Coverage Report

Created: 2022-08-24 06:30

/src/libressl/crypto/ec/ec_mult.c
Line
Count
Source (jump to first uncovered line)
1
/* $OpenBSD: ec_mult.c,v 1.24 2018/07/15 16:27:39 tb Exp $ */
2
/*
3
 * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4
 */
5
/* ====================================================================
6
 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
7
 *
8
 * Redistribution and use in source and binary forms, with or without
9
 * modification, are permitted provided that the following conditions
10
 * are met:
11
 *
12
 * 1. Redistributions of source code must retain the above copyright
13
 *    notice, this list of conditions and the following disclaimer.
14
 *
15
 * 2. Redistributions in binary form must reproduce the above copyright
16
 *    notice, this list of conditions and the following disclaimer in
17
 *    the documentation and/or other materials provided with the
18
 *    distribution.
19
 *
20
 * 3. All advertising materials mentioning features or use of this
21
 *    software must display the following acknowledgment:
22
 *    "This product includes software developed by the OpenSSL Project
23
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24
 *
25
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26
 *    endorse or promote products derived from this software without
27
 *    prior written permission. For written permission, please contact
28
 *    openssl-core@openssl.org.
29
 *
30
 * 5. Products derived from this software may not be called "OpenSSL"
31
 *    nor may "OpenSSL" appear in their names without prior written
32
 *    permission of the OpenSSL Project.
33
 *
34
 * 6. Redistributions of any form whatsoever must retain the following
35
 *    acknowledgment:
36
 *    "This product includes software developed by the OpenSSL Project
37
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38
 *
39
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50
 * OF THE POSSIBILITY OF SUCH DAMAGE.
51
 * ====================================================================
52
 *
53
 * This product includes cryptographic software written by Eric Young
54
 * (eay@cryptsoft.com).  This product includes software written by Tim
55
 * Hudson (tjh@cryptsoft.com).
56
 *
57
 */
58
/* ====================================================================
59
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60
 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61
 * and contributed to the OpenSSL project.
62
 */
63
64
#include <string.h>
65
66
#include <openssl/err.h>
67
68
#include "ec_lcl.h"
69
70
71
/*
72
 * This file implements the wNAF-based interleaving multi-exponentation method
73
 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
74
 * for multiplication with precomputation, we use wNAF splitting
75
 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
76
 */
77
78
79
80
81
/* structure for precomputed multiples of the generator */
82
typedef struct ec_pre_comp_st {
83
  const EC_GROUP *group;  /* parent EC_GROUP object */
84
  size_t blocksize; /* block size for wNAF splitting */
85
  size_t numblocks; /* max. number of blocks for which we have
86
         * precomputation */
87
  size_t w;   /* window size */
88
  EC_POINT **points;  /* array with pre-calculated multiples of
89
         * generator: 'num' pointers to EC_POINT
90
         * objects followed by a NULL */
91
  size_t num;   /* numblocks * 2^(w-1) */
92
  int references;
93
} EC_PRE_COMP;
94
95
/* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
96
static void *ec_pre_comp_dup(void *);
97
static void ec_pre_comp_free(void *);
98
static void ec_pre_comp_clear_free(void *);
99
100
static EC_PRE_COMP *
