/src/libressl/crypto/ec/ecp_smpl.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* $OpenBSD: ecp_smpl.c,v 1.34 2022/01/20 11:02:44 inoguchi Exp $ */ |
2 | | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> |
3 | | * for the OpenSSL project. |
4 | | * Includes code written by Bodo Moeller for the OpenSSL project. |
5 | | */ |
6 | | /* ==================================================================== |
7 | | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. |
8 | | * |
9 | | * Redistribution and use in source and binary forms, with or without |
10 | | * modification, are permitted provided that the following conditions |
11 | | * are met: |
12 | | * |
13 | | * 1. Redistributions of source code must retain the above copyright |
14 | | * notice, this list of conditions and the following disclaimer. |
15 | | * |
16 | | * 2. Redistributions in binary form must reproduce the above copyright |
17 | | * notice, this list of conditions and the following disclaimer in |
18 | | * the documentation and/or other materials provided with the |
19 | | * distribution. |
20 | | * |
21 | | * 3. All advertising materials mentioning features or use of this |
22 | | * software must display the following acknowledgment: |
23 | | * "This product includes software developed by the OpenSSL Project |
24 | | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
25 | | * |
26 | | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
27 | | * endorse or promote products derived from this software without |
28 | | * prior written permission. For written permission, please contact |
29 | | * openssl-core@openssl.org. |
30 | | * |
31 | | * 5. Products derived from this software may not be called "OpenSSL" |
32 | | * nor may "OpenSSL" appear in their names without prior written |
33 | | * permission of the OpenSSL Project. |
34 | | * |
35 | | * 6. Redistributions of any form whatsoever must retain the following |
36 | | * acknowledgment: |
37 | | * "This product includes software developed by the OpenSSL Project |
38 | | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
39 | | * |
40 | | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
41 | | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
43 | | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
44 | | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
45 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
46 | | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
47 | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
49 | | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
50 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
51 | | * OF THE POSSIBILITY OF SUCH DAMAGE. |
52 | | * ==================================================================== |
53 | | * |
54 | | * This product includes cryptographic software written by Eric Young |
55 | | * (eay@cryptsoft.com). This product includes software written by Tim |
56 | | * Hudson (tjh@cryptsoft.com). |
57 | | * |
58 | | */ |
59 | | /* ==================================================================== |
60 | | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
61 | | * Portions of this software developed by SUN MICROSYSTEMS, INC., |
62 | | * and contributed to the OpenSSL project. |
63 | | */ |
64 | | |
65 | | #include <openssl/err.h> |
66 | | |
67 | | #include "bn_lcl.h" |
68 | | #include "ec_lcl.h" |
69 | | |
70 | | const EC_METHOD * |
71 | | EC_GFp_simple_method(void) |
72 | 0 | { |
73 | 0 | static const EC_METHOD ret = { |
74 | 0 | .flags = EC_FLAGS_DEFAULT_OCT, |
75 | 0 | .field_type = NID_X9_62_prime_field, |
76 | 0 | .group_init = ec_GFp_simple_group_init, |
77 | 0 | .group_finish = ec_GFp_simple_group_finish, |
78 | 0 | .group_clear_finish = ec_GFp_simple_group_clear_finish, |
79 | 0 | .group_copy = ec_GFp_simple_group_copy, |
80 | 0 | .group_set_curve = ec_GFp_simple_group_set_curve, |
81 | 0 | .group_get_curve = ec_GFp_simple_group_get_curve, |
82 | 0 | .group_get_degree = ec_GFp_simple_group_get_degree, |
83 | 0 | .group_order_bits = ec_group_simple_order_bits, |
84 | 0 | .group_check_discriminant = |
85 | 0 | ec_GFp_simple_group_check_discriminant, |
86 | 0 | .point_init = ec_GFp_simple_point_init, |
87 | 0 | .point_finish = ec_GFp_simple_point_finish, |
88 | 0 | .point_clear_finish = ec_GFp_simple_point_clear_finish, |
89 | 0 | .point_copy = ec_GFp_simple_point_copy, |
90 | 0 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, |
91 | 0 | .point_set_Jprojective_coordinates = |
92 | 0 | ec_GFp_simple_set_Jprojective_coordinates, |
93 | 0 | .point_get_Jprojective_coordinates = |
94 | 0 | ec_GFp_simple_get_Jprojective_coordinates, |
95 | 0 | .point_set_affine_coordinates = |
96 | 0 | ec_GFp_simple_point_set_affine_coordinates, |
97 | 0 | .point_get_affine_coordinates = |
98 | 0 | ec_GFp_simple_point_get_affine_coordinates, |
99 | 0 | .add = ec_GFp_simple_add, |
100 | 0 | .dbl = ec_GFp_simple_dbl, |
101 | 0 | .invert = ec_GFp_simple_invert, |
102 | 0 | .is_at_infinity = ec_GFp_simple_is_at_infinity, |
103 | 0 | .is_on_curve = ec_GFp_simple_is_on_curve, |
104 | 0 | .point_cmp = ec_GFp_simple_cmp, |
105 | 0 | .make_affine = ec_GFp_simple_make_affine, |
106 | 0 | .points_make_affine = ec_GFp_simple_points_make_affine, |
107 | 0 | .mul_generator_ct = ec_GFp_simple_mul_generator_ct, |
108 | 0 | .mul_single_ct = ec_GFp_simple_mul_single_ct, |
109 | 0 | .mul_double_nonct = ec_GFp_simple_mul_double_nonct, |
110 | 0 | .field_mul = ec_GFp_simple_field_mul, |
111 | 0 | .field_sqr = ec_GFp_simple_field_sqr, |
112 | 0 | .blind_coordinates = ec_GFp_simple_blind_coordinates, |
113 | 0 | }; |
114 | |
|
115 | 0 | return &ret; |
116 | 0 | } |
117 | | |
118 | | |
119 | | /* Most method functions in this file are designed to work with |
120 | | * non-trivial representations of field elements if necessary |
121 | | * (see ecp_mont.c): while standard modular addition and subtraction |
122 | | * are used, the field_mul and field_sqr methods will be used for |
123 | | * multiplication, and field_encode and field_decode (if defined) |
124 | | * will be used for converting between representations. |
125 | | |
126 | | * Functions ec_GFp_simple_points_make_affine() and |
127 | | * ec_GFp_simple_point_get_affine_coordinates() specifically assume |
128 | | * that if a non-trivial representation is used, it is a Montgomery |
129 | | * representation (i.e. 'encoding' means multiplying by some factor R). |
130 | | */ |
131 | | |
132 | | |
133 | | int |
134 | | ec_GFp_simple_group_init(EC_GROUP * group) |
135 | 5.36k | { |
136 | 5.36k | BN_init(&group->field); |
137 | 5.36k | BN_init(&group->a); |
138 | 5.36k | BN_init(&group->b); |
