/src/libressl/crypto/bn/bn_gcd.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* $OpenBSD: bn_gcd.c,v 1.16 2021/12/26 15:16:50 tb Exp $ */ |
2 | | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
3 | | * All rights reserved. |
4 | | * |
5 | | * This package is an SSL implementation written |
6 | | * by Eric Young (eay@cryptsoft.com). |
7 | | * The implementation was written so as to conform with Netscapes SSL. |
8 | | * |
9 | | * This library is free for commercial and non-commercial use as long as |
10 | | * the following conditions are aheared to. The following conditions |
11 | | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | | * included with this distribution is covered by the same copyright terms |
14 | | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | | * |
16 | | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | | * the code are not to be removed. |
18 | | * If this package is used in a product, Eric Young should be given attribution |
19 | | * as the author of the parts of the library used. |
20 | | * This can be in the form of a textual message at program startup or |
21 | | * in documentation (online or textual) provided with the package. |
22 | | * |
23 | | * Redistribution and use in source and binary forms, with or without |
24 | | * modification, are permitted provided that the following conditions |
25 | | * are met: |
26 | | * 1. Redistributions of source code must retain the copyright |
27 | | * notice, this list of conditions and the following disclaimer. |
28 | | * 2. Redistributions in binary form must reproduce the above copyright |
29 | | * notice, this list of conditions and the following disclaimer in the |
30 | | * documentation and/or other materials provided with the distribution. |
31 | | * 3. All advertising materials mentioning features or use of this software |
32 | | * must display the following acknowledgement: |
33 | | * "This product includes cryptographic software written by |
34 | | * Eric Young (eay@cryptsoft.com)" |
35 | | * The word 'cryptographic' can be left out if the rouines from the library |
36 | | * being used are not cryptographic related :-). |
37 | | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | | * the apps directory (application code) you must include an acknowledgement: |
39 | | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | | * |
41 | | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
44 | | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
45 | | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
46 | | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
47 | | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
49 | | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | | * SUCH DAMAGE. |
52 | | * |
53 | | * The licence and distribution terms for any publically available version or |
54 | | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | | * copied and put under another distribution licence |
56 | | * [including the GNU Public Licence.] |
57 | | */ |
58 | | /* ==================================================================== |
59 | | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. |
60 | | * |
61 | | * Redistribution and use in source and binary forms, with or without |
62 | | * modification, are permitted provided that the following conditions |
63 | | * are met: |
64 | | * |
65 | | * 1. Redistributions of source code must retain the above copyright |
66 | | * notice, this list of conditions and the following disclaimer. |
67 | | * |
