Coverage Report

Created: 2022-08-24 06:30

/src/libressl/crypto/bn/bn_sqrt.c
Line
Count
Source (jump to first uncovered line)
1
/* $OpenBSD: bn_sqrt.c,v 1.11 2022/06/20 15:02:21 tb Exp $ */
2
/* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3
 * and Bodo Moeller for the OpenSSL project. */
4
/* ====================================================================
5
 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
6
 *
7
 * Redistribution and use in source and binary forms, with or without
8
 * modification, are permitted provided that the following conditions
9
 * are met:
10
 *
11
 * 1. Redistributions of source code must retain the above copyright
12
 *    notice, this list of conditions and the following disclaimer.
13
 *
14
 * 2. Redistributions in binary form must reproduce the above copyright
15
 *    notice, this list of conditions and the following disclaimer in
16
 *    the documentation and/or other materials provided with the
17
 *    distribution.
18
 *
19
 * 3. All advertising materials mentioning features or use of this
20
 *    software must display the following acknowledgment:
21
 *    "This product includes software developed by the OpenSSL Project
22
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
23
 *
24
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25
 *    endorse or promote products derived from this software without
26
 *    prior written permission. For written permission, please contact
27
 *    openssl-core@openssl.org.
28
 *
29
 * 5. Products derived from this software may not be called "OpenSSL"
30
 *    nor may "OpenSSL" appear in their names without prior written
31
 *    permission of the OpenSSL Project.
32
 *
33
 * 6. Redistributions of any form whatsoever must retain the following
34
 *    acknowledgment:
35
 *    "This product includes software developed by the OpenSSL Project
36
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
37
 *
38
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49
 * OF THE POSSIBILITY OF SUCH DAMAGE.
50
 * ====================================================================
51
 *
52
 * This product includes cryptographic software written by Eric Young
53
 * (eay@cryptsoft.com).  This product includes software written by Tim
54
 * Hudson (tjh@cryptsoft.com).
55
 *
56
 */
57
58
#include <openssl/err.h>
59
60
#include "bn_lcl.h"
61
62
BIGNUM *
63
BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
64
/* Returns 'ret' such that
65
 *      ret^2 == a (mod p),
66
 * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
67
 * in Algebraic Computational Number Theory", algorithm 1.5.1).
68
 * 'p' must be prime!
69
 */
70
0
{
71
0
  BIGNUM *ret = in;
72
0
  int err = 1;
73
0
  int r;
74
0
  BIGNUM *A, *b, *q, *t, *x, *y;
75
0
  int e, i, j;
76
77
0
  if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
78
0
    if (BN_abs_is_word(p, 2)) {
79
0
      if (ret == NULL)
80
0
        ret = BN_new();
81
0
      if (ret == NULL)
82
0
        goto end;
83
0
      if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
84
0
        if (ret != in)
85
0
          BN_free(ret);
86
0
        return NULL;
87
0
      }
88
0
      bn_check_top(ret);
89
0
      return ret;
90
0
    }
91
92
0
    BNerror(BN_R_P_IS_NOT_PRIME);
93
0
    return (NULL);
94
0
  }
95
96
0
  if (BN_is_zero(a) || BN_is_one(a)) {
97
0
    if (ret == NULL)
98
0
      ret = BN_new();
99
0
    if (ret == NULL)
100
0
      goto end;
101
0
    if (!BN_set_word(ret, BN_is_one(a))) {
102
0
      if (ret != in)
103
0
        BN_free(ret);
104
0
      return NULL;
105
0
    }
106
0
    bn_check_top(ret);
107
0
    return ret;
108
0
  }
109
110
0
  BN_CTX_start(ctx);
111
0
  if ((A = BN_CTX_get(ctx)) == NULL)
112
0
    goto end;
113
0
  if ((b = BN_CTX_get(ctx)) == NULL)
114
0
    goto end;
115
0
  if ((q = BN_CTX_get(ctx)) == NULL)
116
0
    goto end;
117
0
  if ((t = BN_CTX_get(ctx)) == NULL)
118
0
    goto end;
119
0
  if ((x = BN_CTX_get(ctx)) == NULL)
120
0
    goto end;
121
0
  if ((y = BN_CTX_get(ctx)) == NULL)
122
0
    goto end;
123
124
0
  if (ret == NULL)
125
0
    ret = BN_new();
126
0
  if (ret == NULL)
127
0
    goto end;
128
129
  /* A = a mod p */
130
0
  if (!BN_nnmod(A, a, p, ctx))
131
0
    goto end;
132
133
  /* now write  |p| - 1  as  2^e*q  where  q  is odd */
134
0
  e = 1;
135
0
  while (!BN_is_bit_set(p, e))
136
0
    e++;
137
  /* we'll set  q  later (if needed) */
138
139
0
  if (e == 1) {
140
    /* The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
141
     * modulo  (|p|-1)/2,  and square roots can be computed
142
     * directly by modular exponentiation.