139 | 5.36k | group->a_is_minus3 = 0; |
140 | 5.36k | return 1; |
141 | 5.36k | } |
142 | | |
143 | | |
144 | | void |
145 | | ec_GFp_simple_group_finish(EC_GROUP * group) |
146 | 5.36k | { |
147 | 5.36k | BN_free(&group->field); |
148 | 5.36k | BN_free(&group->a); |
149 | 5.36k | BN_free(&group->b); |
150 | 5.36k | } |
151 | | |
152 | | |
153 | | void |
154 | | ec_GFp_simple_group_clear_finish(EC_GROUP * group) |
155 | 0 | { |
156 | 0 | BN_clear_free(&group->field); |
157 | 0 | BN_clear_free(&group->a); |
158 | 0 | BN_clear_free(&group->b); |
159 | 0 | } |
160 | | |
161 | | |
162 | | int |
163 | | ec_GFp_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src) |
164 | 2.73k | { |
165 | 2.73k | if (!BN_copy(&dest->field, &src->field)) |
166 | 0 | return 0; |
167 | 2.73k | if (!BN_copy(&dest->a, &src->a)) |
168 | 0 | return 0; |
169 | 2.73k | if (!BN_copy(&dest->b, &src->b)) |
170 | 0 | return 0; |
171 | | |
172 | 2.73k | dest->a_is_minus3 = src->a_is_minus3; |
173 | | |
174 | 2.73k | return 1; |
175 | 2.73k | } |
176 | | |
177 | | |
178 | | int |
179 | | ec_GFp_simple_group_set_curve(EC_GROUP * group, |
180 | | const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) |
181 | 2.62k | { |
182 | 2.62k | int ret = 0; |
183 | 2.62k | BN_CTX *new_ctx = NULL; |
184 | 2.62k | BIGNUM *tmp_a; |
185 | | |
186 | | /* p must be a prime > 3 */ |
187 | 2.62k | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { |
188 | 0 | ECerror(EC_R_INVALID_FIELD); |
189 | 0 | return 0; |
190 | 0 | } |
191 | 2.62k | if (ctx == NULL) { |
192 | 0 | ctx = new_ctx = BN_CTX_new(); |
193 | 0 | if (ctx == NULL) |
194 | 0 | return 0; |
195 | 0 | } |
196 | 2.62k | BN_CTX_start(ctx); |
197 | 2.62k | if ((tmp_a = BN_CTX_get(ctx)) == NULL) |
198 | 0 | goto err; |
199 | | |
200 | | /* group->field */ |
201 | 2.62k | if (!BN_copy(&group->field, p)) |
202 | 0 | goto err; |
203 | 2.62k | BN_set_negative(&group->field, 0); |
204 | | |
205 | | /* group->a */ |
206 | 2.62k | if (!BN_nnmod(tmp_a, a, p, ctx)) |
207 | 0 | goto err; |
208 | 2.62k | if (group->meth->field_encode) { |
209 | 2.62k | if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) |
210 | 0 | goto err; |
211 | 2.62k | } else if (!BN_copy(&group->a, tmp_a)) |
212 | 0 | goto err; |
213 | | |
214 | | /* group->b */ |
215 | 2.62k | if (!BN_nnmod(&group->b, b, p, ctx)) |
216 | 0 | goto err; |
217 | 2.62k | if (group->meth->field_encode) |
218 | 2.62k | if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) |
219 | 0 | goto err; |
220 | | |
221 | | /* group->a_is_minus3 */ |
222 | 2.62k | if (!BN_add_word(tmp_a, 3)) |
223 | 0 | goto err; |
224 | 2.62k | group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field)); |
225 | | |
226 | 2.62k | ret = 1; |
227 | | |
228 | 2.62k | err: |
229 | 2.62k | BN_CTX_end(ctx); |
230 | 2.62k | BN_CTX_free(new_ctx); |
231 | 2.62k | return ret; |
232 | 2.62k | } |
233 | | |
234 | | |
235 | | int |
236 | | ec_GFp_simple_group_get_curve(const EC_GROUP * group, BIGNUM * p, BIGNUM * a, BIGNUM * b, BN_CTX * ctx) |
237 | 0 | { |
238 | 0 | int ret = 0; |
239 | 0 | BN_CTX *new_ctx = NULL; |
240 | |
|
241 | 0 | if (p != NULL) { |
242 | 0 | if (!BN_copy(p, &group->field)) |
243 | 0 | return 0; |
244 | 0 | } |
245 | 0 | if (a != NULL || b != NULL) { |
246 | 0 | if (group->meth->field_decode) { |
247 | 0 | if (ctx == NULL) { |
248 | 0 | ctx = new_ctx = BN_CTX_new(); |
249 | 0 | if (ctx == NULL) |
250 | 0 | return 0; |
251 | 0 | } |
252 | 0 | if (a != NULL) { |
253 | 0 | if (!group->meth->field_decode(group, a, &group->a, ctx)) |
254 | 0 | goto err; |
255 | 0 | } |
256 | 0 | if (b != NULL) { |
257 | 0 | if (!group->meth->field_decode(group, b, &group->b, ctx)) |
258 | 0 | goto err; |
259 | 0 | } |
260 | 0 | } else { |
261 | 0 | if (a != NULL) { |
262 | 0 | if (!BN_copy(a, &group->a)) |
263 | 0 | goto err; |
264 | 0 | } |
265 | 0 | if (b != NULL) { |
266 | 0 | if (!BN_copy(b, &group->b)) |
267 | 0 | goto err; |
268 | 0 | } |
269 | 0 | } |
270 | 0 | } |
271 | 0 | ret = 1; |
272 | |
|
273 | 0 | err: |
274 | 0 | BN_CTX_free(new_ctx); |
275 | 0 | return ret; |
276 | 0 | } |
277 | | |
278 | | |
279 | | int |
280 | | ec_GFp_simple_group_get_degree(const EC_GROUP * group) |
281 | 0 | { |
282 | 0 | return BN_num_bits(&group->field); |
283 | 0 | } |
284 | | |
285 | | |
286 | | int |
287 | | ec_GFp_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx) |
288 | 0 | { |
289 | 0 | int ret = 0; |
290 | 0 | BIGNUM *a, *b, *order, *tmp_1, *tmp_2; |
291 | 0 | const BIGNUM *p = &group->field; |
292 | 0 | BN_CTX *new_ctx = NULL; |
293 | |
|
294 | 0 | if (ctx == NULL) { |
295 | 0 | ctx = new_ctx = BN_CTX_new(); |
296 | 0 | if (ctx == NULL) { |
297 | 0 | ECerror(ERR_R_MALLOC_FAILURE); |
298 | 0 | goto err; |
299 | 0 | } |
300 | 0 | } |
301 | 0 | BN_CTX_start(ctx); |
302 | 0 | if ((a = BN_CTX_get(ctx)) == NULL) |
303 | 0 | goto err; |
304 | 0 | if ((b = BN_CTX_get(ctx)) == NULL) |
305 | 0 | goto err; |
306 | 0 | if ((tmp_1 = BN_CTX_get(ctx)) == NULL) |
307 | 0 | goto err; |
308 | 0 | if ((tmp_2 = BN_CTX_get(ctx)) == NULL) |
309 | 0 | goto err; |
310 | 0 | if ((order = BN_CTX_get(ctx)) == NULL) |
311 | 0 | goto err; |
312 | | |
313 | 0 | if (group->meth->field_decode) { |
314 | 0 | if (!group->meth->field_decode(group, a, &group->a, ctx)) |
315 | 0 | goto err; |
316 | 0 | if (!group->meth->field_decode(group, b, &group->b, ctx)) |
317 | 0 | goto err; |
318 | 0 | } else { |
319 | 0 | if (!BN_copy(a, &group->a)) |
320 | 0 | goto err; |
321 | 0 | if (!BN_copy(b, &group->b)) |
322 | 0 | goto err; |
323 | 0 | } |
324 | | |
325 | | /* |
326 | | * check the discriminant: y^2 = x^3 + a*x + b is an elliptic curve |
327 | | * <=> 4*a^3 + 27*b^2 != 0 (mod p) 0 =< a, b < p |
328 | | */ |
329 | 0 | if (BN_is_zero(a)) { |
330 | 0 | if (BN_is_zero(b)) |
331 | 0 | goto err; |
332 | 0 | } else if (!BN_is_zero(b)) { |
333 | 0 | if (!BN_mod_sqr(tmp_1, a, p, ctx)) |
334 | 0 | goto err; |
335 | 0 | if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) |
336 | 0 | goto err; |
337 | 0 | if (!BN_lshift(tmp_1, tmp_2, 2)) |
338 | 0 | goto err; |
339 | | /* tmp_1 = 4*a^3 */ |
340 | | |
341 | 0 | if (!BN_mod_sqr(tmp_2, b, p, ctx)) |
342 | 0 | goto err; |
343 | 0 | if (!BN_mul_word(tmp_2, 27)) |
344 | 0 | goto err; |
345 | | /* tmp_2 = 27*b^2 */ |
346 | | |
347 | 0 | if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) |
348 | 0 | goto err; |
349 | 0 | if (BN_is_zero(a)) |
350 | 0 | goto err; |
351 | 0 | } |
352 | 0 | ret = 1; |
353 | |
|
354 | 0 | err: |
355 | 0 | if (ctx != NULL) |
356 | 0 | BN_CTX_end(ctx); |
357 | 0 | BN_CTX_free(new_ctx); |
358 | 0 | return ret; |
359 | 0 | } |
360 | | |
361 | | |