68 | | * 2. Redistributions in binary form must reproduce the above copyright |
69 | | * notice, this list of conditions and the following disclaimer in |
70 | | * the documentation and/or other materials provided with the |
71 | | * distribution. |
72 | | * |
73 | | * 3. All advertising materials mentioning features or use of this |
74 | | * software must display the following acknowledgment: |
75 | | * "This product includes software developed by the OpenSSL Project |
76 | | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
77 | | * |
78 | | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
79 | | * endorse or promote products derived from this software without |
80 | | * prior written permission. For written permission, please contact |
81 | | * openssl-core@openssl.org. |
82 | | * |
83 | | * 5. Products derived from this software may not be called "OpenSSL" |
84 | | * nor may "OpenSSL" appear in their names without prior written |
85 | | * permission of the OpenSSL Project. |
86 | | * |
87 | | * 6. Redistributions of any form whatsoever must retain the following |
88 | | * acknowledgment: |
89 | | * "This product includes software developed by the OpenSSL Project |
90 | | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
91 | | * |
92 | | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
93 | | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
94 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
95 | | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
96 | | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
97 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
98 | | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
99 | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
100 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
101 | | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
102 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
103 | | * OF THE POSSIBILITY OF SUCH DAMAGE. |
104 | | * ==================================================================== |
105 | | * |
106 | | * This product includes cryptographic software written by Eric Young |
107 | | * (eay@cryptsoft.com). This product includes software written by Tim |
108 | | * Hudson (tjh@cryptsoft.com). |
109 | | * |
110 | | */ |
111 | | |
112 | | #include <openssl/err.h> |
113 | | |
114 | | #include "bn_lcl.h" |
115 | | |
116 | | static BIGNUM *euclid(BIGNUM *a, BIGNUM *b); |
117 | | static BIGNUM *BN_gcd_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, |
118 | | BN_CTX *ctx); |
119 | | |
120 | | int |
121 | | BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
122 | 0 | { |
123 | 0 | BIGNUM *a, *b, *t; |
124 | 0 | int ret = 0; |
125 | |
|
126 | 0 | bn_check_top(in_a); |
127 | 0 | bn_check_top(in_b); |
128 | |
|
129 | 0 | BN_CTX_start(ctx); |
130 | 0 | if ((a = BN_CTX_get(ctx)) == NULL) |
131 | 0 | goto err; |
132 | 0 | if ((b = BN_CTX_get(ctx)) == NULL) |
133 | 0 | goto err; |
134 | | |
135 | 0 | if (BN_copy(a, in_a) == NULL) |
136 | 0 | goto err; |
137 | 0 | if (BN_copy(b, in_b) == NULL) |
138 | 0 | goto err; |
139 | 0 | a->neg = 0; |
140 | 0 | b->neg = 0; |
141 | |
|
142 | 0 | if (BN_cmp(a, b) < 0) { |
143 | 0 | t = a; |
144 | 0 | a = b; |
145 | 0 | b = t; |
146 | 0 | } |
147 | 0 | t = euclid(a, b); |
148 | 0 | if (t == NULL) |
149 | 0 | goto err; |
150 | | |
151 | 0 | if (BN_copy(r, t) == NULL) |
152 | 0 | goto err; |
153 | 0 | ret = 1; |
154 | |
|
155 | 0 | err: |
156 | 0 | BN_CTX_end(ctx); |
157 | 0 | bn_check_top(r); |
158 | 0 | return (ret); |