101
ec_pre_comp_new(const EC_GROUP * group)
102
0
{
103
0
  EC_PRE_COMP *ret = NULL;
104
105
0
  if (!group)
106
0
    return NULL;
107
108
0
  ret = malloc(sizeof(EC_PRE_COMP));
109
0
  if (!ret) {
110
0
    ECerror(ERR_R_MALLOC_FAILURE);
111
0
    return ret;
112
0
  }
113
0
  ret->group = group;
114
0
  ret->blocksize = 8; /* default */
115
0
  ret->numblocks = 0;
116
0
  ret->w = 4;   /* default */
117
0
  ret->points = NULL;
118
0
  ret->num = 0;
119
0
  ret->references = 1;
120
0
  return ret;
121
0
}
122
123
static void *
124
ec_pre_comp_dup(void *src_)
125
0
{
126
0
  EC_PRE_COMP *src = src_;
127
128
  /* no need to actually copy, these objects never change! */
129
130
0
  CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
131
132
0
  return src_;
133
0
}
134
135
static void 
136
ec_pre_comp_free(void *pre_)
137
0
{
138
0
  int i;
139
0
  EC_PRE_COMP *pre = pre_;
140
141
0
  if (!pre)
142
0
    return;
143
144
0
  i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
145
0
  if (i > 0)
146
0
    return;
147
148
0
  if (pre->points) {
149
0
    EC_POINT **p;
150
151
0
    for (p = pre->points; *p != NULL; p++)
152
0
      EC_POINT_free(*p);
153
0
    free(pre->points);
154
0
  }
155
0
  free(pre);
156
0
}
157
158
static void 
159
ec_pre_comp_clear_free(void *pre_)
160
0
{
161
0
  int i;
162
0
  EC_PRE_COMP *pre = pre_;
163
164
0
  if (!pre)
165
0
    return;
166
167
0
  i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
168
0
  if (i > 0)
169
0
    return;
170
171
0
  if (pre->points) {
172
0
    EC_POINT **p;
173
174
0
    for (p = pre->points; *p != NULL; p++) {
175
0
      EC_POINT_clear_free(*p);
176
0
      explicit_bzero(p, sizeof *p);
177
0
    }
178
0
    free(pre->points);
179
0
  }
180
0
  freezero(pre, sizeof *pre);
181
0
}
182
183
184
185
186
/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
187
 * This is an array  r[]  of values that are either zero or odd with an
188
 * absolute value less than  2^w  satisfying
189
 *     scalar = \sum_j r[j]*2^j
190
 * where at most one of any  w+1  consecutive digits is non-zero
191
 * with the exception that the most significant digit may be only
192
 * w-1 zeros away from that next non-zero digit.
193
 */
194
static signed char *
195
compute_wNAF(const BIGNUM * scalar, int w, size_t * ret_len)
196
0
{
197
0
  int window_val;
198
0
  int ok = 0;
199
0
  signed char *r = NULL;
200
0
  int sign = 1;
201
0
  int bit, next_bit, mask;
202
0
  size_t len = 0, j;
203
204
0
  if (BN_is_zero(scalar)) {
205
0
    r = malloc(1);
206
0
    if (!r) {
207
0
      ECerror(ERR_R_MALLOC_FAILURE);
208
0
      goto err;
209
0
    }
210
0
    r[0] = 0;
211
0
    *ret_len = 1;
212
0
    return r;
213
0
  }
214
0
  if (w <= 0 || w > 7) {
215
    /* 'signed char' can represent integers with
216
     * absolute values less than 2^7 */
217
0
    ECerror(ERR_R_INTERNAL_ERROR);
218
0
    goto err;
219
0
  }
220
0
  bit = 1 << w;   /* at most 128 */
221
0
  next_bit = bit << 1;  /* at most 256 */
222
0
  mask = next_bit - 1;  /* at most 255 */
223
224
0
  if (BN_is_negative(scalar)) {
225
0
    sign = -1;
226
0
  }
227
0
  if (scalar->d == NULL || scalar->top == 0) {
228
0
    ECerror(ERR_R_INTERNAL_ERROR);
229
0
    goto err;
230
0
  }
231
0
  len = BN_num_bits(scalar);
232
0
  r = malloc(len + 1);  /* modified wNAF may be one digit longer than
233
         * binary representation (*ret_len will be
234
         * set to the actual length, i.e. at most
235
         * BN_num_bits(scalar) + 1) */
236
0
  if (r == NULL) {
237
0
    ECerror(ERR_R_MALLOC_FAILURE);
238
0
    goto err;
239
0
  }
240
0
  window_val = scalar->d[0] & mask;
241
0
  j = 0;
242
0
  while ((window_val != 0) || (j + w + 1 < len)) {