362 | | int |
363 | | ec_GFp_simple_point_init(EC_POINT * point) |
364 | 23.5k | { |
365 | 23.5k | BN_init(&point->X); |
366 | 23.5k | BN_init(&point->Y); |
367 | 23.5k | BN_init(&point->Z); |
368 | 23.5k | point->Z_is_one = 0; |
369 | | |
370 | 23.5k | return 1; |
371 | 23.5k | } |
372 | | |
373 | | |
374 | | void |
375 | | ec_GFp_simple_point_finish(EC_POINT * point) |
376 | 18.3k | { |
377 | 18.3k | BN_free(&point->X); |
378 | 18.3k | BN_free(&point->Y); |
379 | 18.3k | BN_free(&point->Z); |
380 | 18.3k | } |
381 | | |
382 | | |
383 | | void |
384 | | ec_GFp_simple_point_clear_finish(EC_POINT * point) |
385 | 5.23k | { |
386 | 5.23k | BN_clear_free(&point->X); |
387 | 5.23k | BN_clear_free(&point->Y); |
388 | 5.23k | BN_clear_free(&point->Z); |
389 | 5.23k | point->Z_is_one = 0; |
390 | 5.23k | } |
391 | | |
392 | | |
393 | | int |
394 | | ec_GFp_simple_point_copy(EC_POINT * dest, const EC_POINT * src) |
395 | 15.4k | { |
396 | 15.4k | if (!BN_copy(&dest->X, &src->X)) |
397 | 0 | return 0; |
398 | 15.4k | if (!BN_copy(&dest->Y, &src->Y)) |
399 | 0 | return 0; |
400 | 15.4k | if (!BN_copy(&dest->Z, &src->Z)) |
401 | 0 | return 0; |
402 | 15.4k | dest->Z_is_one = src->Z_is_one; |
403 | | |
404 | 15.4k | return 1; |
405 | 15.4k | } |
406 | | |
407 | | |
408 | | int |
409 | | ec_GFp_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point) |
410 | 0 | { |
411 | 0 | point->Z_is_one = 0; |
412 | 0 | BN_zero(&point->Z); |
413 | 0 | return 1; |
414 | 0 | } |
415 | | |
416 | | |
417 | | int |
418 | | ec_GFp_simple_set_Jprojective_coordinates(const EC_GROUP *group, |
419 | | EC_POINT *point, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, |
420 | | BN_CTX *ctx) |
421 | 3.28k | { |
422 | 3.28k | BN_CTX *new_ctx = NULL; |
423 | 3.28k | int ret = 0; |
424 | | |
425 | 3.28k | if (ctx == NULL) { |
426 | 660 | ctx = new_ctx = BN_CTX_new(); |
427 | 660 | if (ctx == NULL) |
428 | 0 | return 0; |
429 | 660 | } |
430 | 3.28k | if (x != NULL) { |
431 | 3.28k | if (!BN_nnmod(&point->X, x, &group->field, ctx)) |
432 | 0 | goto err; |
433 | 3.28k | if (group->meth->field_encode) { |
434 | 3.28k | if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) |
435 | 0 | goto err; |
436 | 3.28k | } |
437 | 3.28k | } |
438 | 3.28k | if (y != NULL) { |
439 | 3.28k | if (!BN_nnmod(&point->Y, y, &group->field, ctx)) |
440 | 0 | goto err; |
441 | 3.28k | if (group->meth->field_encode) { |
442 | 3.28k | if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) |
443 | 0 | goto err; |
444 | 3.28k | } |
445 | 3.28k | } |
446 | 3.28k | if (z != NULL) { |
447 | 3.28k | int Z_is_one; |
448 | | |
449 | 3.28k | if (!BN_nnmod(&point->Z, z, &group->field, ctx)) |
450 | 0 | goto err; |
451 | 3.28k | Z_is_one = BN_is_one(&point->Z); |
452 | 3.28k | if (group->meth->field_encode) { |
453 | 3.28k | if (Z_is_one && (group->meth->field_set_to_one != 0)) { |
454 | 3.28k | if (!group->meth->field_set_to_one(group, &point->Z, ctx)) |
455 | 0 | goto err; |
456 | 3.28k | } else { |
457 | 0 | if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) |
458 | 0 | goto err; |
459 | 0 | } |
460 | 3.28k | } |
461 | 3.28k | point->Z_is_one = Z_is_one; |
462 | 3.28k | } |
463 | 3.28k | ret = 1; |
464 | | |
465 | 3.28k | err: |
466 | 3.28k | BN_CTX_free(new_ctx); |
467 | 3.28k | return ret; |
468 | 3.28k | } |
469 | | |
470 | | int |
471 | | ec_GFp_simple_get_Jprojective_coordinates(const EC_GROUP *group, |
472 | | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) |
473 | 0 | { |
474 | 0 | BN_CTX *new_ctx = NULL; |
475 | 0 | int ret = 0; |
476 | |
|
477 | 0 | if (group->meth->field_decode != 0) { |
478 | 0 | if (ctx == NULL) { |
479 | 0 | ctx = new_ctx = BN_CTX_new(); |
480 | 0 | if (ctx == NULL) |
481 | 0 | return 0; |
482 | 0 | } |
483 | 0 | if (x != NULL) { |
484 | 0 | if (!group->meth->field_decode(group, x, &point->X, ctx)) |
485 | 0 | goto err; |
486 | 0 | } |
487 | 0 | if (y != NULL) { |
488 | 0 | if (!group->meth->field_decode(group, y, &point->Y, ctx)) |
489 | 0 | goto err; |
490 | 0 | } |
491 | 0 | if (z != NULL) { |
492 | 0 | if (!group->meth->field_decode(group, z, &point->Z, ctx)) |
493 | 0 | goto err; |
494 | 0 | } |
495 | 0 | } else { |
496 | 0 | if (x != NULL) { |
497 | 0 | if (!BN_copy(x, &point->X)) |
498 | 0 | goto err; |
499 | 0 | } |
500 | 0 | if (y != NULL) { |
501 | 0 | if (!BN_copy(y, &point->Y)) |
502 | 0 | goto err; |
503 | 0 | } |
504 | 0 | if (z != NULL) { |
505 | 0 | if (!BN_copy(z, &point->Z)) |
506 | 0 | goto err; |
507 | 0 | } |
508 | 0 | } |
509 | | |
510 | 0 | ret = 1; |
511 | |
|
512 | 0 | err: |
513 | 0 | BN_CTX_free(new_ctx); |
514 | 0 | return ret; |
515 | 0 | } |
516 | | |
517 | | int |
518 | | ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point, |
519 | | const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx) |
520 | 3.28k | { |
521 | 3.28k | if (x == NULL || y == NULL) { |
522 | | /* unlike for projective coordinates, we do not tolerate this */ |
523 | 0 | ECerror(ERR_R_PASSED_NULL_PARAMETER); |
524 | 0 | return 0; |
525 | 0 | } |
526 | 3.28k | return EC_POINT_set_Jprojective_coordinates(group, point, x, y, |
527 | 3.28k | BN_value_one(), ctx); |
528 | 3.28k | } |
529 | | |
530 | | int |
531 | | ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP * group, const EC_POINT * point, |
532 | | BIGNUM * x, BIGNUM * y, BN_CTX * ctx) |
533 | 1.99k | { |
534 | 1.99k | BN_CTX *new_ctx = NULL; |
535 | 1.99k | BIGNUM *Z, *Z_1, *Z_2, *Z_3; |
536 | 1.99k | const BIGNUM *Z_; |
537 | 1.99k | int ret = 0; |
538 | | |
539 | 1.99k | if (EC_POINT_is_at_infinity(group, point) > 0) { |
540 | 31 | ECerror(EC_R_POINT_AT_INFINITY); |
541 | 31 | return 0; |
542 | 31 | } |
543 | 1.96k | if (ctx == NULL) { |
544 | 1.23k | ctx = new_ctx = BN_CTX_new(); |
545 | 1.23k | if (ctx == NULL) |
546 | 0 | return 0; |
547 | 1.23k | } |
548 | 1.96k | BN_CTX_start(ctx); |
549 | 1.96k | if ((Z = BN_CTX_get(ctx)) == NULL) |
550 | 0 | goto err; |
551 | 1.96k | if ((Z_1 = BN_CTX_get(ctx)) == NULL) |
552 | 0 | goto err; |
553 | 1.96k | if ((Z_2 = BN_CTX_get(ctx)) == NULL) |
554 | 0 | goto err; |
555 | 1.96k | if ((Z_3 = BN_CTX_get(ctx)) == NULL) |
556 | 0 | goto err; |
557 | | |
558 | | /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */ |
559 | | |
560 | 1.96k | if (group->meth->field_decode) { |
561 | 1.96k | if (!group->meth->field_decode(group, Z, &point->Z, ctx)) |
562 | 0 | goto err; |
563 | 1.96k | Z_ = Z; |
564 | 1.96k | } else { |
565 | 0 | Z_ = &point->Z; |
566 | 0 | } |
567 | | |
568 | 1.96k | if (BN_is_one(Z_)) { |
569 | 9 | if (group->meth->field_decode) { |
570 | 9 | if (x != NULL) { |
571 | 9 | if (!group->meth->field_decode(group, x, &point->X, ctx)) |
