 | bn_check_top(yy); |
970 | 0 | bn_check_top(xx); |
971 | |
|
972 | 0 | BN_CTX_start(ctx); |
973 | 0 | if ((field = BN_CTX_get(ctx)) == NULL) |
974 | 0 | goto err; |
975 | 0 | if (!BN_GF2m_arr2poly(p, field)) |
976 | 0 | goto err; |
977 | | |
978 | 0 | ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); |
979 | 0 | bn_check_top(r); |
980 | |
|
981 | 0 | err: |
982 | 0 | BN_CTX_end(ctx); |
983 | 0 | return ret; |
984 | 0 | } |
985 | | |
986 | | |
987 | | /* Compute the bth power of a, reduce modulo p, and store |
988 | | * the result in r. r could be a. |
989 | | * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. |
990 | | */ |
991 | | int |
992 | | BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], |
993 | | BN_CTX *ctx) |
994 | 0 | { |
995 | 0 | int ret = 0, i, n; |
996 | 0 | BIGNUM *u; |
997 | |
|
998 | 0 | bn_check_top(a); |
999 | 0 | bn_check_top(b); |
1000 | |
|
1001 | 0 | if (BN_is_zero(b)) |
1002 | 0 | return (BN_one(r)); |
1003 | | |
1004 | 0 | if (BN_abs_is_word(b, 1)) |
1005 | 0 | return (BN_copy(r, a) != NULL); |
1006 | | |
1007 | 0 | BN_CTX_start(ctx); |
1008 | 0 | if ((u = BN_CTX_get(ctx)) == NULL) |
1009 | 0 | goto err; |
1010 | | |
1011 | 0 | if (!BN_GF2m_mod_arr(u, a, p)) |
1012 | 0 | goto err; |
1013 | | |
1014 | 0 | n = BN_num_bits(b) - 1; |
1015 | 0 | for (i = n - 1; i >= 0; i--) { |
1016 | 0 | if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) |
1017 | 0 | goto err; |
1018 | 0 | if (BN_is_bit_set(b, i)) { |
1019 | 0 | if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) |
1020 | 0 | goto err; |
1021 | 0 | } |
1022 | 0 | } |
1023 | 0 | if (!BN_copy(r, u)) |
1024 | 0 | goto err; |
1025 | 0 | bn_check_top(r); |
1026 | 0 | ret = 1; |
1027 | |
|
1028 | 0 | err: |
1029 | 0 | BN_CTX_end(ctx); |
1030 | 0 | return ret; |
1031 | 0 | } |
1032 | | |
1033 | | /* Compute the bth power of a, reduce modulo p, and store |
1034 | | * the result in r. r could be a. |
1035 | | * |
1036 | | * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper |
1037 | | * function is only provided for convenience; for best performance, use the |
1038 | | * BN_GF2m_mod_exp_arr function. |
1039 | | */ |
1040 | | int |
1041 | | BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, |
1042 | | BN_CTX *ctx) |
1043 | 0 | { |
1044 | 0 | int ret = 0; |
1045 | 0 | const int max = BN_num_bits(p) + 1; |
1046 | 0 | int *arr = NULL; |
1047 | |
|
1048 | 0 | bn_check_top(a); |
1049 | 0 | bn_check_top(b); |
1050 | 0 | bn_check_top(p); |
1051 | 0 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) |
1052 | 0 | goto err; |
1053 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
1054 | 0 | if (!ret || ret > max) { |
1055 | 0 | BNerror(BN_R_INVALID_LENGTH); |
1056 | 0 | goto err; |
1057 | 0 | } |
1058 | 0 | ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); |
1059 | 0 | bn_check_top(r); |
1060 | |
|
1061 | 0 | err: |
1062 | 0 | free(arr); |
1063 | 0 | return ret; |
1064 | 0 | } |
1065 | | |
1066 | | /* Compute the square root of a, reduce modulo p, and store |
1067 | | * the result in r. r could be a. |
1068 | | * Uses exponentiation as in algorithm A.4.1 from IEEE P1363. |
1069 | | */ |
1070 | | int |
1071 | | BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) |
1072 | 0 | { |
1073 | 0 | int ret = 0; |
1074 | 0 | BIGNUM *u; |
1075 | |
|
1076 | 0 | bn_check_top(a); |
1077 | |
|
1078 | 0 | if (!p[0]) { |
1079 | | /* reduction mod 1 => return 0 */ |
1080 | 0 | BN_zero(r); |
1081 | 0 | return 1; |
1082 | 0 | } |
1083 | | |
1084 | 0 | BN_CTX_start(ctx); |
1085 | 0 | if ((u = BN_CTX_get(ctx)) == NULL) |
1086 | 0 | goto err; |
1087 | | |
1088 | 0 | if (!BN_set_bit(u, p[0] - 1)) |