143
     * We have
144
     *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
145
     * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
146
     */
147
0
    if (!BN_rshift(q, p, 2))
148
0
      goto end;
149
0
    q->neg = 0;
150
0
    if (!BN_add_word(q, 1))
151
0
      goto end;
152
0
    if (!BN_mod_exp_ct(ret, A, q, p, ctx))
153
0
      goto end;
154
0
    err = 0;
155
0
    goto vrfy;
156
0
  }
157
158
0
  if (e == 2) {
159
    /* |p| == 5  (mod 8)
160
     *
161
     * In this case  2  is always a non-square since
162
     * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
163
     * So if  a  really is a square, then  2*a  is a non-square.
164
     * Thus for
165
     *      b := (2*a)^((|p|-5)/8),
166
     *      i := (2*a)*b^2
167
     * we have
168
     *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
169
     *         = (2*a)^((p-1)/2)
170
     *         = -1;
171
     * so if we set
172
     *      x := a*b*(i-1),
173
     * then
174
     *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
175
     *         = a^2 * b^2 * (-2*i)
176
     *         = a*(-i)*(2*a*b^2)
177
     *         = a*(-i)*i
178
     *         = a.
179
     *
180
     * (This is due to A.O.L. Atkin,
181
     * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
182
     * November 1992.)
183
     */
184
185
    /* t := 2*a */
186
0
    if (!BN_mod_lshift1_quick(t, A, p))
187
0
      goto end;
188
189
    /* b := (2*a)^((|p|-5)/8) */
190
0
    if (!BN_rshift(q, p, 3))
191
0
      goto end;
192
0
    q->neg = 0;
193
0
    if (!BN_mod_exp_ct(b, t, q, p, ctx))
194
0
      goto end;
195
196
    /* y := b^2 */
197
0
    if (!BN_mod_sqr(y, b, p, ctx))
198
0
      goto end;
199
200
    /* t := (2*a)*b^2 - 1*/
201
0
    if (!BN_mod_mul(t, t, y, p, ctx))
202
0
      goto end;
203
0
    if (!BN_sub_word(t, 1))
204
0
      goto end;
205
206
    /* x = a*b*t */
207
0
    if (!BN_mod_mul(x, A, b, p, ctx))
208
0
      goto end;
209
0
    if (!BN_mod_mul(x, x, t, p, ctx))
210
0
      goto end;
211
212
0
    if (!BN_copy(ret, x))
213
0
      goto end;
214
0
    err = 0;
215
0
    goto vrfy;
216
0
  }
217
218
  /* e > 2, so we really have to use the Tonelli/Shanks algorithm.
219
   * First, find some  y  that is not a square. */
220
0
  if (!BN_copy(q, p)) /* use 'q' as temp */
221
0
    goto end;
222
0
  q->neg = 0;
223
0
  i = 2;
224
0
  do {
225
    /* For efficiency, try small numbers first;
226
     * if this fails, try random numbers.
227
     */
228
0
    if (i < 22) {
229
0
      if (!BN_set_word(y, i))
230
0
        goto end;
231
0
    } else {
232
0
      if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0))
233
0
        goto end;
234
0
      if (BN_ucmp(y, p) >= 0) {
235
0
        if (p->neg) {
236
0
          if (!BN_add(y, y, p))
237
0
            goto end;
238
0
        } else {
239
0
          if (!BN_sub(y, y, p))
240
0
            goto end;
241
0
        }
242
0
      }
243
      /* now 0 <= y < |p| */
244
0
      if (BN_is_zero(y))
245
0
        if (!BN_set_word(y, i))
246
0
          goto end;
247
0
    }
248
249
0
    r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
250
0
    if (r < -1)
251
0
      goto end;
252
0
    if (r == 0) {
253
      /* m divides p */
254
0
      BNerror(BN_R_P_IS_NOT_PRIME);
255
0
      goto end;
256
0
    }
257
0
  } while (r == 1 && ++i < 82);
258
259
0
  if (r != -1) {
260
    /* Many rounds and still no non-square -- this is more likely
261
     * a bug than just bad luck.
262
     * Even if  p  is not prime, we should have found some  y
263
     * such that r == -1.
264
     */
265
0
    BNerror(BN_R_TOO_MANY_ITERATIONS);
266
0
    goto end;
267
0
  }
268
269
  /* Here's our actual 'q': */
270
0
  if (!BN_rshift(q, q, e))
271
0
    goto end;
272
273
  /* Now that we have some non-square, we can find an element
274
   * of order  2^e  by computing its q'th power. */
275
0
  if (!BN_mod_exp_ct(y, y, q, p, ctx))
276
0
    goto end;
277
0
  if (BN_is_one(y)) {
278
0
    BNerror(BN_R_P_IS_NOT_PRIME);
279
0
    goto end;
280
0
  }
281
282
  /* Now we know that (if  p  is indeed prime) there is an integer
283
   * k,  0 <= k < 2^e,  such that
284
   *
285
   *      a^q * y^k == 1   (mod p).