572 | 0 | goto err; |
573 | 9 | } |
574 | 9 | if (y != NULL) { |
575 | 7 | if (!group->meth->field_decode(group, y, &point->Y, ctx)) |
576 | 0 | goto err; |
577 | 7 | } |
578 | 9 | } else { |
579 | 0 | if (x != NULL) { |
580 | 0 | if (!BN_copy(x, &point->X)) |
581 | 0 | goto err; |
582 | 0 | } |
583 | 0 | if (y != NULL) { |
584 | 0 | if (!BN_copy(y, &point->Y)) |
585 | 0 | goto err; |
586 | 0 | } |
587 | 0 | } |
588 | 1.95k | } else { |
589 | 1.95k | if (BN_mod_inverse_ct(Z_1, Z_, &group->field, ctx) == NULL) { |
590 | 0 | ECerror(ERR_R_BN_LIB); |
591 | 0 | goto err; |
592 | 0 | } |
593 | 1.95k | if (group->meth->field_encode == 0) { |
594 | | /* field_sqr works on standard representation */ |
595 | 0 | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) |
596 | 0 | goto err; |
597 | 1.95k | } else { |
598 | 1.95k | if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) |
599 | 0 | goto err; |
600 | 1.95k | } |
601 | | |
602 | 1.95k | if (x != NULL) { |
603 | | /* |
604 | | * in the Montgomery case, field_mul will cancel out |
605 | | * Montgomery factor in X: |
606 | | */ |
607 | 1.95k | if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) |
608 | 0 | goto err; |
609 | 1.95k | } |
610 | 1.95k | if (y != NULL) { |
611 | 1.22k | if (group->meth->field_encode == 0) { |
612 | | /* field_mul works on standard representation */ |
613 | 0 | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) |
614 | 0 | goto err; |
615 | 1.22k | } else { |
616 | 1.22k | if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) |
617 | 0 | goto err; |
618 | 1.22k | } |
619 | | |
620 | | /* |
621 | | * in the Montgomery case, field_mul will cancel out |
622 | | * Montgomery factor in Y: |
623 | | */ |
624 | 1.22k | if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) |
625 | 0 | goto err; |
626 | 1.22k | } |
627 | 1.95k | } |
628 | | |
629 | 1.96k | ret = 1; |
630 | | |
631 | 1.96k | err: |
632 | 1.96k | BN_CTX_end(ctx); |
633 | 1.96k | BN_CTX_free(new_ctx); |
634 | 1.96k | return ret; |
635 | 1.96k | } |
636 | | |
637 | | int |
638 | | ec_GFp_simple_add(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx) |
639 | 1.12M | { |
640 | 1.12M | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); |
641 | 1.12M | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
642 | 1.12M | const BIGNUM *p; |
643 | 1.12M | BN_CTX *new_ctx = NULL; |
644 | 1.12M | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; |
645 | 1.12M | int ret = 0; |
646 | | |
647 | 1.12M | if (a == b) |
648 | 0 | return EC_POINT_dbl(group, r, a, ctx); |
649 | 1.12M | if (EC_POINT_is_at_infinity(group, a) > 0) |
650 | 50 | return EC_POINT_copy(r, b); |
651 | 1.12M | if (EC_POINT_is_at_infinity(group, b) > 0) |
652 | 8 | return EC_POINT_copy(r, a); |
653 | | |
654 | 1.12M | field_mul = group->meth->field_mul; |
655 | 1.12M | field_sqr = group->meth->field_sqr; |
656 | 1.12M | p = &group->field; |
657 | | |
658 | 1.12M | if (ctx == NULL) { |
659 | 1 | ctx = new_ctx = BN_CTX_new(); |
660 | 1 | if (ctx == NULL) |
661 | 0 | return 0; |
662 | 1 | } |
663 | 1.12M | BN_CTX_start(ctx); |
664 | 1.12M | if ((n0 = BN_CTX_get(ctx)) == NULL) |
665 | 0 | goto end; |
666 | 1.12M | if ((n1 = BN_CTX_get(ctx)) == NULL) |
667 | 0 | goto end; |
668 | 1.12M | if ((n2 = BN_CTX_get(ctx)) == NULL) |
669 | 0 | goto end; |
670 | 1.12M | if ((n3 = BN_CTX_get(ctx)) == NULL) |
671 | 0 | goto end; |
672 | 1.12M | if ((n4 = BN_CTX_get(ctx)) == NULL) |
673 | 0 | goto end; |
674 | 1.12M | if ((n5 = BN_CTX_get(ctx)) == NULL) |
675 | 0 | goto end; |
676 | 1.12M | if ((n6 = BN_CTX_get(ctx)) == NULL) |
677 | 0 | goto end; |
678 | | |
679 | | /* |
680 | | * Note that in this function we must not read components of 'a' or |
681 | | * 'b' once we have written the corresponding components of 'r'. ('r' |
682 | | * might be one of 'a' or 'b'.) |
683 | | */ |
684 | | |
685 | | /* n1, n2 */ |
686 | 1.12M | if (b->Z_is_one) { |
687 | 53.8k | if (!BN_copy(n1, &a->X)) |
688 | 0 | goto end; |
689 | 53.8k | if (!BN_copy(n2, &a->Y)) |
690 | 0 | goto end; |
691 | | /* n1 = X_a */ |
692 | | /* n2 = Y_a */ |
693 | 1.06M | } else { |
694 | 1.06M | if (!field_sqr(group, n0, &b->Z, ctx)) |
695 | 0 | goto end; |
696 | 1.06M | if (!field_mul(group, n1, &a->X, n0, ctx)) |
697 | 0 | goto end; |
698 | | /* n1 = X_a * Z_b^2 */ |
699 | | |
700 | 1.06M | if (!field_mul(group, n0, n0, &b->Z, ctx)) |
701 | 0 | goto end; |
702 | 1.06M | if (!field_mul(group, n2, &a->Y, n0, ctx)) |
703 | 0 | goto end; |
704 | | /* n2 = Y_a * Z_b^3 */ |
705 | 1.06M | } |
706 | | |
707 | | /* n3, n4 */ |
708 | 1.12M | if (a->Z_is_one) { |
709 | 776 | if (!BN_copy(n3, &b->X)) |
710 | 0 | goto end; |
711 | 776 | if (!BN_copy(n4, &b->Y)) |
712 | 0 | goto end; |
713 | | /* n3 = X_b */ |
714 | | /* n4 = Y_b */ |
715 | 1.12M | } else { |
716 | 1.12M | if (!field_sqr(group, n0, &a->Z, ctx)) |
717 | 0 | goto end; |
718 | 1.12M | if (!field_mul(group, n3, &b->X, n0, ctx)) |
719 | 0 | goto end; |
720 | | /* n3 = X_b * Z_a^2 */ |
721 | | |
722 | 1.12M | if (!field_mul(group, n0, n0, &a->Z, ctx)) |
723 | 0 | goto end; |
724 | 1.12M | if (!field_mul(group, n4, &b->Y, n0, ctx)) |
725 | 0 | goto end; |
726 | | /* n4 = Y_b * Z_a^3 */ |
727 | 1.12M | } |
728 | | |
729 | | /* n5, n6 */ |
730 | 1.12M | if (!BN_mod_sub_quick(n5, n1, n3, p)) |
731 | 0 | goto end; |
732 | 1.12M | if (!BN_mod_sub_quick(n6, n2, n4, p)) |
733 | 0 | goto end; |
734 | | /* n5 = n1 - n3 */ |
735 | | /* n6 = n2 - n4 */ |
736 | | |
737 | 1.12M | if (BN_is_zero(n5)) { |
738 | 59 | if (BN_is_zero(n6)) { |
739 | | /* a is the same point as b */ |
740 | 5 | BN_CTX_end(ctx); |
741 | 5 | ret = EC_POINT_dbl(group, r, a, ctx); |
742 | 5 | ctx = NULL; |
743 | 5 | goto end; |
744 | 54 | } else { |
745 | | /* a is the inverse of b */ |
746 | 54 | BN_zero(&r->Z); |
747 | 54 | r->Z_is_one = 0; |
748 | 54 | ret = 1; |
749 | 54 | goto end; |
750 | 54 | } |
751 | 59 | } |
752 | | /* 'n7', 'n8' */ |
753 | 1.12M | if (!BN_mod_add_quick(n1, n1, n3, p)) |
754 | 0 | goto end; |
755 | 1.12M | if (!BN_mod_add_quick(n2, n2, n4, p)) |
756 | 0 | goto end; |
757 | | /* 'n7' = n1 + n3 */ |
758 | | /* 'n8' = n2 + n4 */ |
759 | | |
760 | | /* Z_r */ |
761 | 1.12M | if (a->Z_is_one && b->Z_is_one) { |
762 | 50 | if (!BN_copy(&r->Z, n5)) |
763 | 0 | goto end; |
764 | 1.12M | } else { |
765 | 1.12M | if (a->Z_is_one) { |
766 | 708 | if (!BN_copy(n0, &b->Z)) |
767 | 0 | goto end; |
768 | 1.12M | } else if (b->Z_is_one) { |
769 | 53.7k | if (!BN_copy(n0, &a->Z)) |
770 | 0 | goto end; |
771 | 1.06M | } else { |
772 | 1.06M | if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) |
773 | 0 | goto end; |
774 | 1.06M | } |