1089 | 0 | goto err; |
1090 | 0 | ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); |
1091 | 0 | bn_check_top(r); |
1092 | |
|
1093 | 0 | err: |
1094 | 0 | BN_CTX_end(ctx); |
1095 | 0 | return ret; |
1096 | 0 | } |
1097 | | |
1098 | | /* Compute the square root of a, reduce modulo p, and store |
1099 | | * the result in r. r could be a. |
1100 | | * |
1101 | | * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper |
1102 | | * function is only provided for convenience; for best performance, use the |
1103 | | * BN_GF2m_mod_sqrt_arr function. |
1104 | | */ |
1105 | | int |
1106 | | BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
1107 | 0 | { |
1108 | 0 | int ret = 0; |
1109 | 0 | const int max = BN_num_bits(p) + 1; |
1110 | 0 | int *arr = NULL; |
1111 | 0 | bn_check_top(a); |
1112 | 0 | bn_check_top(p); |
1113 | 0 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) |
1114 | 0 | goto err; |
1115 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
1116 | 0 | if (!ret || ret > max) { |
1117 | 0 | BNerror(BN_R_INVALID_LENGTH); |
1118 | 0 | goto err; |
1119 | 0 | } |
1120 | 0 | ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); |
1121 | 0 | bn_check_top(r); |
1122 | |
|
1123 | 0 | err: |
1124 | 0 | free(arr); |
1125 | 0 | return ret; |
1126 | 0 | } |
1127 | | |
1128 | | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. |
1129 | | * Uses algorithms A.4.7 and A.4.6 from IEEE P1363. |
1130 | | */ |
1131 | | int |
1132 | | BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], |
1133 | | BN_CTX *ctx) |
1134 | 0 | { |
1135 | 0 | int ret = 0, count = 0, j; |
1136 | 0 | BIGNUM *a, *z, *rho, *w, *w2, *tmp; |
1137 | |
|
1138 | 0 | bn_check_top(a_); |
1139 | |
|
1140 | 0 | if (!p[0]) { |
1141 | | /* reduction mod 1 => return 0 */ |
1142 | 0 | BN_zero(r); |
1143 | 0 | return 1; |
1144 | 0 | } |
1145 | | |
1146 | 0 | BN_CTX_start(ctx); |
1147 | 0 | if ((a = BN_CTX_get(ctx)) == NULL) |
1148 | 0 | goto err; |
1149 | 0 | if ((z = BN_CTX_get(ctx)) == NULL) |
1150 | 0 | goto err; |
1151 | 0 | if ((w = BN_CTX_get(ctx)) == NULL) |
1152 | 0 | goto err; |
1153 | | |
1154 | 0 | if (!BN_GF2m_mod_arr(a, a_, p)) |
1155 | 0 | goto err; |
1156 | | |
1157 | 0 | if (BN_is_zero(a)) { |
1158 | 0 | BN_zero(r); |
1159 | 0 | ret = 1; |
1160 | 0 | goto err; |
1161 | 0 | } |
1162 | | |
1163 | 0 | if (p[0] & 0x1) /* m is odd */ |
1164 | 0 | { |
1165 | | /* compute half-trace of a */ |
1166 | 0 | if (!BN_copy(z, a)) |
1167 | 0 | goto err; |
1168 | 0 | for (j = 1; j <= (p[0] - 1) / 2; j++) { |
1169 | 0 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1170 | 0 | goto err; |
1171 | 0 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1172 | 0 | goto err; |
1173 | 0 | if (!BN_GF2m_add(z, z, a)) |
1174 | 0 | goto err; |
1175 | 0 | } |
1176 | |
|
1177 | 0 | } |
1178 | 0 | else /* m is even */ |
1179 | 0 | { |
1180 | 0 | if ((rho = BN_CTX_get(ctx)) == NULL) |
1181 | 0 | goto err; |
1182 | 0 | if ((w2 = BN_CTX_get(ctx)) == NULL) |
1183 | 0 | goto err; |
1184 | 0 | if ((tmp = BN_CTX_get(ctx)) == NULL) |
1185 | 0 | goto err; |
1186 | 0 | do { |
1187 | 0 | if (!BN_rand(rho, p[0], 0, 0)) |
1188 | 0 | goto err; |
1189 | 0 | if (!BN_GF2m_mod_arr(rho, rho, p)) |
1190 | 0 | goto err; |
1191 | 0 | BN_zero(z); |
1192 | 0 | if (!BN_copy(w, rho)) |
1193 | 0 | goto err; |
1194 | 0 | for (j = 1; j <= p[0] - 1; j++) { |
1195 | 0 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1196 | 0 | goto err; |
1197 | 0 | if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) |
1198 | 0 | goto err; |
1199 | 0 | if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) |
1200 | 0 | goto err; |
1201 | 0 | if (!BN_GF2m_add(z, z, tmp)) |
