/src/libressl/crypto/bn/bn_sqrt.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* $OpenBSD: bn_sqrt.c,v 1.11 2022/06/20 15:02:21 tb Exp $ */ |
2 | | /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> |
3 | | * and Bodo Moeller for the OpenSSL project. */ |
4 | | /* ==================================================================== |
5 | | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. |
6 | | * |
7 | | * Redistribution and use in source and binary forms, with or without |
8 | | * modification, are permitted provided that the following conditions |
9 | | * are met: |
10 | | * |
11 | | * 1. Redistributions of source code must retain the above copyright |
12 | | * notice, this list of conditions and the following disclaimer. |
13 | | * |
14 | | * 2. Redistributions in binary form must reproduce the above copyright |
15 | | * notice, this list of conditions and the following disclaimer in |
16 | | * the documentation and/or other materials provided with the |
17 | | * distribution. |
18 | | * |
19 | | * 3. All advertising materials mentioning features or use of this |
20 | | * software must display the following acknowledgment: |
21 | | * "This product includes software developed by the OpenSSL Project |
22 | | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
23 | | * |
24 | | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
25 | | * endorse or promote products derived from this software without |
26 | | * prior written permission. For written permission, please contact |
27 | | * openssl-core@openssl.org. |
28 | | * |
29 | | * 5. Products derived from this software may not be called "OpenSSL" |
30 | | * nor may "OpenSSL" appear in their names without prior written |
31 | | * permission of the OpenSSL Project. |
32 | | * |
33 | | * 6. Redistributions of any form whatsoever must retain the following |
34 | | * acknowledgment: |
35 | | * "This product includes software developed by the OpenSSL Project |
36 | | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
37 | | * |
38 | | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
39 | | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
40 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
41 | | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
42 | | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
43 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
44 | | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
45 | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
46 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
47 | | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
48 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
49 | | * OF THE POSSIBILITY OF SUCH DAMAGE. |
50 | | * ==================================================================== |
51 | | * |
52 | | * This product includes cryptographic software written by Eric Young |
53 | | * (eay@cryptsoft.com). This product includes software written by Tim |
54 | | * Hudson (tjh@cryptsoft.com). |
55 | | * |
56 | | */ |
57 | | |
58 | | #include <openssl/err.h> |
59 | | |
60 | | #include "bn_lcl.h" |
61 | | |
62 | | BIGNUM * |
63 | | BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
64 | | /* Returns 'ret' such that |
65 | | * ret^2 == a (mod p), |
66 | | * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course |
67 | | * in Algebraic Computational Number Theory", algorithm 1.5.1). |