243
    /* if j+w+1 >= len, window_val will not increase */
244
0
    int digit = 0;
245
246
    /* 0 <= window_val <= 2^(w+1) */
247
0
    if (window_val & 1) {
248
      /* 0 < window_val < 2^(w+1) */
249
0
      if (window_val & bit) {
250
0
        digit = window_val - next_bit;  /* -2^w < digit < 0 */
251
252
0
#if 1       /* modified wNAF */
253
0
        if (j + w + 1 >= len) {
254
          /*
255
           * special case for generating
256
           * modified wNAFs: no new bits will
257
           * be added into window_val, so using
258
           * a positive digit here will
259
           * decrease the total length of the
260
           * representation
261
           */
262
263
0
          digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
264
0
        }
265
0
#endif
266
0
      } else {
267
0
        digit = window_val; /* 0 < digit < 2^w */
268
0
      }
269
270
0
      if (digit <= -bit || digit >= bit || !(digit & 1)) {
271
0
        ECerror(ERR_R_INTERNAL_ERROR);
272
0
        goto err;
273
0
      }
274
0
      window_val -= digit;
275
276
      /*
277
       * now window_val is 0 or 2^(w+1) in standard wNAF
278
       * generation; for modified window NAFs, it may also
279
       * be 2^w
280
       */
281
0
      if (window_val != 0 && window_val != next_bit && window_val != bit) {
282
0
        ECerror(ERR_R_INTERNAL_ERROR);
283
0
        goto err;
284
0
      }
285
0
    }
286
0
    r[j++] = sign * digit;
287
288
0
    window_val >>= 1;
289
0
    window_val += bit * BN_is_bit_set(scalar, j + w);
290
291
0
    if (window_val > next_bit) {
292
0
      ECerror(ERR_R_INTERNAL_ERROR);
293
0
      goto err;
294
0
    }
295
0
  }
296
297
0
  if (j > len + 1) {
298
0
    ECerror(ERR_R_INTERNAL_ERROR);
299
0
    goto err;
300
0
  }
301
0
  len = j;
302
0
  ok = 1;
303
304
0
 err:
305
0
  if (!ok) {
306
0
    free(r);
307
0
    r = NULL;
308
0
  }
309
0
  if (ok)
310
0
    *ret_len = len;
311
0
  return r;
312
0
}
313
314
315
/* TODO: table should be optimised for the wNAF-based implementation,
316
 *       sometimes smaller windows will give better performance
317
 *       (thus the boundaries should be increased)
318
 */
319
#define EC_window_bits_for_scalar_size(b) \
320
0
    ((size_t) \
321
0
     ((b) >= 2000 ? 6 : \
322
0
      (b) >=  800 ? 5 : \
323
0
      (b) >=  300 ? 4 : \
324
0
      (b) >=   70 ? 3 : \
325
0
      (b) >=   20 ? 2 : \
326
0
      1))
327
328
/* Compute
329
 *      \sum scalars[i]*points[i],
330
 * also including
331
 *      scalar*generator
332
 * in the addition if scalar != NULL
333
 */
334
int 
335
ec_wNAF_mul(const EC_GROUP * group, EC_POINT * r, const BIGNUM * scalar,
336
    size_t num, const EC_POINT * points[], const BIGNUM * scalars[], BN_CTX * ctx)
337
0
{
338
0
  BN_CTX *new_ctx = NULL;
339
0
  const EC_POINT *generator = NULL;
340
0
  EC_POINT *tmp = NULL;
341
0
  size_t totalnum;
342
0
  size_t blocksize = 0, numblocks = 0;  /* for wNAF splitting */
343
0
  size_t pre_points_per_block = 0;
344
0
  size_t i, j;
345
0
  int k;
346
0
  int r_is_inverted = 0;
347
0
  int r_is_at_infinity = 1;
348
0
  size_t *wsize = NULL; /* individual window sizes */
349
0
  signed char **wNAF = NULL;  /* individual wNAFs */
350
0
  signed char *tmp_wNAF = NULL;
351
0
  size_t *wNAF_len = NULL;
352
0
  size_t max_len = 0;
353
0
  size_t num_val;
354
0
  EC_POINT **val = NULL;  /* precomputation */
355
0
  EC_POINT **v;
356
0
  EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
357
           * 'pre_comp->points' */
358
0
  const EC_PRE_COMP *pre_comp = NULL;
359
0
  int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
360
         * treated like other scalars, i.e.