1202 | 0 | goto err; |
1203 | 0 | if (!BN_GF2m_add(w, w2, rho)) |
1204 | 0 | goto err; |
1205 | 0 | } |
1206 | 0 | count++; |
1207 | 0 | } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); |
1208 | 0 | if (BN_is_zero(w)) { |
1209 | 0 | BNerror(BN_R_TOO_MANY_ITERATIONS); |
1210 | 0 | goto err; |
1211 | 0 | } |
1212 | 0 | } |
1213 | | |
1214 | 0 | if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) |
1215 | 0 | goto err; |
1216 | 0 | if (!BN_GF2m_add(w, z, w)) |
1217 | 0 | goto err; |
1218 | 0 | if (BN_GF2m_cmp(w, a)) { |
1219 | 0 | BNerror(BN_R_NO_SOLUTION); |
1220 | 0 | goto err; |
1221 | 0 | } |
1222 | | |
1223 | 0 | if (!BN_copy(r, z)) |
1224 | 0 | goto err; |
1225 | 0 | bn_check_top(r); |
1226 | |
|
1227 | 0 | ret = 1; |
1228 | |
|
1229 | 0 | err: |
1230 | 0 | BN_CTX_end(ctx); |
1231 | 0 | return ret; |
1232 | 0 | } |
1233 | | |
1234 | | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. |
1235 | | * |
1236 | | * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper |
1237 | | * function is only provided for convenience; for best performance, use the |
1238 | | * BN_GF2m_mod_solve_quad_arr function. |
1239 | | */ |
1240 | | int |
1241 | | BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
1242 | 0 | { |
1243 | 0 | int ret = 0; |
1244 | 0 | const int max = BN_num_bits(p) + 1; |
1245 | 0 | int *arr = NULL; |
1246 | |
|
1247 | 0 | bn_check_top(a); |
1248 | 0 | bn_check_top(p); |
1249 | 0 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) |
1250 | 0 | goto err; |
1251 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
1252 | 0 | if (!ret || ret > max) { |
1253 | 0 | BNerror(BN_R_INVALID_LENGTH); |
1254 | 0 | goto err; |
1255 | 0 | } |
1256 | 0 | ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); |
1257 | 0 | bn_check_top(r); |
1258 | |
|
1259 | 0 | err: |
1260 | 0 | free(arr); |
1261 | 0 | return ret; |
1262 | 0 | } |
1263 | | |
1264 | | /* Convert the bit-string representation of a polynomial |
1265 | | * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding |
1266 | | * to the bits with non-zero coefficient. Array is terminated with -1. |
1267 | | * Up to max elements of the array will be filled. Return value is total |
1268 | | * number of array elements that would be filled if array was large enough. |
1269 | | */ |
1270 | | int |
1271 | | BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) |
1272 | 0 | { |
1273 | 0 | int i, j, k = 0; |
1274 | 0 | BN_ULONG mask; |
1275 | |
|
1276 | 0 | if (BN_is_zero(a)) |
1277 | 0 | return 0; |
1278 | | |
1279 | 0 | for (i = a->top - 1; i >= 0; i--) { |
1280 | 0 | if (!a->d[i]) |
1281 | | /* skip word if a->d[i] == 0 */ |
1282 | 0 | continue; |
1283 | 0 | mask = BN_TBIT; |
1284 | 0 | for (j = BN_BITS2 - 1; j >= 0; j--) { |
1285 | 0 | if (a->d[i] & mask) { |
1286 | 0 | if (k < max) |
1287 | 0 | p[k] = BN_BITS2 * i + j; |
1288 | 0 | k++; |
1289 | 0 | } |
1290 | 0 | mask >>= 1; |
1291 | 0 | } |
1292 | 0 | } |
1293 | |
|
1294 | 0 | if (k < max) { |
1295 | 0 | p[k] = -1; |
1296 | 0 | k++; |
1297 | 0 | } |
1298 | |
|
1299 | 0 | return k; |
1300 | 0 | } |
1301 | | |
1302 | | /* Convert the coefficient array representation of a polynomial to a |
1303 | | * bit-string. The array must be terminated by -1. |
1304 | | */ |
1305 | | int |
1306 | | BN_GF2m_arr2poly(const int p[], BIGNUM *a) |
1307 | 0 | { |
1308 | 0 | int i; |
1309 | |
|
1310 | 0 | bn_check_top(a); |
1311 | 0 | BN_zero(a); |
1312 | 0 | for (i = 0; p[i] != -1; i++) { |
1313 | 0 | if (BN_set_bit(a, p[i]) == 0) |
1314 | 0 | return 0; |
1315 | 0 | } |
1316 | 0 | bn_check_top(a); |
1317 | |
|
1318 | 0 | return 1; |
1319 | 0 | } |
1320 | | |
1321 | | #endif |