775 | 1.12M | if (!field_mul(group, &r->Z, n0, n5, ctx)) |
776 | 0 | goto end; |
777 | 1.12M | } |
778 | 1.12M | r->Z_is_one = 0; |
779 | | /* Z_r = Z_a * Z_b * n5 */ |
780 | | |
781 | | /* X_r */ |
782 | 1.12M | if (!field_sqr(group, n0, n6, ctx)) |
783 | 0 | goto end; |
784 | 1.12M | if (!field_sqr(group, n4, n5, ctx)) |
785 | 0 | goto end; |
786 | 1.12M | if (!field_mul(group, n3, n1, n4, ctx)) |
787 | 0 | goto end; |
788 | 1.12M | if (!BN_mod_sub_quick(&r->X, n0, n3, p)) |
789 | 0 | goto end; |
790 | | /* X_r = n6^2 - n5^2 * 'n7' */ |
791 | | |
792 | | /* 'n9' */ |
793 | 1.12M | if (!BN_mod_lshift1_quick(n0, &r->X, p)) |
794 | 0 | goto end; |
795 | 1.12M | if (!BN_mod_sub_quick(n0, n3, n0, p)) |
796 | 0 | goto end; |
797 | | /* n9 = n5^2 * 'n7' - 2 * X_r */ |
798 | | |
799 | | /* Y_r */ |
800 | 1.12M | if (!field_mul(group, n0, n0, n6, ctx)) |
801 | 0 | goto end; |
802 | 1.12M | if (!field_mul(group, n5, n4, n5, ctx)) |
803 | 0 | goto end; /* now n5 is n5^3 */ |
804 | 1.12M | if (!field_mul(group, n1, n2, n5, ctx)) |
805 | 0 | goto end; |
806 | 1.12M | if (!BN_mod_sub_quick(n0, n0, n1, p)) |
807 | 0 | goto end; |
808 | 1.12M | if (BN_is_odd(n0)) |
809 | 562k | if (!BN_add(n0, n0, p)) |
810 | 0 | goto end; |
811 | | /* now 0 <= n0 < 2*p, and n0 is even */ |
812 | 1.12M | if (!BN_rshift1(&r->Y, n0)) |
813 | 0 | goto end; |
814 | | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ |
815 | | |
816 | 1.12M | ret = 1; |
817 | | |
818 | 1.12M | end: |
819 | 1.12M | if (ctx) /* otherwise we already called BN_CTX_end */ |
820 | 1.12M | BN_CTX_end(ctx); |
821 | 1.12M | BN_CTX_free(new_ctx); |
822 | 1.12M | return ret; |
823 | 1.12M | } |
824 | | |
825 | | |
826 | | int |
827 | | ec_GFp_simple_dbl(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, BN_CTX * ctx) |
828 | 1.23M | { |
829 | 1.23M | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); |
830 | 1.23M | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
831 | 1.23M | const BIGNUM *p; |
832 | 1.23M | BN_CTX *new_ctx = NULL; |
833 | 1.23M | BIGNUM *n0, *n1, *n2, *n3; |
834 | 1.23M | int ret = 0; |
835 | | |
836 | 1.23M | if (EC_POINT_is_at_infinity(group, a) > 0) { |
837 | 90 | BN_zero(&r->Z); |
838 | 90 | r->Z_is_one = 0; |
839 | 90 | return 1; |
840 | 90 | } |
841 | 1.23M | field_mul = group->meth->field_mul; |
842 | 1.23M | field_sqr = group->meth->field_sqr; |
843 | 1.23M | p = &group->field; |
844 | | |
845 | 1.23M | if (ctx == NULL) { |
846 | 7 | ctx = new_ctx = BN_CTX_new(); |
847 | 7 | if (ctx == NULL) |
848 | 0 | return 0; |
849 | 7 | } |
850 | 1.23M | BN_CTX_start(ctx); |
851 | 1.23M | if ((n0 = BN_CTX_get(ctx)) == NULL) |
852 | 0 | goto err; |
853 | 1.23M | if ((n1 = BN_CTX_get(ctx)) == NULL) |
854 | 0 | goto err; |
855 | 1.23M | if ((n2 = BN_CTX_get(ctx)) == NULL) |
856 | 0 | goto err; |
857 | 1.23M | if ((n3 = BN_CTX_get(ctx)) == NULL) |
858 | 0 | goto err; |
859 | | |
860 | | /* |
861 | | * Note that in this function we must not read components of 'a' once |
862 | | * we have written the corresponding components of 'r'. ('r' might |
863 | | * the same as 'a'.) |
864 | | */ |
865 | | |
866 | | /* n1 */ |
867 | 1.23M | if (a->Z_is_one) { |
868 | 1.04k | if (!field_sqr(group, n0, &a->X, ctx)) |
869 | 0 | goto err; |
870 | 1.04k | if (!BN_mod_lshift1_quick(n1, n0, p)) |
871 | 0 | goto err; |
872 | 1.04k | if (!BN_mod_add_quick(n0, n0, n1, p)) |
873 | 0 | goto err; |
874 | 1.04k | if (!BN_mod_add_quick(n1, n0, &group->a, p)) |
875 | 0 | goto err; |
876 | | /* n1 = 3 * X_a^2 + a_curve */ |
877 | 1.23M | } else if (group->a_is_minus3) { |
878 | 753k | if (!field_sqr(group, n1, &a->Z, ctx)) |
879 | 0 | goto err; |
880 | 753k | if (!BN_mod_add_quick(n0, &a->X, n1, p)) |
881 | 0 | goto err; |
882 | 753k | if (!BN_mod_sub_quick(n2, &a->X, n1, p)) |
883 | 0 | goto err; |
884 | 753k | if (!field_mul(group, n1, n0, n2, ctx)) |
885 | 0 | goto err; |
886 | 753k | if (!BN_mod_lshift1_quick(n0, n1, p)) |
887 | 0 | goto err; |
888 | 753k | if (!BN_mod_add_quick(n1, n0, n1, p)) |
889 | 0 | goto err; |
890 | | /* |
891 | | * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) = 3 * X_a^2 - 3 * |
892 | | * Z_a^4 |
893 | | */ |
894 | 753k | } else { |
895 | 479k | if (!field_sqr(group, n0, &a->X, ctx)) |
896 | 0 | goto err; |
897 | 479k | if (!BN_mod_lshift1_quick(n1, n0, p)) |
898 | 0 | goto err; |
899 | 479k | if (!BN_mod_add_quick(n0, n0, n1, p)) |
900 | 0 | goto err; |
901 | 479k | if (!field_sqr(group, n1, &a->Z, ctx)) |
902 | 0 | goto err; |
903 | 479k | if (!field_sqr(group, n1, n1, ctx)) |
904 | 0 | goto err; |
905 | 479k | if (!field_mul(group, n1, n1, &group->a, ctx)) |
906 | 0 | goto err; |
907 | 479k | if (!BN_mod_add_quick(n1, n1, n0, p)) |
908 | 0 | goto err; |
909 | | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ |
910 | 479k | } |
911 | | |
912 | | /* Z_r */ |
913 | 1.23M | if (a->Z_is_one) { |
914 | 1.04k | if (!BN_copy(n0, &a->Y)) |
915 | 0 | goto err; |
916 | 1.23M | } else { |
917 | 1.23M | if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) |
918 | 0 | goto err; |
919 | 1.23M | } |
920 | 1.23M | if (!BN_mod_lshift1_quick(&r->Z, n0, p)) |
921 | 0 | goto err; |
922 | 1.23M | r->Z_is_one = 0; |
923 | | /* Z_r = 2 * Y_a * Z_a */ |
924 | | |
925 | | /* n2 */ |
926 | 1.23M | if (!field_sqr(group, n3, &a->Y, ctx)) |
927 | 0 | goto err; |
928 | 1.23M | if (!field_mul(group, n2, &a->X, n3, ctx)) |
929 | 0 | goto err; |
930 | 1.23M | if (!BN_mod_lshift_quick(n2, n2, 2, p)) |
931 | 0 | goto err; |
932 | | /* n2 = 4 * X_a * Y_a^2 */ |
933 | | |
934 | | /* X_r */ |
935 | 1.23M | if (!BN_mod_lshift1_quick(n0, n2, p)) |
936 | 0 | goto err; |
937 | 1.23M | if (!field_sqr(group, &r->X, n1, ctx)) |
938 | 0 | goto err; |
939 | 1.23M | if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) |
940 | 0 | goto err; |
941 | | /* X_r = n1^2 - 2 * n2 */ |
942 | | |
943 | | /* n3 */ |
944 | 1.23M | if (!field_sqr(group, n0, n3, ctx)) |
945 | 0 | goto err; |
946 | 1.23M | if (!BN_mod_lshift_quick(n3, n0, 3, p)) |
947 | 0 | goto err; |
948 | | /* n3 = 8 * Y_a^4 */ |
949 | | |
950 | | /* Y_r */ |
951 | 1.23M | if (!BN_mod_sub_quick(n0, n2, &r->X, p)) |
952 | 0 | goto err; |
953 | 1.23M | if (!field_mul(group, n0, n1, n0, ctx)) |
954 | 0 | goto err; |
955 | 1.23M | if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) |
956 | 0 | goto err; |
957 | | /* Y_r = n1 * (n2 - X_r) - n3 */ |
958 | | |
959 | 1.23M | ret = 1; |
960 | | |
961 | 1.23M | err: |
962 | 1.23M | BN_CTX_end(ctx); |
963 | 1.23M | BN_CTX_free(new_ctx); |
964 | 1.23M | return ret; |
965 | 1.23M | } |
966 | | |
967 | | |
968 | | int |
969 | | ec_GFp_simple_invert(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) |