68 | | * 'p' must be prime! |
69 | | */ |
70 | 1.10k | { |
71 | 1.10k | BIGNUM *ret = in; |
72 | 1.10k | int err = 1; |
73 | 1.10k | int r; |
74 | 1.10k | BIGNUM *A, *b, *q, *t, *x, *y; |
75 | 1.10k | int e, i, j; |
76 | | |
77 | 1.10k | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { |
78 | 0 | if (BN_abs_is_word(p, 2)) { |
79 | 0 | if (ret == NULL) |
80 | 0 | ret = BN_new(); |
81 | 0 | if (ret == NULL) |
82 | 0 | goto end; |
83 | 0 | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { |
84 | 0 | if (ret != in) |
85 | 0 | BN_free(ret); |
86 | 0 | return NULL; |
87 | 0 | } |
88 | 0 | bn_check_top(ret); |
89 | 0 | return ret; |
90 | 0 | } |
91 | | |
92 | 0 | BNerror(BN_R_P_IS_NOT_PRIME); |
93 | 0 | return (NULL); |
94 | 0 | } |
95 | | |
96 | 1.10k | if (BN_is_zero(a) || BN_is_one(a)) { |
97 | 0 | if (ret == NULL) |
98 | 0 | ret = BN_new(); |
99 | 0 | if (ret == NULL) |
100 | 0 | goto end; |
101 | 0 | if (!BN_set_word(ret, BN_is_one(a))) { |
102 | 0 | if (ret != in) |
103 | 0 | BN_free(ret); |
104 | 0 | return NULL; |
105 | 0 | } |
106 | 0 | bn_check_top(ret); |
107 | 0 | return ret; |
108 | 0 | } |
109 | | |
110 | 1.10k | BN_CTX_start(ctx); |
111 | 1.10k | if ((A = BN_CTX_get(ctx)) == NULL) |
112 | 0 | goto end; |
113 | 1.10k | if ((b = BN_CTX_get(ctx)) == NULL) |
114 | 0 | goto end; |
115 | 1.10k | if ((q = BN_CTX_get(ctx)) == NULL) |
116 | 0 | goto end; |
117 | 1.10k | if ((t = BN_CTX_get(ctx)) == NULL) |
118 | 0 | goto end; |
119 | 1.10k | if ((x = BN_CTX_get(ctx)) == NULL) |
120 | 0 | goto end; |
121 | 1.10k | if ((y = BN_CTX_get(ctx)) == NULL) |
122 | 0 | goto end; |
123 | | |
124 | 1.10k | if (ret == NULL) |
125 | 0 | ret = BN_new(); |
126 | 1.10k | if (ret == NULL) |
127 | 0 | goto end; |
128 | | |
129 | | /* A = a mod p */ |
130 | 1.10k | if (!BN_nnmod(A, a, p, ctx)) |
131 | 0 | goto end; |
132 | | |
133 | | /* now write |p| - 1 as 2^e*q where q is odd */ |
134 | 1.10k | e = 1; |
135 | 1.10k | while (!BN_is_bit_set(p, e)) |
136 | 0 | e++; |
137 | | /* we'll set q later (if needed) */ |
138 | | |
139 | 1.10k | if (e == 1) { |
140 | | /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse |
141 | | * modulo (|p|-1)/2, and square roots can be computed |
142 | | * directly by modular exponentiation. |
143 | | * We have |
144 | | * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), |
145 | | * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. |
146 | | */ |
147 | 1.10k | if (!BN_rshift(q, p, 2)) |
148 | 0 | goto end; |
149 | 1.10k | q->neg = 0; |
150 | 1.10k | if (!BN_add_word(q, 1)) |
151 | 0 | goto end; |
152 | 1.10k | if (!BN_mod_exp_ct(ret, A, q, p, ctx)) |
153 | 0 | goto end; |
154 | 1.10k | err = 0; |
155 | 1.10k | goto vrfy; |
156 | 1.10k | } |
157 | | |
158 | 0 | if (e == 2) { |
159 | | /* |p| == 5 (mod 8) |
160 | | * |
161 | | * In this case 2 is always a non-square since |
162 | | * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. |
163 | | * So if a really is a square, then 2*a is a non-square. |
164 | | * Thus for |
165 | | * b := (2*a)^((|p|-5)/8), |
166 | | * i := (2*a)*b^2 |
167 | | * we have |
168 | | * i^2 = (2*a)^((1 + (|p|-5)/4)*2) |
169 | | * = (2*a)^((p-1)/2) |
170 | | * = -1; |
171 | | * so if we set |
172 | | * x := a*b*(i-1), |
173 | | * then |
174 | | * x^2 = a^2 * b^2 * (i^2 - 2*i + 1) |
175 | | * = a^2 * b^2 * (-2*i) |
176 | | * = a*(-i)*(2*a*b^2) |
177 | | * = a*(-i)*i |