159 | 0 | } |
160 | | |
161 | | int |
162 | | BN_gcd_ct(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
163 | 0 | { |
164 | 0 | if (BN_gcd_no_branch(r, in_a, in_b, ctx) == NULL) |
165 | 0 | return 0; |
166 | 0 | return 1; |
167 | 0 | } |
168 | | |
169 | | int |
170 | | BN_gcd_nonct(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
171 | 0 | { |
172 | 0 | return BN_gcd(r, in_a, in_b, ctx); |
173 | 0 | } |
174 | | |
175 | | |
176 | | static BIGNUM * |
177 | | euclid(BIGNUM *a, BIGNUM *b) |
178 | 0 | { |
179 | 0 | BIGNUM *t; |
180 | 0 | int shifts = 0; |
181 | |
|
182 | 0 | bn_check_top(a); |
183 | 0 | bn_check_top(b); |
184 | | |
185 | | /* 0 <= b <= a */ |
186 | 0 | while (!BN_is_zero(b)) { |
187 | | /* 0 < b <= a */ |
188 | |
|
189 | 0 | if (BN_is_odd(a)) { |
190 | 0 | if (BN_is_odd(b)) { |
191 | 0 | if (!BN_sub(a, a, b)) |
192 | 0 | goto err; |
193 | 0 | if (!BN_rshift1(a, a)) |
194 | 0 | goto err; |
195 | 0 | if (BN_cmp(a, b) < 0) { |
196 | 0 | t = a; |
197 | 0 | a = b; |
198 | 0 | b = t; |
199 | 0 | } |
200 | 0 | } |
201 | 0 | else /* a odd - b even */ |
202 | 0 | { |
203 | 0 | if (!BN_rshift1(b, b)) |
204 | 0 | goto err; |
205 | 0 | if (BN_cmp(a, b) < 0) { |
206 | 0 | t = a; |
207 | 0 | a = b; |
208 | 0 | b = t; |
209 | 0 | } |
210 | 0 | } |
211 | 0 | } |
212 | 0 | else /* a is even */ |
213 | 0 | { |
214 | 0 | if (BN_is_odd(b)) { |
215 | 0 | if (!BN_rshift1(a, a)) |
216 | 0 | goto err; |
217 | 0 | if (BN_cmp(a, b) < 0) { |
218 | 0 | t = a; |
219 | 0 | a = b; |
220 | 0 | b = t; |
221 | 0 | } |
222 | 0 | } |
223 | 0 | else /* a even - b even */ |
224 | 0 | { |
225 | 0 | if (!BN_rshift1(a, a)) |
226 | 0 | goto err; |
227 | 0 | if (!BN_rshift1(b, b)) |
228 | 0 | goto err; |
229 | 0 | shifts++; |
230 | 0 | } |
231 | 0 | } |
232 | | /* 0 <= b <= a */ |
233 | 0 | } |
234 | | |
235 | 0 | if (shifts) { |
236 | 0 | if (!BN_lshift(a, a, shifts)) |
237 | 0 | goto err; |
238 | 0 | } |
239 | 0 | bn_check_top(a); |
240 | 0 | return (a); |
241 | | |
242 | 0 | err: |
243 | 0 | return (NULL); |
244 | 0 | } |
245 | | |
246 | | |
247 | | /* solves ax == 1 (mod n) */ |
248 | | static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, |
249 | | const BIGNUM *n, BN_CTX *ctx); |
250 | | |
251 | | static BIGNUM * |
252 | | BN_mod_inverse_internal(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, |
253 | | int ct) |
254 | 0 | { |
255 | 0 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
256 | 0 | BIGNUM *ret = NULL; |
257 | 0 | int sign; |
258 | |
|
259 | 0 | if (ct) |
260 | 0 | return BN_mod_inverse_no_branch(in, a, n, ctx); |
261 | | |
262 | 0 | bn_check_top(a); |
263 | 0 | bn_check_top(n); |
264 | |
|
265 | 0 | BN_CTX_start(ctx); |
266 | 0 | if ((A = BN_CTX_get(ctx)) == NULL) |
267 | 0 | goto err; |
268 | 0 | if ((B = BN_CTX_get(ctx)) == NULL) |
269 | 0 | goto err; |
270 | 0 | if ((X = BN_CTX_get(ctx)) == NULL) |
271 | 0 | goto err; |
272 | 0 | if ((D = BN_CTX_get(ctx)) == NULL) |
273 | 0 | goto err; |
274 | 0 | if ((M = BN_CTX_get(ctx)) == NULL) |
275 | 0 | goto err; |
276 | 0 | if ((Y = BN_CTX_get(ctx)) == NULL) |
277 | 0 | goto err; |
278 | 0 | if ((T = BN_CTX_get(ctx)) == NULL) |
279 | 0 | goto err; |
280 | | |
281 | 0 | if (in == NULL) |
282 | 0 | R = BN_new(); |
283 | 0 | else |
284 | 0 | R = in; |
285 | 0 | if (R == NULL) |
286 | 0 | goto err; |
287 | | |
288 | 0 | BN_one(X); |
289 | 0 | BN_zero(Y); |
290 | 0 | if (BN_copy(B, a) == NULL) |
291 | 0 | goto err; |
292 | 0 | if (BN_copy(A, n) == NULL) |
293 | 0 | goto err; |
294 | 0 | A->neg = 0; |