361
         * precomputation is not available */
362
0
  int ret = 0;
363
364
0
  if (group->meth != r->meth) {
365
0
    ECerror(EC_R_INCOMPATIBLE_OBJECTS);
366
0
    return 0;
367
0
  }
368
0
  if ((scalar == NULL) && (num == 0)) {
369
0
    return EC_POINT_set_to_infinity(group, r);
370
0
  }
371
0
  for (i = 0; i < num; i++) {
372
0
    if (group->meth != points[i]->meth) {
373
0
      ECerror(EC_R_INCOMPATIBLE_OBJECTS);
374
0
      return 0;
375
0
    }
376
0
  }
377
378
0
  if (ctx == NULL) {
379
0
    ctx = new_ctx = BN_CTX_new();
380
0
    if (ctx == NULL)
381
0
      goto err;
382
0
  }
383
0
  if (scalar != NULL) {
384
0
    generator = EC_GROUP_get0_generator(group);
385
0
    if (generator == NULL) {
386
0
      ECerror(EC_R_UNDEFINED_GENERATOR);
387
0
      goto err;
388
0
    }
389
    /* look if we can use precomputed multiples of generator */
390
391
0
    pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
392
393
0
    if (pre_comp && pre_comp->numblocks &&
394
0
        (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0)) {
395
0
      blocksize = pre_comp->blocksize;
396
397
      /*
398
       * determine maximum number of blocks that wNAF
399
       * splitting may yield (NB: maximum wNAF length is
400
       * bit length plus one)
401
       */
402
0
      numblocks = (BN_num_bits(scalar) / blocksize) + 1;
403
404
      /*
405
       * we cannot use more blocks than we have
406
       * precomputation for
407
       */
408
0
      if (numblocks > pre_comp->numblocks)
409
0
        numblocks = pre_comp->numblocks;
410
411
0
      pre_points_per_block = (size_t) 1 << (pre_comp->w - 1);
412
413
      /* check that pre_comp looks sane */
414
0
      if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
415
0
        ECerror(ERR_R_INTERNAL_ERROR);
416
0
        goto err;
417
0
      }
418
0
    } else {
419
      /* can't use precomputation */
420
0
      pre_comp = NULL;
421
0
      numblocks = 1;
422
0
      num_scalar = 1; /* treat 'scalar' like 'num'-th
423
           * element of 'scalars' */
424
0
    }
425
0
  }
426
0
  totalnum = num + numblocks;
427
428
  /* includes space for pivot */
429
0
  wNAF = reallocarray(NULL, (totalnum + 1), sizeof wNAF[0]);
430
0
  if (wNAF == NULL) {
431
0
    ECerror(ERR_R_MALLOC_FAILURE);
432
0
    goto err;
433
0
  }
434
435
0
  wNAF[0] = NULL;   /* preliminary pivot */
436
437
0
  wsize = reallocarray(NULL, totalnum, sizeof wsize[0]);
438
0
  wNAF_len = reallocarray(NULL, totalnum, sizeof wNAF_len[0]);
439
0
  val_sub = reallocarray(NULL, totalnum, sizeof val_sub[0]);
440
441
0
  if (wsize == NULL || wNAF_len == NULL || val_sub == NULL) {
442
0
    ECerror(ERR_R_MALLOC_FAILURE);
443
0
    goto err;
444
0
  }
445
446
  /* num_val will be the total number of temporarily precomputed points */
447
0
  num_val = 0;
448
449
0
  for (i = 0; i < num + num_scalar; i++) {
450
0
    size_t bits;
451
452
0
    bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
453
0
    wsize[i] = EC_window_bits_for_scalar_size(bits);
454
0
    num_val += (size_t) 1 << (wsize[i] - 1);
455
0