178 | | * = a. |
179 | | * |
180 | | * (This is due to A.O.L. Atkin, |
181 | | * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, |
182 | | * November 1992.) |
183 | | */ |
184 | | |
185 | | /* t := 2*a */ |
186 | 0 | if (!BN_mod_lshift1_quick(t, A, p)) |
187 | 0 | goto end; |
188 | | |
189 | | /* b := (2*a)^((|p|-5)/8) */ |
190 | 0 | if (!BN_rshift(q, p, 3)) |
191 | 0 | goto end; |
192 | 0 | q->neg = 0; |
193 | 0 | if (!BN_mod_exp_ct(b, t, q, p, ctx)) |
194 | 0 | goto end; |
195 | | |
196 | | /* y := b^2 */ |
197 | 0 | if (!BN_mod_sqr(y, b, p, ctx)) |
198 | 0 | goto end; |
199 | | |
200 | | /* t := (2*a)*b^2 - 1*/ |
201 | 0 | if (!BN_mod_mul(t, t, y, p, ctx)) |
202 | 0 | goto end; |
203 | 0 | if (!BN_sub_word(t, 1)) |
204 | 0 | goto end; |
205 | | |
206 | | /* x = a*b*t */ |
207 | 0 | if (!BN_mod_mul(x, A, b, p, ctx)) |
208 | 0 | goto end; |
209 | 0 | if (!BN_mod_mul(x, x, t, p, ctx)) |
210 | 0 | goto end; |
211 | | |
212 | 0 | if (!BN_copy(ret, x)) |
213 | 0 | goto end; |
214 | 0 | err = 0; |
215 | 0 | goto vrfy; |
216 | 0 | } |
217 | | |
218 | | /* e > 2, so we really have to use the Tonelli/Shanks algorithm. |
219 | | * First, find some y that is not a square. */ |
220 | 0 | if (!BN_copy(q, p)) /* use 'q' as temp */ |
221 | 0 | goto end; |
222 | 0 | q->neg = 0; |
223 | 0 | i = 2; |
224 | 0 | do { |
225 | | /* For efficiency, try small numbers first; |
226 | | * if this fails, try random numbers. |
227 | | */ |
228 | 0 | if (i < 22) { |
229 | 0 | if (!BN_set_word(y, i)) |
230 | 0 | goto end; |
231 | 0 | } else { |
232 | 0 | if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) |
233 | 0 | goto end; |
234 | 0 | if (BN_ucmp(y, p) >= 0) { |
235 | 0 | if (p->neg) { |
236 | 0 | if (!BN_add(y, y, p)) |
237 | 0 | goto end; |
238 | 0 | } else { |
239 | 0 | if (!BN_sub(y, y, p)) |
240 | 0 | goto end; |
241 | 0 | } |
242 | 0 | } |
243 | | /* now 0 <= y < |p| */ |
244 | 0 | if (BN_is_zero(y)) |
245 | 0 | if (!BN_set_word(y, i)) |
246 | 0 | goto end; |
247 | 0 | } |
248 | | |
249 | 0 | r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ |
250 | 0 | if (r < -1) |
251 | 0 | goto end; |
252 | 0 | if (r == 0) { |
253 | | /* m divides p */ |
254 | 0 | BNerror(BN_R_P_IS_NOT_PRIME); |
255 | 0 | goto end; |
256 | 0 | } |
257 | 0 | } while (r == 1 && ++i < 82); |
258 | | |
259 | 0 | if (r != -1) { |
260 | | /* Many rounds and still no non-square -- this is more likely |
261 | | * a bug than just bad luck. |
262 | | * Even if p is not prime, we should have found some y |
263 | | * such that r == -1. |
264 | | */ |
265 | 0 | BNerror(BN_R_TOO_MANY_ITERATIONS); |
266 | 0 | goto end; |
267 | 0 | } |
268 | | |
269 | | /* Here's our actual 'q': */ |
270 | 0 | if (!BN_rshift(q, q, e)) |
271 | 0 | goto end; |
272 | | |
273 | | /* Now that we have some non-square, we can find an element |
274 | | * of order 2^e by computing its q'th power. */ |
275 | 0 | if (!BN_mod_exp_ct(y, y, q, p, ctx)) |
276 | 0 | goto end; |
277 | 0 | if (BN_is_one(y)) { |
278 | 0 | BNerror(BN_R_P_IS_NOT_PRIME); |
279 | 0 | goto end; |
280 | 0 | } |
281 | | |
282 | | /* Now we know that (if p is indeed prime) there is an integer |
283 | | * k, 0 <= k < 2^e, such that |
284 | | * |
285 | | * a^q * y^k == 1 (mod p). |
286 | | * |
287 | | * As a^q is a square and y is not, k must be even. |
288 | | * q+1 is even, too, so there is an element |
289 | | * |
290 | | * X := a^((q+1)/2) * y^(k/2), |