286
   *
287
   * As  a^q  is a square and  y  is not,  k  must be even.
288
   * q+1  is even, too, so there is an element
289
   *
290
   *     X := a^((q+1)/2) * y^(k/2),
291
   *
292
   * and it satisfies
293
   *
294
   *     X^2 = a^q * a     * y^k
295
   *         = a,
296
   *
297
   * so it is the square root that we are looking for.
298
   */
299
300
  /* t := (q-1)/2  (note that  q  is odd) */
301
0
  if (!BN_rshift1(t, q))
302
0
    goto end;
303
304
  /* x := a^((q-1)/2) */
305
0
  if (BN_is_zero(t)) { /* special case: p = 2^e + 1 */
306
0
    if (!BN_nnmod(t, A, p, ctx))
307
0
      goto end;
308
0
    if (BN_is_zero(t)) {
309
      /* special case: a == 0  (mod p) */
310
0
      BN_zero(ret);
311
0
      err = 0;
312
0
      goto end;
313
0
    } else if (!BN_one(x))
314
0
      goto end;
315
0
  } else {
316
0
    if (!BN_mod_exp_ct(x, A, t, p, ctx))
317
0
      goto end;
318
0
    if (BN_is_zero(x)) {
319
      /* special case: a == 0  (mod p) */
320
0
      BN_zero(ret);
321
0
      err = 0;
322
0
      goto end;
323
0
    }
324
0
  }
325
326
  /* b := a*x^2  (= a^q) */
327
0
  if (!BN_mod_sqr(b, x, p, ctx))
328
0
    goto end;
329
0
  if (!BN_mod_mul(b, b, A, p, ctx))
330
0
    goto end;
331
332
  /* x := a*x    (= a^((q+1)/2)) */
333
0
  if (!BN_mod_mul(x, x, A, p, ctx))
334
0
    goto end;
335
336
0
  while (1) {
337
    /* Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
338
     * where  E  refers to the original value of  e,  which we
339
     * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
340
     *
341
     * We have  a*b = x^2,
342
     *    y^2^(e-1) = -1,
343
     *    b^2^(e-1) = 1.
344
     */
345
346
0
    if (BN_is_one(b)) {
347
0
      if (!BN_copy(ret, x))
348
0
        goto end;
349
0
      err = 0;
350
0
      goto vrfy;
351
0
    }
352
353
    /* Find the smallest i with 0 < i < e such that b^(2^i) = 1. */
354
0
    for (i = 1; i < e; i++) {
355
0
      if (i == 1) {
356
0
        if (!BN_mod_sqr(t, b, p, ctx))
357
0
          goto end;
358
0
      } else {
359
0
        if (!BN_mod_sqr(t, t, p, ctx))
360
0
          goto end;
361
0
      }
362
0
      if (BN_is_one(t))
363
0
        break;
364
0
    }
365
0
    if (i >= e) {
366
0
      BNerror(BN_R_NOT_A_SQUARE);
367
0
      goto end;
368
0
    }
369
370
    /* t := y^2^(e - i - 1) */
371
0
    if (!BN_copy(t, y))
372
0
      goto end;
373
0
    for (j = e - i - 1; j > 0; j--) {
374
0
      if (!BN_mod_sqr(t, t, p, ctx))
375
0
        goto end;
376
0
    }
377
0
    if (!BN_mod_mul(y, t, t, p, ctx))
378
0
      goto end;
379
0
    if (!BN_mod_mul(x, x, t, p, ctx))
380
0
      goto end;
381
0
    if (!BN_mod_mul(b, b, y, p, ctx))
382
0
      goto end;
383
0
    e = i;
384
0
  }
385
386
0
vrfy:
387
0
  if (!err) {
388
    /* verify the result -- the input might have been not a square
389
     * (test added in 0.9.8) */
390
391
0
    if (!BN_mod_sqr(x, ret, p, ctx))
392
0
      err = 1;
393
394
0
    if (!err && 0 != BN_cmp(x, A)) {
395
0
      BNerror(BN_R_NOT_A_SQUARE);
396
0
      err = 1;
397
0
    }
398
0
  }
399
400
0
end:
401
0
  if (err) {
402
0
    if (ret != NULL && ret != in) {
403
0
      BN_clear_free(ret);
404
0
    }
405
0
    ret = NULL;
406
0
  }
407
0
  BN_CTX_end(ctx);
408
0
  bn_check_top(ret);
409
0
  return ret;
410
0
}