295 | 0 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
296 | 0 | if (!BN_nnmod(B, B, A, ctx)) |
297 | 0 | goto err; |
298 | 0 | } |
299 | 0 | sign = -1; |
300 | | /* From B = a mod |n|, A = |n| it follows that |
301 | | * |
302 | | * 0 <= B < A, |
303 | | * -sign*X*a == B (mod |n|), |
304 | | * sign*Y*a == A (mod |n|). |
305 | | */ |
306 | |
|
307 | 0 | if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) { |
308 | | /* Binary inversion algorithm; requires odd modulus. |
309 | | * This is faster than the general algorithm if the modulus |
310 | | * is sufficiently small (about 400 .. 500 bits on 32-bit |
311 | | * sytems, but much more on 64-bit systems) */ |
312 | 0 | int shift; |
313 | |
|
314 | 0 | while (!BN_is_zero(B)) { |
315 | | /* |
316 | | * 0 < B < |n|, |
317 | | * 0 < A <= |n|, |
318 | | * (1) -sign*X*a == B (mod |n|), |
319 | | * (2) sign*Y*a == A (mod |n|) |
320 | | */ |
321 | | |
322 | | /* Now divide B by the maximum possible power of two in the integers, |
323 | | * and divide X by the same value mod |n|. |
324 | | * When we're done, (1) still holds. */ |
325 | 0 | shift = 0; |
326 | 0 | while (!BN_is_bit_set(B, shift)) /* note that 0 < B */ |
327 | 0 | { |
328 | 0 | shift++; |
329 | |
|
330 | 0 | if (BN_is_odd(X)) { |
331 | 0 | if (!BN_uadd(X, X, n)) |
332 | 0 | goto err; |
333 | 0 | } |
334 | | /* now X is even, so we can easily divide it by two */ |
335 | 0 | if (!BN_rshift1(X, X)) |
336 | 0 | goto err; |
337 | 0 | } |
338 | 0 | if (shift > 0) { |
339 | 0 | if (!BN_rshift(B, B, shift)) |
340 | 0 | goto err; |
341 | 0 | } |
342 | | |
343 | | |
344 | | /* Same for A and Y. Afterwards, (2) still holds. */ |
345 | 0 | shift = 0; |
346 | 0 | while (!BN_is_bit_set(A, shift)) /* note that 0 < A */ |
347 | 0 | { |
348 | 0 | shift++; |
349 | |
|
350 | 0 | if (BN_is_odd(Y)) { |
351 | 0 | if (!BN_uadd(Y, Y, n)) |
352 | 0 | goto err; |
353 | 0 | } |
354 | | /* now Y is even */ |
355 | 0 | if (!BN_rshift1(Y, Y)) |
356 | 0 | goto err; |
357 | 0 | } |
358 | 0 | if (shift > 0) { |
359 | 0 | if (!BN_rshift(A, A, shift)) |
360 | 0 | goto err; |
361 | 0 | } |
362 | | |
363 | | |
364 | | /* We still have (1) and (2). |
365 | | * Both A and B are odd. |
366 | | * The following computations ensure that |
367 | | * |
368 | | * 0 <= B < |n|, |
369 | | * 0 < A < |n|, |
370 | | * (1) -sign*X*a == B (mod |n|), |
371 | | * (2) sign*Y*a == A (mod |n|), |
372 | | * |
373 | | * and that either A or B is even in the next iteration. |
374 | | */ |
375 | 0 | if (BN_ucmp(B, A) >= 0) { |
376 | | /* -sign*(X + Y)*a == B - A (mod |n|) */ |
377 | 0 | if (!BN_uadd(X, X, Y)) |
378 | 0 | goto err; |
379 | | /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that |
380 | | * actually makes the algorithm slower */ |
381 | 0 | if (!BN_usub(B, B, A)) |
382 | 0 | goto err; |
383 | 0 | } else { |
384 | | /* sign*(X + Y)*a == A - B (mod |n|) */ |
385 | 0 | if (!BN_uadd(Y, Y, X)) |
386 | 0 | goto err; |
387 | | /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */ |
388 | 0 | if (!BN_usub(A, A, B)) |
389 | 0 | goto err; |
390 | 0 | } |
391 | 0 | } |
392 | 0 | } else { |
393 | | /* general inversion algorithm */ |
394 | |
|
395 | 0 | while (!BN_is_zero(B)) { |
396 | 0 | BIGNUM *tmp; |
397 | | |
398 | | /* |
399 | | * 0 < B < A, |
400 | | * (*) -sign*X*a == B (mod |n|), |
401 | | * sign*Y*a == A (mod |n|) |
402 | | */ |
403 | | |
404 | | /* (D, M) := (A/B, A%B) ... */ |
405 | 0 | if (BN_num_bits(A) == BN_num_bits(B)) { |
406 | 0 | if (!BN_one(D)) |
407 | 0 | goto err; |