970 | 26.6k | { |
971 | 26.6k | if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y)) |
972 | | /* point is its own inverse */ |
973 | 7 | return 1; |
974 | | |
975 | 26.6k | return BN_usub(&point->Y, &group->field, &point->Y); |
976 | 26.6k | } |
977 | | |
978 | | |
979 | | int |
980 | | ec_GFp_simple_is_at_infinity(const EC_GROUP * group, const EC_POINT * point) |
981 | 3.51M | { |
982 | 3.51M | return BN_is_zero(&point->Z); |
983 | 3.51M | } |
984 | | |
985 | | |
986 | | int |
987 | | ec_GFp_simple_is_on_curve(const EC_GROUP * group, const EC_POINT * point, BN_CTX * ctx) |
988 | 3.28k | { |
989 | 3.28k | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); |
990 | 3.28k | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
991 | 3.28k | const BIGNUM *p; |
992 | 3.28k | BN_CTX *new_ctx = NULL; |
993 | 3.28k | BIGNUM *rh, *tmp, *Z4, *Z6; |
994 | 3.28k | int ret = -1; |
995 | | |
996 | 3.28k | if (EC_POINT_is_at_infinity(group, point) > 0) |
997 | 0 | return 1; |
998 | | |
999 | 3.28k | field_mul = group->meth->field_mul; |
1000 | 3.28k | field_sqr = group->meth->field_sqr; |
1001 | 3.28k | p = &group->field; |
1002 | | |
1003 | 3.28k | if (ctx == NULL) { |
1004 | 660 | ctx = new_ctx = BN_CTX_new(); |
1005 | 660 | if (ctx == NULL) |
1006 | 0 | return -1; |
1007 | 660 | } |
1008 | 3.28k | BN_CTX_start(ctx); |
1009 | 3.28k | if ((rh = BN_CTX_get(ctx)) == NULL) |
1010 | 0 | goto err; |
1011 | 3.28k | if ((tmp = BN_CTX_get(ctx)) == NULL) |
1012 | 0 | goto err; |
1013 | 3.28k | if ((Z4 = BN_CTX_get(ctx)) == NULL) |
1014 | 0 | goto err; |
1015 | 3.28k | if ((Z6 = BN_CTX_get(ctx)) == NULL) |
1016 | 0 | goto err; |
1017 | | |
1018 | | /* |
1019 | | * We have a curve defined by a Weierstrass equation y^2 = x^3 + a*x |
1020 | | * + b. The point to consider is given in Jacobian projective |
1021 | | * coordinates where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). |
1022 | | * Substituting this and multiplying by Z^6 transforms the above |
1023 | | * equation into Y^2 = X^3 + a*X*Z^4 + b*Z^6. To test this, we add up |
1024 | | * the right-hand side in 'rh'. |
1025 | | */ |
1026 | | |
1027 | | /* rh := X^2 */ |
1028 | 3.28k | if (!field_sqr(group, rh, &point->X, ctx)) |
1029 | 0 | goto err; |
1030 | | |
1031 | 3.28k | if (!point->Z_is_one) { |
1032 | 0 | if (!field_sqr(group, tmp, &point->Z, ctx)) |
1033 | 0 | goto err; |
1034 | 0 | if (!field_sqr(group, Z4, tmp, ctx)) |
1035 | 0 | goto err; |
1036 | 0 | if (!field_mul(group, Z6, Z4, tmp, ctx)) |
1037 | 0 | goto err; |
1038 | | |
1039 | | /* rh := (rh + a*Z^4)*X */ |
1040 | 0 | if (group->a_is_minus3) { |
1041 | 0 | if (!BN_mod_lshift1_quick(tmp, Z4, p)) |
1042 | 0 | goto err; |
1043 | 0 | if (!BN_mod_add_quick(tmp, tmp, Z4, p)) |
1044 | 0 | goto err; |
1045 | 0 | if (!BN_mod_sub_quick(rh, rh, tmp, p)) |
1046 | 0 | goto err; |
1047 | 0 | if (!field_mul(group, rh, rh, &point->X, ctx)) |
1048 | 0 | goto err; |
1049 | 0 | } else { |
1050 | 0 | if (!field_mul(group, tmp, Z4, &group->a, ctx)) |
1051 | 0 | goto err; |
1052 | 0 | if (!BN_mod_add_quick(rh, rh, tmp, p)) |
1053 | 0 | goto err; |
1054 | 0 | if (!field_mul(group, rh, rh, &point->X, ctx)) |
1055 | 0 | goto err; |
1056 | 0 | } |
1057 | | |
1058 | | /* rh := rh + b*Z^6 */ |
1059 | 0 | if (!field_mul(group, tmp, &group->b, Z6, ctx)) |
1060 | 0 | goto err; |
1061 | 0 | if (!BN_mod_add_quick(rh, rh, tmp, p)) |
1062 | 0 | goto err; |
1063 | 3.28k | } else { |
1064 | | /* point->Z_is_one */ |
1065 | | |
1066 | | /* rh := (rh + a)*X */ |
1067 | 3.28k | if (!BN_mod_add_quick(rh, rh, &group->a, p)) |
1068 | 0 | goto err; |
1069 | 3.28k | if (!field_mul(group, rh, rh, &point->X, ctx)) |
1070 | 0 | goto err; |
1071 | | /* rh := rh + b */ |
1072 | 3.28k | if (!BN_mod_add_quick(rh, rh, &group->b, p)) |
1073 | 0 | goto err; |
1074 | 3.28k | } |
1075 | | |
1076 | | /* 'lh' := Y^2 */ |
1077 | 3.28k | if (!field_sqr(group, tmp, &point->Y, ctx)) |
1078 | 0 | goto err; |
1079 | | |
1080 | 3.28k | ret = (0 == BN_ucmp(tmp, rh)); |
1081 | | |
1082 | 3.28k | err: |
1083 | 3.28k | BN_CTX_end(ctx); |
1084 | 3.28k | BN_CTX_free(new_ctx); |
1085 | 3.28k | return ret; |
1086 | 3.28k | } |
1087 | | |
1088 | | |
1089 | | int |
1090 | | ec_GFp_simple_cmp(const EC_GROUP * group, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx) |
1091 | 0 | { |
1092 | | /* |
1093 | | * return values: -1 error 0 equal (in affine coordinates) 1 |
1094 | | * not equal |
1095 | | */ |
1096 | |
|
1097 | 0 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); |
1098 | 0 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
1099 | 0 | BN_CTX *new_ctx = NULL; |
1100 | 0 | BIGNUM *tmp1, *tmp2, *Za23, *Zb23; |
1101 | 0 | const BIGNUM *tmp1_, *tmp2_; |
1102 | 0 | int ret = -1; |
1103 | |
|
1104 | 0 | if (EC_POINT_is_at_infinity(group, a) > 0) { |
1105 | 0 | return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1; |
1106 | 0 | } |
1107 | 0 | if (EC_POINT_is_at_infinity(group, b) > 0) |
1108 | 0 | return 1; |
1109 | | |
1110 | 0 | if (a->Z_is_one && b->Z_is_one) { |
1111 | 0 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; |
1112 | 0 | } |
1113 | 0 | field_mul = group->meth->field_mul; |
1114 | 0 | field_sqr = group->meth->field_sqr; |
1115 | |
|
1116 | 0 | if (ctx == NULL) { |
1117 | 0 | ctx = new_ctx = BN_CTX_new(); |
1118 | 0 | if (ctx == NULL) |
1119 | 0 | return -1; |
1120 | 0 | } |
1121 | 0 | BN_CTX_start(ctx); |
1122 | 0 | if ((tmp1 = BN_CTX_get(ctx)) == NULL) |
1123 | 0 | goto end; |
1124 | 0 | if ((tmp2 = BN_CTX_get(ctx)) == NULL) |
1125 | 0 | goto end; |
1126 | 0 | if ((Za23 = BN_CTX_get(ctx)) == NULL) |
1127 | 0 | goto end; |
1128 | 0 | if ((Zb23 = BN_CTX_get(ctx)) == NULL) |
1129 | 0 | goto end; |
1130 | | |
1131 | | /* |
1132 | | * We have to decide whether (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, |
1133 | | * Y_b/Z_b^3), or equivalently, whether (X_a*Z_b^2, Y_a*Z_b^3) = |
1134 | | * (X_b*Z_a^2, Y_b*Z_a^3). |
1135 | | */ |
1136 | | |
1137 | 0 | if (!b->Z_is_one) { |
1138 | 0 | if (!field_sqr(group, Zb23, &b->Z, ctx)) |
1139 | 0 | goto end; |
1140 | 0 | if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) |
1141 | 0 | goto end; |
1142 | 0 | tmp1_ = tmp1; |
1143 | 0 | } else |
1144 | 0 | tmp1_ = &a->X; |
1145 | 0 | if (!a->Z_is_one) { |
1146 | 0 | if (!field_sqr(group, Za23, &a->Z, ctx)) |
1147 | 0 | goto end; |
1148 | 0 | if (!field_mul(group, tmp2, &b->X, Za23, ctx)) |
1149 | 0 | goto end; |
1150 | 0 | tmp2_ = tmp2; |
1151 | 0 | } else |
1152 | 0 | tmp2_ = &b->X; |
1153 | | |
1154 | | /* compare X_a*Z_b^2 with X_b*Z_a^2 */ |
1155 | 0 | if (BN_cmp(tmp1_, tmp2_) != 0) { |