    wNAF[i + 1] = NULL; /* make sure we always have a pivot */
456
0
    wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
457
0
    if (wNAF[i] == NULL)
458
0
      goto err;
459
0
    if (wNAF_len[i] > max_len)
460
0
      max_len = wNAF_len[i];
461
0
  }
462
463
0
  if (numblocks) {
464
    /* we go here iff scalar != NULL */
465
466
0
    if (pre_comp == NULL) {
467
0
      if (num_scalar != 1) {
468
0
        ECerror(ERR_R_INTERNAL_ERROR);
469
0
        goto err;
470
0
      }
471
      /* we have already generated a wNAF for 'scalar' */
472
0
    } else {
473
0
      size_t tmp_len = 0;
474
475
0
      if (num_scalar != 0) {
476
0
        ECerror(ERR_R_INTERNAL_ERROR);
477
0
        goto err;
478
0
      }
479
      /*
480
       * use the window size for which we have
481
       * precomputation
482
       */
483
0
      wsize[num] = pre_comp->w;
484
0
      tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
485
0
      if (tmp_wNAF == NULL)
486
0
        goto err;
487
488
0
      if (tmp_len <= max_len) {
489
        /*
490
         * One of the other wNAFs is at least as long
491
         * as the wNAF belonging to the generator, so
492
         * wNAF splitting will not buy us anything.
493
         */
494
495
0
        numblocks = 1;
496
0
        totalnum = num + 1; /* don't use wNAF
497
               * splitting */
498
0
        wNAF[num] = tmp_wNAF;
499
0
        tmp_wNAF = NULL;
500
0
        wNAF[num + 1] = NULL;
501
0
        wNAF_len[num] = tmp_len;
502
0
        if (tmp_len > max_len)
503
0
          max_len = tmp_len;
504
        /*
505
         * pre_comp->points starts with the points
506
         * that we need here:
507
         */
508
0
        val_sub[num] = pre_comp->points;
509
0
      } else {
510
        /*
511
         * don't include tmp_wNAF directly into wNAF
512
         * array - use wNAF splitting and include the
513
         * blocks
514
         */
515
516
0
        signed char *pp;
517
0
        EC_POINT **tmp_points;
518
519
0
        if (tmp_len < numblocks * blocksize) {
520
          /*
521
           * possibly we can do with fewer
522
           * blocks than estimated
523
           */
524
0
          numblocks = (tmp_len + blocksize - 1) / blocksize;
525
0
          if (numblocks > pre_comp->numblocks) {
526
0
            ECerror(ERR_R_INTERNAL_ERROR);
527
0
            goto err;
528
0
          }
529
0
          totalnum = num + numblocks;
530
0
        }
531
        /* split wNAF in 'numblocks' parts */
532
0
        pp = tmp_wNAF;
533
0
        tmp_points = pre_comp->points;
534
535
0
        for (i = num; i < totalnum; i++) {
536
0
          if (i < totalnum - 1) {
537
0
            wNAF_len[i] = blocksize;
538
0
            if (tmp_len < blocksize) {
539
0
              ECerror(ERR_R_INTERNAL_ERROR);
540
0
              goto err;
541
0
            }
542
0
            tmp_len -= blocksize;
543
0
          } else
544
            /*
545
             * last block gets whatever
546
             * is left (this could be
547
             * more or less than
548
             * 'blocksize'!)