408 | 0 | if (!BN_sub(M, A, B)) |
409 | 0 | goto err; |
410 | 0 | } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { |
411 | | /* A/B is 1, 2, or 3 */ |
412 | 0 | if (!BN_lshift1(T, B)) |
413 | 0 | goto err; |
414 | 0 | if (BN_ucmp(A, T) < 0) { |
415 | | /* A < 2*B, so D=1 */ |
416 | 0 | if (!BN_one(D)) |
417 | 0 | goto err; |
418 | 0 | if (!BN_sub(M, A, B)) |
419 | 0 | goto err; |
420 | 0 | } else { |
421 | | /* A >= 2*B, so D=2 or D=3 */ |
422 | 0 | if (!BN_sub(M, A, T)) |
423 | 0 | goto err; |
424 | 0 | if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */ |
425 | 0 | if (BN_ucmp(A, D) < 0) { |
426 | | /* A < 3*B, so D=2 */ |
427 | 0 | if (!BN_set_word(D, 2)) |
428 | 0 | goto err; |
429 | | /* M (= A - 2*B) already has the correct value */ |
430 | 0 | } else { |
431 | | /* only D=3 remains */ |
432 | 0 | if (!BN_set_word(D, 3)) |
433 | 0 | goto err; |
434 | | /* currently M = A - 2*B, but we need M = A - 3*B */ |
435 | 0 | if (!BN_sub(M, M, B)) |
436 | 0 | goto err; |
437 | 0 | } |
438 | 0 | } |
439 | 0 | } else { |
440 | 0 | if (!BN_div_nonct(D, M, A, B, ctx)) |
441 | 0 | goto err; |
442 | 0 | } |
443 | | |
444 | | /* Now |
445 | | * A = D*B + M; |
446 | | * thus we have |
447 | | * (**) sign*Y*a == D*B + M (mod |n|). |
448 | | */ |
449 | 0 | tmp = A; /* keep the BIGNUM object, the value does not matter */ |
450 | | |
451 | | /* (A, B) := (B, A mod B) ... */ |
452 | 0 | A = B; |
453 | 0 | B = M; |
454 | | /* ... so we have 0 <= B < A again */ |
455 | | |
456 | | /* Since the former M is now B and the former B is now A, |
457 | | * (**) translates into |
458 | | * sign*Y*a == D*A + B (mod |n|), |
459 | | * i.e. |
460 | | * sign*Y*a - D*A == B (mod |n|). |
461 | | * Similarly, (*) translates into |
462 | | * -sign*X*a == A (mod |n|). |
463 | | * |
464 | | * Thus, |
465 | | * sign*Y*a + D*sign*X*a == B (mod |n|), |
466 | | * i.e. |
467 | | * sign*(Y + D*X)*a == B (mod |n|). |
468 | | * |
469 | | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
470 | | * -sign*X*a == B (mod |n|), |
471 | | * sign*Y*a == A (mod |n|). |
472 | | * Note that X and Y stay non-negative all the time. |
473 | | */ |
474 | | |
475 | | /* most of the time D is very small, so we can optimize tmp := D*X+Y */ |
476 | 0 | if (BN_is_one(D)) { |
477 | 0 | if (!BN_add(tmp, X, Y)) |
478 | 0 | goto err; |
479 | 0 | } else { |
480 | 0 | if (BN_is_word(D, 2)) { |
481 | 0 | if (!BN_lshift1(tmp, X)) |
482 | 0 | goto err; |
483 | 0 | } else if (BN_is_word(D, 4)) { |
484 | 0 | if (!BN_lshift(tmp, X, 2)) |
485 | 0 | goto err; |
486 | 0 | } else if (D->top == 1) { |
487 | 0 | if (!BN_copy(tmp, X)) |
488 | 0 | goto err; |
489 | 0 | if (!BN_mul_word(tmp, D->d[0])) |
490 | 0 | goto err; |
491 | 0 | } else { |
492 | 0 | if (!BN_mul(tmp, D,X, ctx)) |
493 | 0 | goto err; |
494 | 0 | } |
495 | 0 | if (!BN_add(tmp, tmp, Y)) |
496 | 0 | goto err; |
497 | 0 | } |
498 | | |
499 | 0 | M = Y; /* keep the BIGNUM object, the value does not matter */ |
500 | 0 | Y = X; |
501 | 0 | X = tmp; |
502 | 0 | sign = -sign; |
503 | 0 | } |
504 | 0 | } |
505 | | |
506 | | /* |
507 | | * The while loop (Euclid's algorithm) ends when |
508 | | * A == gcd(a,n); |
509 | | * we have |
510 | | * sign*Y*a == A (mod |n|), |
511 | | * where Y is non-negative. |
512 | | */ |
513 | | |
514 | 0 | if (sign < 0) { |
515 | 0 | if (!BN_sub(Y, n, Y)) |
516 | 0 | goto err; |
517 | 0 | } |
518 | | /* Now Y*a == A (mod |n|). */ |
519 | | |
520 | 0 | if (BN_is_one(A)) { |
521 | | /* Y*a == 1 (mod |n|) */ |
522 | 0 | if (!Y->neg && BN_ucmp(Y, n) < 0) { |