1156 | 0 | ret = 1; /* points differ */ |
1157 | 0 | goto end; |
1158 | 0 | } |
1159 | 0 | if (!b->Z_is_one) { |
1160 | 0 | if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) |
1161 | 0 | goto end; |
1162 | 0 | if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) |
1163 | 0 | goto end; |
1164 | | /* tmp1_ = tmp1 */ |
1165 | 0 | } else |
1166 | 0 | tmp1_ = &a->Y; |
1167 | 0 | if (!a->Z_is_one) { |
1168 | 0 | if (!field_mul(group, Za23, Za23, &a->Z, ctx)) |
1169 | 0 | goto end; |
1170 | 0 | if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) |
1171 | 0 | goto end; |
1172 | | /* tmp2_ = tmp2 */ |
1173 | 0 | } else |
1174 | 0 | tmp2_ = &b->Y; |
1175 | | |
1176 | | /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ |
1177 | 0 | if (BN_cmp(tmp1_, tmp2_) != 0) { |
1178 | 0 | ret = 1; /* points differ */ |
1179 | 0 | goto end; |
1180 | 0 | } |
1181 | | /* points are equal */ |
1182 | 0 | ret = 0; |
1183 | |
|
1184 | 0 | end: |
1185 | 0 | BN_CTX_end(ctx); |
1186 | 0 | BN_CTX_free(new_ctx); |
1187 | 0 | return ret; |
1188 | 0 | } |
1189 | | |
1190 | | |
1191 | | int |
1192 | | ec_GFp_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) |
1193 | 0 | { |
1194 | 0 | BN_CTX *new_ctx = NULL; |
1195 | 0 | BIGNUM *x, *y; |
1196 | 0 | int ret = 0; |
1197 | |
|
1198 | 0 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0) |
1199 | 0 | return 1; |
1200 | | |
1201 | 0 | if (ctx == NULL) { |
1202 | 0 | ctx = new_ctx = BN_CTX_new(); |
1203 | 0 | if (ctx == NULL) |
1204 | 0 | return 0; |
1205 | 0 | } |
1206 | 0 | BN_CTX_start(ctx); |
1207 | 0 | if ((x = BN_CTX_get(ctx)) == NULL) |
1208 | 0 | goto err; |
1209 | 0 | if ((y = BN_CTX_get(ctx)) == NULL) |
1210 | 0 | goto err; |
1211 | | |
1212 | 0 | if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) |
1213 | 0 | goto err; |
1214 | 0 | if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) |
1215 | 0 | goto err; |
1216 | 0 | if (!point->Z_is_one) { |
1217 | 0 | ECerror(ERR_R_INTERNAL_ERROR); |
1218 | 0 | goto err; |
1219 | 0 | } |
1220 | 0 | ret = 1; |
1221 | |
|
1222 | 0 | err: |
1223 | 0 | BN_CTX_end(ctx); |
1224 | 0 | BN_CTX_free(new_ctx); |
1225 | 0 | return ret; |
1226 | 0 | } |
1227 | | |
1228 | | |
1229 | | int |
1230 | | ec_GFp_simple_points_make_affine(const EC_GROUP * group, size_t num, EC_POINT * points[], BN_CTX * ctx) |
1231 | 379 | { |
1232 | 379 | BN_CTX *new_ctx = NULL; |
1233 | 379 | BIGNUM *tmp0, *tmp1; |
1234 | 379 | size_t pow2 = 0; |
1235 | 379 | BIGNUM **heap = NULL; |
1236 | 379 | size_t i; |
1237 | 379 | int ret = 0; |
1238 | | |
1239 | 379 | if (num == 0) |
1240 | 0 | return 1; |
1241 | | |
1242 | 379 | if (ctx == NULL) { |
1243 | 0 | ctx = new_ctx = BN_CTX_new(); |
1244 | 0 | if (ctx == NULL) |
1245 | 0 | return 0; |
1246 | 0 | } |
1247 | 379 | BN_CTX_start(ctx); |
1248 | 379 | if ((tmp0 = BN_CTX_get(ctx)) == NULL) |
1249 | 0 | goto err; |
1250 | 379 | if ((tmp1 = BN_CTX_get(ctx)) == NULL) |
1251 | 0 | goto err; |
1252 | | |
1253 | | /* |
1254 | | * Before converting the individual points, compute inverses of all Z |
1255 | | * values. Modular inversion is rather slow, but luckily we can do |
1256 | | * with a single explicit inversion, plus about 3 multiplications per |
1257 | | * input value. |
1258 | | */ |
1259 | | |
1260 | 379 | pow2 = 1; |
1261 | 1.80k | while (num > pow2) |
1262 | 1.42k | pow2 <<= 1; |
1263 | | /* |
1264 | | * Now pow2 is the smallest power of 2 satifsying pow2 >= num. We |
1265 | | * need twice that. |
1266 | | */ |
1267 | 379 | pow2 <<= 1; |
1268 | | |
1269 | 379 | heap = reallocarray(NULL, pow2, sizeof heap[0]); |
1270 | 379 | if (heap == NULL) |
1271 | 0 | goto err; |
1272 | | |
1273 | | /* |
1274 | | * The array is used as a binary tree, exactly as in heapsort: |
1275 | | * |
1276 | | * heap[1] heap[2] heap[3] heap[4] heap[5] |
1277 | | * heap[6] heap[7] heap[8]heap[9] heap[10]heap[11] |
1278 | | * heap[12]heap[13] heap[14] heap[15] |
1279 | | * |
1280 | | * We put the Z's in the last line; then we set each other node to the |
1281 | | * product of its two child-nodes (where empty or 0 entries are |
1282 | | * treated as ones); then we invert heap[1]; then we invert each |
1283 | | * other node by replacing it by the product of its parent (after |
1284 | | * inversion) and its sibling (before inversion). |
1285 | | */ |
1286 | 379 | heap[0] = NULL; |
1287 | 5.43k | for (i = pow2 / 2 - 1; i > 0; i--) |
1288 | 5.05k | heap[i] = NULL; |
1289 | 5.61k | for (i = 0; i < num; i++) |
1290 | 5.23k | heap[pow2 / 2 + i] = &points[i]->Z; |
1291 | 581 | for (i = pow2 / 2 + num; i < pow2; i++) |
1292 | 202 | heap[i] = NULL; |
1293 | | |
1294 | | /* set each node to the product of its children */ |
1295 | 5.43k | for (i = pow2 / 2 - 1; i > 0; i--) { |
1296 | 5.05k | heap[i] = BN_new(); |
1297 | 5.05k | if (heap[i] == NULL) |
1298 | 0 | goto err; |
1299 | | |
1300 | 5.05k | if (heap[2 * i] != NULL) { |
1301 | 4.97k | if ((heap[2 * i + 1] == NULL) || BN_is_zero(heap[2 * i + 1])) { |
1302 | 123 | if (!BN_copy(heap[i], heap[2 * i])) |
1303 | 0 | goto err; |
1304 | 4.85k | } else { |
1305 | 4.85k | if (BN_is_zero(heap[2 * i])) { |
1306 | 0 | if (!BN_copy(heap[i], heap[2 * i + 1])) |
1307 | 0 | goto err; |
1308 | 4.85k | } else { |
1309 | 4.85k | if (!group->meth->field_mul(group, heap[i], |
1310 | 4.85k | heap[2 * i], heap[2 * i + 1], ctx)) |
1311 | 0 | goto err; |
1312 | 4.85k | } |
1313 | 4.85k | } |
1314 | 4.97k | } |
1315 | 5.05k | } |
1316 | | |
1317 | | /* invert heap[1] */ |
1318 | 379 | if (!BN_is_zero(heap[1])) { |
1319 | 379 | if (BN_mod_inverse_ct(heap[1], heap[1], &group->field, ctx) == NULL) { |
1320 | 0 | ECerror(ERR_R_BN_LIB); |
1321 | 0 | goto err; |
1322 | 0 | } |
1323 | 379 | } |
1324 | 379 | if (group->meth->field_encode != 0) { |
1325 | | /* |
1326 | | * in the Montgomery case, we just turned R*H (representing |
1327 | | * H) into 1/(R*H), but we need R*(1/H) (representing |
1328 | | * 1/H); i.e. we have need to multiply by the Montgomery |
1329 | | * factor twice |
1330 | | */ |
1331 | 379 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) |
1332 | 0 | goto err; |
1333 | 379 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) |
1334 | 0 | goto err; |
1335 | 379 | } |
1336 | | /* set other heap[i]'s to their inverses */ |
1337 | 5.35k | for (i = 2; i < pow2 / 2 + num; i += 2) { |
1338 | | /* i is even */ |
1339 | 4.97k | if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) { |
1340 | 4.85k | if (!group->meth->field_mul(group, tmp0, heap[i / 2], heap[i + 1], ctx)) |
1341 | 0 | goto err; |
1342 | 4.85k | if (!group->meth->field_mul(group, tmp1, heap[i / 2], heap[i], ctx)) |
1343 | 0 | goto err; |