549
             */
550
0
            wNAF_len[i] = tmp_len;
551
552
0
          wNAF[i + 1] = NULL;
553
0
          wNAF[i] = malloc(wNAF_len[i]);
554
0
          if (wNAF[i] == NULL) {
555
0
            ECerror(ERR_R_MALLOC_FAILURE);
556
0
            goto err;
557
0
          }
558
0
          memcpy(wNAF[i], pp, wNAF_len[i]);
559
0
          if (wNAF_len[i] > max_len)
560
0
            max_len = wNAF_len[i];
561
562
0
          if (*tmp_points == NULL) {
563
0
            ECerror(ERR_R_INTERNAL_ERROR);
564
0
            goto err;
565
0
          }
566
0
          val_sub[i] = tmp_points;
567
0
          tmp_points += pre_points_per_block;
568
0
          pp += blocksize;
569
0
        }
570
0
      }
571
0
    }
572
0
  }
573
  /*
574
   * All points we precompute now go into a single array 'val'.
575
   * 'val_sub[i]' is a pointer to the subarray for the i-th point, or
576
   * to a subarray of 'pre_comp->points' if we already have
577
   * precomputation.
578
   */
579
0
  val = reallocarray(NULL, (num_val + 1), sizeof val[0]);
580
0
  if (val == NULL) {
581
0
    ECerror(ERR_R_MALLOC_FAILURE);
582
0
    goto err;
583
0
  }
584
0
  val[num_val] = NULL;  /* pivot element */
585
586
  /* allocate points for precomputation */
587
0
  v = val;
588
0
  for (i = 0; i < num + num_scalar; i++) {
589
0
    val_sub[i] = v;
590
0
    for (j = 0; j < ((size_t) 1 << (wsize[i] - 1)); j++) {
591
0
      *v = EC_POINT_new(group);
592
0
      if (*v == NULL)
593
0
        goto err;
594
0
      v++;
595
0
    }
596
0
  }
597
0
  if (!(v == val + num_val)) {
598
0
    ECerror(ERR_R_INTERNAL_ERROR);
599
0
    goto err;
600
0
  }
601
0
  if (!(tmp = EC_POINT_new(group)))
602
0
    goto err;
603
604
  /*
605
   * prepare precomputed values: val_sub[i][0] :=     points[i]
606
   * val_sub[i][1] := 3 * points[i] val_sub[i][2] := 5 * points[i] ...
607
   */
608
0
  for (i = 0; i < num + num_scalar; i++) {
609
0
    if (i < num) {
610
0
      if (!EC_POINT_copy(val_sub[i][0], points[i]))
611
0
        goto err;
612
0
    } else {
613
0
      if (!EC_POINT_copy(val_sub[i][0], generator))
614
0
        goto err;
615
0
    }
616
617
0
    if (wsize[i] > 1) {
618
0
      if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
619
0
        goto err;
620
0
      for (j = 1; j < ((size_t) 1 << (wsize[i] - 1)); j++) {
621
0
        if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
622
0
          goto err;
623
0
      }
624
0
    }
625
0
  }
626
627
0
  if (!EC_POINTs_make_affine(group, num_val, val, ctx))
628
0
    goto err;
629
630
0
  r_is_at_infinity = 1;
631
632
0
  for (k = max_len - 1; k >= 0; k--) {
633
0
    if (!r_is_at_infinity) {
634
0
      if (!EC_POINT_dbl(group, r, r, ctx))
635
0
        goto err;
636
0
    }
637
0
    for (i = 0; i < totalnum; i++) {
638
0
      if (wNAF_len[i] > (size_t) k) {
639
0
        int digit = wNAF[i][k];
640
0
        int is_neg;
641
642
0
        if (digit) {
643
0
          is_neg = digit < 0;
644
645
0
          if (is_neg)
646
0
            digit = -digit;
647
648
0
          if (is_neg != r_is_inverted) {
649
0
            if (!r_is_at_infinity) {
650
0
              if (!EC_POINT_invert(group, r, ctx))
651
0
                goto err;
652
0
            }
653
0
            r_is_inverted = !r_is_inverted;
654
0
          }
655
          /* digit > 0 */
656
657
0
          if (r_is_at_infinity) {