523 | 0 | if (!BN_copy(R, Y)) |
524 | 0 | goto err; |
525 | 0 | } else { |
526 | 0 | if (!BN_nnmod(R, Y,n, ctx)) |
527 | 0 | goto err; |
528 | 0 | } |
529 | 0 | } else { |
530 | 0 | BNerror(BN_R_NO_INVERSE); |
531 | 0 | goto err; |
532 | 0 | } |
533 | 0 | ret = R; |
534 | |
|
535 | 0 | err: |
536 | 0 | if ((ret == NULL) && (in == NULL)) |
537 | 0 | BN_free(R); |
538 | 0 | BN_CTX_end(ctx); |
539 | 0 | bn_check_top(ret); |
540 | 0 | return (ret); |
541 | 0 | } |
542 | | |
543 | | BIGNUM * |
544 | | BN_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
545 | 0 | { |
546 | 0 | int ct = ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || |
547 | 0 | (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)); |
548 | 0 | return BN_mod_inverse_internal(in, a, n, ctx, ct); |
549 | 0 | } |
550 | | |
551 | | BIGNUM * |
552 | | BN_mod_inverse_nonct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
553 | 0 | { |
554 | 0 | return BN_mod_inverse_internal(in, a, n, ctx, 0); |
555 | 0 | } |
556 | | |
557 | | BIGNUM * |
558 | | BN_mod_inverse_ct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
559 | 0 | { |
560 | 0 | return BN_mod_inverse_internal(in, a, n, ctx, 1); |
561 | 0 | } |
562 | | |
563 | | /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. |
564 | | * It does not contain branches that may leak sensitive information. |
565 | | */ |
566 | | static BIGNUM * |
567 | | BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, |
568 | | BN_CTX *ctx) |
569 | 0 | { |
570 | 0 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
571 | 0 | BIGNUM local_A, local_B; |
572 | 0 | BIGNUM *pA, *pB; |
573 | 0 | BIGNUM *ret = NULL; |
574 | 0 | int sign; |
575 | |
|
576 | 0 | bn_check_top(a); |
577 | 0 | bn_check_top(n); |
578 | |
|
579 | 0 | BN_init(&local_A); |
580 | 0 | BN_init(&local_B); |
581 | |
|
582 | 0 | BN_CTX_start(ctx); |
583 | 0 | if ((A = BN_CTX_get(ctx)) == NULL) |
584 | 0 | goto err; |
585 | 0 | if ((B = BN_CTX_get(ctx)) == NULL) |
586 | 0 | goto err; |
587 | 0 | if ((X = BN_CTX_get(ctx)) == NULL) |
588 | 0 | goto err; |
589 | 0 | if ((D = BN_CTX_get(ctx)) == NULL) |
590 | 0 | goto err; |
591 | 0 | if ((M = BN_CTX_get(ctx)) == NULL) |
592 | 0 | goto err; |
593 | 0 | if ((Y = BN_CTX_get(ctx)) == NULL) |
594 | 0 | goto err; |
595 | 0 | if ((T = BN_CTX_get(ctx)) == NULL) |
596 | 0 | goto err; |
597 | | |
598 | 0 | if (in == NULL) |
599 | 0 | R = BN_new(); |
600 | 0 | else |
601 | 0 | R = in; |
602 | 0 | if (R == NULL) |
603 | 0 | goto err; |
604 | | |
605 | 0 | BN_one(X); |
606 | 0 | BN_zero(Y); |
607 | 0 | if (BN_copy(B, a) == NULL) |
608 | 0 | goto err; |
609 | 0 | if (BN_copy(A, n) == NULL) |
610 | 0 | goto err; |
611 | 0 | A->neg = 0; |
612 | |
|
613 | 0 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
614 | | /* |
615 | | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
616 | | * BN_div_no_branch will be called eventually. |
617 | | */ |
618 | 0 | pB = &local_B; |
619 | | /* BN_init() done at the top of the function. */ |
620 | 0 | BN_with_flags(pB, B, BN_FLG_CONSTTIME); |
621 | 0 | if (!BN_nnmod(B, pB, A, ctx)) |
622 | 0 | goto err; |
623 | 0 | } |
624 | 0 | sign = -1; |
625 | | /* From B = a mod |n|, A = |n| it follows that |
626 | | * |
627 | | * 0 <= B < A, |
628 | | * -sign*X*a == B (mod |n|), |
629 | | * sign*Y*a == A (mod |n|). |
630 | | */ |
631 | |
|
632 | 0 | while (!BN_is_zero(B)) { |
633 | 0 | BIGNUM *tmp; |
634 | | |
635 | | /* |
636 | | * 0 < B < A, |
637 | | * (*) -sign*X*a == B (mod |n|), |
638 | | * sign*Y*a == A (mod |n|) |