291 | | * |
292 | | * and it satisfies |
293 | | * |
294 | | * X^2 = a^q * a * y^k |
295 | | * = a, |
296 | | * |
297 | | * so it is the square root that we are looking for. |
298 | | */ |
299 | | |
300 | | /* t := (q-1)/2 (note that q is odd) */ |
301 | 0 | if (!BN_rshift1(t, q)) |
302 | 0 | goto end; |
303 | | |
304 | | /* x := a^((q-1)/2) */ |
305 | 0 | if (BN_is_zero(t)) { /* special case: p = 2^e + 1 */ |
306 | 0 | if (!BN_nnmod(t, A, p, ctx)) |
307 | 0 | goto end; |
308 | 0 | if (BN_is_zero(t)) { |
309 | | /* special case: a == 0 (mod p) */ |
310 | 0 | BN_zero(ret); |
311 | 0 | err = 0; |
312 | 0 | goto end; |
313 | 0 | } else if (!BN_one(x)) |
314 | 0 | goto end; |
315 | 0 | } else { |
316 | 0 | if (!BN_mod_exp_ct(x, A, t, p, ctx)) |
317 | 0 | goto end; |
318 | 0 | if (BN_is_zero(x)) { |
319 | | /* special case: a == 0 (mod p) */ |
320 | 0 | BN_zero(ret); |
321 | 0 | err = 0; |
322 | 0 | goto end; |
323 | 0 | } |
324 | 0 | } |
325 | | |
326 | | /* b := a*x^2 (= a^q) */ |
327 | 0 | if (!BN_mod_sqr(b, x, p, ctx)) |
328 | 0 | goto end; |
329 | 0 | if (!BN_mod_mul(b, b, A, p, ctx)) |
330 | 0 | goto end; |
331 | | |
332 | | /* x := a*x (= a^((q+1)/2)) */ |
333 | 0 | if (!BN_mod_mul(x, x, A, p, ctx)) |
334 | 0 | goto end; |
335 | | |
336 | 0 | while (1) { |
337 | | /* Now b is a^q * y^k for some even k (0 <= k < 2^E |
338 | | * where E refers to the original value of e, which we |
339 | | * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). |
340 | | * |
341 | | * We have a*b = x^2, |
342 | | * y^2^(e-1) = -1, |
343 | | * b^2^(e-1) = 1. |
344 | | */ |
345 | |
|
346 | 0 | if (BN_is_one(b)) { |
347 | 0 | if (!BN_copy(ret, x)) |
348 | 0 | goto end; |
349 | 0 | err = 0; |
350 | 0 | goto vrfy; |
351 | 0 | } |
352 | | |
353 | | /* Find the smallest i with 0 < i < e such that b^(2^i) = 1. */ |
354 | 0 | for (i = 1; i < e; i++) { |
355 | 0 | if (i == 1) { |
356 | 0 | if (!BN_mod_sqr(t, b, p, ctx)) |
357 | 0 | goto end; |
358 | 0 | } else { |
359 | 0 | if (!BN_mod_sqr(t, t, p, ctx)) |
360 | 0 | goto end; |
361 | 0 | } |
362 | 0 | if (BN_is_one(t)) |
363 | 0 | break; |
364 | 0 | } |
365 | 0 | if (i >= e) { |
366 | 0 | BNerror(BN_R_NOT_A_SQUARE); |
367 | 0 | goto end; |
368 | 0 | } |
369 | | |
370 | | /* t := y^2^(e - i - 1) */ |
371 | 0 | if (!BN_copy(t, y)) |
372 | 0 | goto end; |
373 | 0 | for (j = e - i - 1; j > 0; j--) { |
374 | 0 | if (!BN_mod_sqr(t, t, p, ctx)) |
375 | 0 | goto end; |
376 | 0 | } |
377 | 0 | if (!BN_mod_mul(y, t, t, p, ctx)) |
378 | 0 | goto end; |
379 | 0 | if (!BN_mod_mul(x, x, t, p, ctx)) |
380 | 0 | goto end; |
381 | 0 | if (!BN_mod_mul(b, b, y, p, ctx)) |
382 | 0 | goto end; |
383 | 0 | e = i; |
384 | 0 | } |
385 | | |
386 | 1.10k | vrfy: |
387 | 1.10k | if (!err) { |
388 | | /* verify the result -- the input might have been not a square |
389 | | * (test added in 0.9.8) */ |
390 | | |
391 | 1.10k | if (!BN_mod_sqr(x, ret, p, ctx)) |
392 | 0 | err = 1; |
393 | | |
394 | 1.10k | if (!err && 0 != BN_cmp(x, A)) { |
395 | 441 | BNerror(BN_R_NOT_A_SQUARE); |
396 | 441 | err = 1; |
397 | 441 | } |
398 | 1.10k | } |
399 | | |
400 | 1.10k | end: |
401 | 1.10k | if (err) { |
402 | 441 | if (ret != NULL && ret != in) { |
403 | 0 | BN_clear_free(ret); |
404 | 0 | } |
405 | 441 | ret = NULL; |
406 | 441 | } |
407 | 1.10k | BN_CTX_end(ctx); |
408 | 1.10k | bn_check_top(ret); |
409 | 1.10k | return ret; |
410 | 1.10k | } |