658
0
            if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
659
0
              goto err;
660
0
            r_is_at_infinity = 0;
661
0
          } else {
662
0
            if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx))
663
0
              goto err;
664
0
          }
665
0
        }
666
0
      }
667
0
    }
668
0
  }
669
670
0
  if (r_is_at_infinity) {
671
0
    if (!EC_POINT_set_to_infinity(group, r))
672
0
      goto err;
673
0
  } else {
674
0
    if (r_is_inverted)
675
0
      if (!EC_POINT_invert(group, r, ctx))
676
0
        goto err;
677
0
  }
678
679
0
  ret = 1;
680
681
0
 err:
682
0
  BN_CTX_free(new_ctx);
683
0
  EC_POINT_free(tmp);
684
0
  free(wsize);
685
0
  free(wNAF_len);
686
0
  free(tmp_wNAF);
687
0
  if (wNAF != NULL) {
688
0
    signed char **w;
689
690
0
    for (w = wNAF; *w != NULL; w++)
691
0
      free(*w);
692
693
0
    free(wNAF);
694
0
  }
695
0
  if (val != NULL) {
696
0
    for (v = val; *v != NULL; v++)
697
0
      EC_POINT_clear_free(*v);
698
0
    free(val);
699
0
  }
700
0
  free(val_sub);
701
0
  return ret;
702
0
}
703
704
705
/* ec_wNAF_precompute_mult()
706
 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
707
 * for use with wNAF splitting as implemented in ec_wNAF_mul().
708
 *
709
 * 'pre_comp->points' is an array of multiples of the generator
710
 * of the following form:
711
 * points[0] =     generator;
712
 * points[1] = 3 * generator;
713
 * ...
714
 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
715
 * points[2^(w-1)]   =     2^blocksize * generator;
716
 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
717
 * ...
718
 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
719
 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
720
 * ...
721
 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
722
 * points[2^(w-1)*numblocks]       = NULL
723
 */
724
int 
725
ec_wNAF_precompute_mult(EC_GROUP * group, BN_CTX * ctx)
726
0
{
727
0
  const EC_POINT *generator;
728
0
  EC_POINT *tmp_point = NULL, *base = NULL, **var;
729
0
  BN_CTX *new_ctx = NULL;
730
0
  BIGNUM *order;
731
0
  size_t i, bits, w, pre_points_per_block, blocksize, numblocks,
732
0
   num;
733
0
  EC_POINT **points = NULL;
734
0
  EC_PRE_COMP *pre_comp;
735
0
  int ret = 0;
736
737
  /* if there is an old EC_PRE_COMP object, throw it away */
738
0
  EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
739
740
0
  if ((pre_comp = ec_pre_comp_new(group)) == NULL)
741
0
    return 0;
742
743
0
  generator = EC_GROUP_get0_generator(group);
744
0
  if (generator == NULL) {
745
0
    ECerror(EC_R_UNDEFINED_GENERATOR);
746
0
    goto err;
747
0
  }
748
0
  if (ctx == NULL) {
749
0
    ctx = new_ctx = BN_CTX_new();
750
0
    if (ctx == NULL)
751
0
      goto err;
752
0
  }
753
0
  BN_CTX_start(ctx);
754
0
  if ((order = BN_CTX_get(ctx)) == NULL)
755
0
    goto err;
756
757
0
  if (!EC_GROUP_get_order(group, order, ctx))
758
0
    goto err;
759
0
  if (BN_is_zero(order)) {
760
0
    ECerror(EC_R_UNKNOWN_ORDER);
761
0
    goto err;
762
0
  }
763
0
  bits = BN_num_bits(order);
764
  /*
765
   * The following parameters mean we precompute (approximately) one
766
   * point per bit.
767
   * 
768
   * TBD: The combination  8, 4  is perfect for 160 bits; for other bit
769
   * lengths, other parameter combinations might provide better
770
   * efficiency.