639 | | */ |
640 | | |
641 | | /* |
642 | | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
643 | | * BN_div_no_branch will be called eventually. |
644 | | */ |
645 | 0 | pA = &local_A; |
646 | | /* BN_init() done at the top of the function. */ |
647 | 0 | BN_with_flags(pA, A, BN_FLG_CONSTTIME); |
648 | | |
649 | | /* (D, M) := (A/B, A%B) ... */ |
650 | 0 | if (!BN_div_ct(D, M, pA, B, ctx)) |
651 | 0 | goto err; |
652 | | |
653 | | /* Now |
654 | | * A = D*B + M; |
655 | | * thus we have |
656 | | * (**) sign*Y*a == D*B + M (mod |n|). |
657 | | */ |
658 | 0 | tmp = A; /* keep the BIGNUM object, the value does not matter */ |
659 | | |
660 | | /* (A, B) := (B, A mod B) ... */ |
661 | 0 | A = B; |
662 | 0 | B = M; |
663 | | /* ... so we have 0 <= B < A again */ |
664 | | |
665 | | /* Since the former M is now B and the former B is now A, |
666 | | * (**) translates into |
667 | | * sign*Y*a == D*A + B (mod |n|), |
668 | | * i.e. |
669 | | * sign*Y*a - D*A == B (mod |n|). |
670 | | * Similarly, (*) translates into |
671 | | * -sign*X*a == A (mod |n|). |
672 | | * |
673 | | * Thus, |
674 | | * sign*Y*a + D*sign*X*a == B (mod |n|), |
675 | | * i.e. |
676 | | * sign*(Y + D*X)*a == B (mod |n|). |
677 | | * |
678 | | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
679 | | * -sign*X*a == B (mod |n|), |
680 | | * sign*Y*a == A (mod |n|). |
681 | | * Note that X and Y stay non-negative all the time. |
682 | | */ |
683 | |
|
684 | 0 | if (!BN_mul(tmp, D, X, ctx)) |
685 | 0 | goto err; |
686 | 0 | if (!BN_add(tmp, tmp, Y)) |
687 | 0 | goto err; |
688 | | |
689 | 0 | M = Y; /* keep the BIGNUM object, the value does not matter */ |
690 | 0 | Y = X; |
691 | 0 | X = tmp; |
692 | 0 | sign = -sign; |
693 | 0 | } |
694 | | |
695 | | /* |
696 | | * The while loop (Euclid's algorithm) ends when |
697 | | * A == gcd(a,n); |
698 | | * we have |
699 | | * sign*Y*a == A (mod |n|), |
700 | | * where Y is non-negative. |
701 | | */ |
702 | | |
703 | 0 | if (sign < 0) { |
704 | 0 | if (!BN_sub(Y, n, Y)) |
705 | 0 | goto err; |
706 | 0 | } |
707 | | /* Now Y*a == A (mod |n|). */ |
708 | | |
709 | 0 | if (BN_is_one(A)) { |
710 | | /* Y*a == 1 (mod |n|) */ |
711 | 0 | if (!Y->neg && BN_ucmp(Y, n) < 0) { |
712 | 0 | if (!BN_copy(R, Y)) |
713 | 0 | goto err; |
714 | 0 | } else { |
715 | 0 | if (!BN_nnmod(R, Y, n, ctx)) |
716 | 0 | goto err; |
717 | 0 | } |
718 | 0 | } else { |
719 | 0 | BNerror(BN_R_NO_INVERSE); |
720 | 0 | goto err; |
721 | 0 | } |
722 | 0 | ret = R; |
723 | |
|
724 | 0 | err: |
725 | 0 | if ((ret == NULL) && (in == NULL)) |
726 | 0 | BN_free(R); |
727 | 0 | BN_CTX_end(ctx); |
728 | 0 | bn_check_top(ret); |
729 | 0 | return (ret); |
730 | 0 | } |
731 | | |
732 | | /* |
733 | | * BN_gcd_no_branch is a special version of BN_mod_inverse_no_branch. |
734 | | * that returns the GCD. |
735 | | */ |
736 | | static BIGNUM * |
737 | | BN_gcd_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, |
738 | | BN_CTX *ctx) |
739 | 0 | { |
740 | 0 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
741 | 0 | BIGNUM local_A, local_B; |
742 | 0 | BIGNUM *pA, *pB; |
743 | 0 | BIGNUM *ret = NULL; |
744 | 0 | int sign; |
745 | |
|
746 | 0 | if (in == NULL) |
747 | 0 | goto err; |
748 | 0 | R = in; |
749 | |
|
750 | 0 | BN_init(&local_A); |
751 | 0 | BN_init(&local_B); |
752 | |
|
753 | 0 | bn_check_top(a); |
754 | 0 | bn_check_top(n); |
755 | |
|
756 | 0 | BN_CTX_start(ctx); |
757 | 0 | if ((A = BN_CTX_get(ctx)) == NULL) |
758 | 0 | goto err; |
759 | 0 | if ((B = BN_CTX_get(ctx)) == NULL) |
760 | 0 | goto err; |
761 | 0 | if ((X = BN_CTX_get(ctx)) == NULL) |
762 | 0 | goto err; |
763 | 0 | if ((D = BN_CTX_get(ctx)) == NULL) |
764 | 0 | goto err; |
765 | 0 | if ((M = BN_CTX_get(ctx)) == NULL) |
766 | 0 | goto err; |
767 | 0 | if ((Y = BN_CTX_get(ctx)) == NULL) |
768 | 0 | goto err; |
769 | 0 | if ((T = BN_CTX_get(ctx)) == NULL) |
770 | 0 | goto err; |
771 | | |
772 | 0 | BN_one(X); |
773 | 0 | BN_zero(Y); |
774 | 0 | if (BN_copy(B, a) == NULL) |
775 | 0 | goto err; |
776 | 0 | if (BN_copy(A, n) == NULL) |
777 | 0 | goto err; |
778 | 0 | A->neg = 0; |
779 | |
|
780 | 0 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
781 | | /* |
782 | | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
783 | | * BN_div_no_branch will be called eventually. |
784 | | */ |
785 | 0 | pB = &local_B; |
786 | | /* BN_init() done at the top of the function. */ |
787 | 0 | BN_with_flags(pB, B, BN_FLG_CONSTTIME); |
788 | 0 | if (!BN_nnmod(B, pB, A, ctx)) |
789 | 0 | goto err; |
790 | 0 | } |
791 | 0 | sign = -1; |
792 | | /* From B = a mod |n|, A = |n| it follows that |
793 | | * |
794 | | * 0 <= B < A, |
795 | | * -sign*X*a == B (mod |n|), |
796 | | * sign*Y*a == A (mod |n|). |
797 | | */ |
798 | |
|
799 | 0 | while (!BN_is_zero(B)) { |
800 | 0 | BIGNUM *tmp; |
801 | | |
802 | | /* |
803 | | * 0 < B < A, |
804 | | * (*) -sign*X*a == B (mod |n|), |
805 | | * sign*Y*a == A (mod |n|) |
806 | | */ |
807 | | |
808 | | /* |
809 | | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
810 | | * BN_div_no_branch will be called eventually. |
811 | | */ |
812 | 0 | pA = &local_A; |
813 | | /* BN_init() done at the top of the function. */ |
814 | 0 | BN_with_flags(pA, A, BN_FLG_CONSTTIME); |
815 | | |
816 | | /* (D, M) := (A/B, A%B) ... */ |
817 | 0 | if (!BN_div_ct(D, M, pA, B, ctx)) |
818 | 0 | goto err; |
819 | | |
820 | | /* Now |
821 | | * A = D*B + M; |
822 | | * thus we have |
823 | | * (**) sign*Y*a == D*B + M (mod |n|). |
824 | | */ |
825 | 0 | tmp = A; /* keep the BIGNUM object, the value does not matter */ |
826 | | |
827 | | /* (A, B) := (B, A mod B) ... */ |
828 | 0 | A = B; |
829 | 0 | B = M; |
830 | | /* ... so we have 0 <= B < A again */ |
831 | | |
832 | | /* Since the former M is now B and the former B is now A, |
833 | | * (**) translates into |
834 | | * sign*Y*a == D*A + B (mod |n|), |
835 | | * i.e. |
836 | | * sign*Y*a - D*A == B (mod |n|). |
837 | | * Similarly, (*) translates into |
838 | | * -sign*X*a == A (mod |n|). |
839 | | * |
840 | | * Thus, |
841 | | * sign*Y*a + D*sign*X*a == B (mod |n|), |
842 | | * i.e. |
843 | | * sign*(Y + D*X)*a == B (mod |n|). |
844 | | * |
845 | | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
846 | | * -sign*X*a == B (mod |n|), |
847 | | * sign*Y*a == A (mod |n|). |
848 | | * Note that X and Y stay non-negative all the time. |
849 | | */ |
850 | |
|
851 | 0 | if (!BN_mul(tmp, D, X, ctx)) |
852 | 0 | goto err; |
853 | 0 | if (!BN_add(tmp, tmp, Y)) |
854 | 0 | goto err; |
855 | | |
856 | 0 | M = Y; /* keep the BIGNUM object, the value does not matter */ |
857 | 0 | Y = X; |
858 | 0 | X = tmp; |
859 | 0 | sign = -sign; |
860 | 0 | } |
861 | | |
862 | | /* |
863 | | * The while loop (Euclid's algorithm) ends when |
864 | | * A == gcd(a,n); |
865 | | */ |
866 | | |
867 | 0 | if (!BN_copy(R, A)) |
868 | 0 | goto err; |
869 | 0 | ret = R; |
870 | 0 | err: |
871 | 0 | if ((ret == NULL) && (in == NULL)) |
872 | 0 | BN_free(R); |
873 | 0 | BN_CTX_end(ctx); |
874 | 0 | bn_check_top(ret); |
875 | 0 | return (ret); |
876 | 0 | } |