771
   */
772
0
  blocksize = 8;
773
0
  w = 4;
774
0
  if (EC_window_bits_for_scalar_size(bits) > w) {
775
    /* let's not make the window too small ... */
776
0
    w = EC_window_bits_for_scalar_size(bits);
777
0
  }
778
0
  numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
779
               * to use for wNAF
780
               * splitting */
781
782
0
  pre_points_per_block = (size_t) 1 << (w - 1);
783
0
  num = pre_points_per_block * numblocks; /* number of points to
784
             * compute and store */
785
786
0
  points = reallocarray(NULL, (num + 1), sizeof(EC_POINT *));
787
0
  if (!points) {
788
0
    ECerror(ERR_R_MALLOC_FAILURE);
789
0
    goto err;
790
0
  }
791
0
  var = points;
792
0
  var[num] = NULL;  /* pivot */
793
0
  for (i = 0; i < num; i++) {
794
0
    if ((var[i] = EC_POINT_new(group)) == NULL) {
795
0
      ECerror(ERR_R_MALLOC_FAILURE);
796
0
      goto err;
797
0
    }
798
0
  }
799
800
0
  if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) {
801
0
    ECerror(ERR_R_MALLOC_FAILURE);
802
0
    goto err;
803
0
  }
804
0
  if (!EC_POINT_copy(base, generator))
805
0
    goto err;
806
807
  /* do the precomputation */
808
0
  for (i = 0; i < numblocks; i++) {
809
0
    size_t j;
810
811
0
    if (!EC_POINT_dbl(group, tmp_point, base, ctx))
812
0
      goto err;
813
814
0
    if (!EC_POINT_copy(*var++, base))
815
0
      goto err;
816
817
0
    for (j = 1; j < pre_points_per_block; j++, var++) {
818
      /* calculate odd multiples of the current base point */
819
0
      if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
820
0
        goto err;
821
0
    }
822
823
0
    if (i < numblocks - 1) {
824
      /*
825
       * get the next base (multiply current one by
826
       * 2^blocksize)
827
       */
828
0
      size_t k;
829
830
0
      if (blocksize <= 2) {
831
0
        ECerror(ERR_R_INTERNAL_ERROR);
832
0
        goto err;
833
0
      }
834
0
      if (!EC_POINT_dbl(group, base, tmp_point, ctx))
835
0
        goto err;
836
0
      for (k = 2; k < blocksize; k++) {
837
0
        if (!EC_POINT_dbl(group, base, base, ctx))
838
0
          goto err;
839
0
      }
840
0
    }
841
0
  }
842
843
0
  if (!EC_POINTs_make_affine(group, num, points, ctx))
844
0
    goto err;
845
846
0
  pre_comp->group = group;
847
0
  pre_comp->blocksize = blocksize;
848
0
  pre_comp->numblocks = numblocks;
849
0
  pre_comp->w = w;
850
0
  pre_comp->points = points;
851
0
  points = NULL;
852
0
  pre_comp->num = num;
853
854
0
  if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
855
0
    ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
856
0
    goto err;
857
0
  pre_comp = NULL;
858
859
0
  ret = 1;
860
0
 err:
861
0
  if (ctx != NULL)
862
0
    BN_CTX_end(ctx);
863
0
  BN_CTX_free(new_ctx);
864
0
  ec_pre_comp_free(pre_comp);
865
0
  if (points) {
866
0
    EC_POINT **p;
867
868
0
    for (p = points; *p != NULL; p++)
869
0
      EC_POINT_free(*p);
870
0
    free(points);
871
0
  }
872
0
  EC_POINT_free(tmp_point);
873
0
  EC_POINT_free(base);
874
0
  return ret;
875
0
}
876
877
878
int 
879
ec_wNAF_have_precompute_mult(const EC_GROUP * group)
880
0
{
881
0
  if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
882
0
    return 1;
883
0
  else
884
0
    return 0;
885
0
}