1344 | 4.85k | if (!BN_copy(heap[i], tmp0)) |
1345 | 0 | goto err; |
1346 | 4.85k | if (!BN_copy(heap[i + 1], tmp1)) |
1347 | 0 | goto err; |
1348 | 4.85k | } else { |
1349 | 123 | if (!BN_copy(heap[i], heap[i / 2])) |
1350 | 0 | goto err; |
1351 | 123 | } |
1352 | 4.97k | } |
1353 | | |
1354 | | /* |
1355 | | * we have replaced all non-zero Z's by their inverses, now fix up |
1356 | | * all the points |
1357 | | */ |
1358 | 5.61k | for (i = 0; i < num; i++) { |
1359 | 5.23k | EC_POINT *p = points[i]; |
1360 | | |
1361 | 5.23k | if (!BN_is_zero(&p->Z)) { |
1362 | | /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ |
1363 | | |
1364 | 5.23k | if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) |
1365 | 0 | goto err; |
1366 | 5.23k | if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) |
1367 | 0 | goto err; |
1368 | | |
1369 | 5.23k | if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) |
1370 | 0 | goto err; |
1371 | 5.23k | if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) |
1372 | 0 | goto err; |
1373 | | |
1374 | 5.23k | if (group->meth->field_set_to_one != 0) { |
1375 | 5.23k | if (!group->meth->field_set_to_one(group, &p->Z, ctx)) |
1376 | 0 | goto err; |
1377 | 5.23k | } else { |
1378 | 0 | if (!BN_one(&p->Z)) |
1379 | 0 | goto err; |
1380 | 0 | } |
1381 | 5.23k | p->Z_is_one = 1; |
1382 | 5.23k | } |
1383 | 5.23k | } |
1384 | | |
1385 | 379 | ret = 1; |
1386 | | |
1387 | 379 | err: |
1388 | 379 | BN_CTX_end(ctx); |
1389 | 379 | BN_CTX_free(new_ctx); |
1390 | 379 | if (heap != NULL) { |
1391 | | /* |
1392 | | * heap[pow2/2] .. heap[pow2-1] have not been allocated |
1393 | | * locally! |
1394 | | */ |
1395 | 5.43k | for (i = pow2 / 2 - 1; i > 0; i--) { |
1396 | 5.05k | BN_clear_free(heap[i]); |
1397 | 5.05k | } |
1398 | 379 | free(heap); |
1399 | 379 | } |
1400 | 379 | return ret; |
1401 | 379 | } |
1402 | | |
1403 | | |
1404 | | int |
1405 | | ec_GFp_simple_field_mul(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) |
1406 | 0 | { |
1407 | 0 | return BN_mod_mul(r, a, b, &group->field, ctx); |
1408 | 0 | } |
1409 | | |
1410 | | int |
1411 | | ec_GFp_simple_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, BN_CTX * ctx) |
1412 | 0 | { |
1413 | 0 | return BN_mod_sqr(r, a, &group->field, ctx); |
1414 | 0 | } |
1415 | | |
1416 | | /* |
1417 | | * Apply randomization of EC point projective coordinates: |
1418 | | * |
1419 | | * (X, Y, Z) = (lambda^2 * X, lambda^3 * Y, lambda * Z) |
1420 | | * |
1421 | | * where lambda is in the interval [1, group->field). |
1422 | | */ |
1423 | | int |
1424 | | ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx) |
1425 | 2.31k | { |
1426 | 2.31k | BIGNUM *lambda = NULL; |
1427 | 2.31k | BIGNUM *tmp = NULL; |
1428 | 2.31k | int ret = 0; |
1429 | | |
1430 | 2.31k | BN_CTX_start(ctx); |
1431 | 2.31k | if ((lambda = BN_CTX_get(ctx)) == NULL) |
1432 | 0 | goto err; |
1433 | 2.31k | if ((tmp = BN_CTX_get(ctx)) == NULL) |
1434 | 0 | goto err; |
1435 | | |
1436 | | /* Generate lambda in [1, group->field - 1] */ |
1437 | 2.31k | if (!bn_rand_interval(lambda, BN_value_one(), &group->field)) |
1438 | 0 | goto err; |
1439 | | |
1440 | 2.31k | if (group->meth->field_encode != NULL && |
1441 | 2.31k | !group->meth->field_encode(group, lambda, lambda, ctx)) |
1442 | 0 | goto err; |
1443 | | |
1444 | | /* Z = lambda * Z */ |
1445 | 2.31k | if (!group->meth->field_mul(group, &p->Z, lambda, &p->Z, ctx)) |
1446 | 0 | goto err; |
1447 | | |
1448 | | /* tmp = lambda^2 */ |
1449 | 2.31k | if (!group->meth->field_sqr(group, tmp, lambda, ctx)) |
1450 | 0 | goto err; |
1451 | | |
1452 | | /* X = lambda^2 * X */ |
1453 | 2.31k | if (!group->meth->field_mul(group, &p->X, tmp, &p->X, ctx)) |
1454 | 0 | goto err; |
1455 | | |
1456 | | /* tmp = lambda^3 */ |
1457 | 2.31k | if (!group->meth->field_mul(group, tmp, tmp, lambda, ctx)) |
1458 | 0 | goto err; |
1459 | | |
1460 | | /* Y = lambda^3 * Y */ |
1461 | 2.31k | if (!group->meth->field_mul(group, &p->Y, tmp, &p->Y, ctx)) |
1462 | 0 | goto err; |
1463 | | |
1464 | | /* Disable optimized arithmetics after replacing Z by lambda * Z. */ |
1465 | 2.31k | p->Z_is_one = 0; |
1466 | | |
1467 | 2.31k | ret = 1; |
1468 | | |
1469 | 2.31k | err: |
1470 | 2.31k | BN_CTX_end(ctx); |
1471 | 2.31k | return ret; |
1472 | 2.31k | } |
1473 | | |
1474 | | |
1475 | 5.45k | #define EC_POINT_BN_set_flags(P, flags) do { \ |
1476 | 5.45k | BN_set_flags(&(P)->X, (flags)); \ |
1477 | 5.45k | BN_set_flags(&(P)->Y, (flags)); \ |
1478 | 5.45k | BN_set_flags(&(P)->Z, (flags)); \ |
1479 | 5.45k | } while(0) |
1480 | | |
1481 | 1.16M | #define EC_POINT_CSWAP(c, a, b, w, t) do { \ |
1482 | 1.16M | if (!BN_swap_ct(c, &(a)->X, &(b)->X, w) || \ |
1483 | 1.16M | !BN_swap_ct(c, &(a)->Y, &(b)->Y, w) || \ |
1484 | 1.16M | !BN_swap_ct(c, &(a)->Z, &(b)->Z, w)) \ |
1485 | 1.16M | goto err; \ |
1486 | 1.16M | t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ |
1487 | 1.16M | (a)->Z_is_one ^= (t); \ |
1488 | 1.16M | (b)->Z_is_one ^= (t); \ |
1489 | 1.16M | } while(0) |
1490 | | |
1491 | | /* |
1492 | | * This function computes (in constant time) a point multiplication over the |
1493 | | * EC group. |
1494 | | * |
1495 | | * At a high level, it is Montgomery ladder with conditional swaps. |
1496 | | * |
1497 | | * It performs either a fixed point multiplication |
1498 | | * (scalar * generator) |
1499 | | * when point is NULL, or a variable point multiplication |
1500 | | * (scalar * point) |
1501 | | * when point is not NULL. |
1502 | | * |
1503 | | * scalar should be in the range [0,n) otherwise all constant time bets are off. |
1504 | | * |
1505 | | * NB: This says nothing about EC_POINT_add and EC_POINT_dbl, |
1506 | | * which of course are not constant time themselves. |
1507 | | * |
1508 | | * The product is stored in r. |
1509 | | * |
1510 | | * Returns 1 on success, 0 otherwise. |
1511 | | */ |
1512 | | static int |
1513 | | ec_GFp_simple_mul_ct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
1514 | | const EC_POINT *point, BN_CTX *ctx) |
1515 | 2.72k | { |
1516 | 2.72k | int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; |
1517 | 2.72k | EC_POINT *s = NULL; |
1518 | 2.72k | BIGNUM *k = NULL; |
1519 | 2.72k | BIGNUM *lambda = NULL; |
1520 | 2.72k | BIGNUM *cardinality = NULL; |
1521 | 2.72k | BN_CTX *new_ctx = NULL; |
1522 | 2.72k | int ret = 0; |
1523 | | |
1524 | 2.72k | if (ctx == NULL && (ctx = new_ctx = BN_CTX_new()) == NULL) |
1525 | 0 | return 0; |
1526 | | |
1527 | 2.72k | BN_CTX_start(ctx); |
1528 | | |
1529 | 2.72k | if ((s = EC_POINT_new(group)) == NULL) |
1530 | 0 | goto err; |
1531 | | |
1532 | 2.72k | if (point == NULL) { |
1533 | 2.69k | if (!EC_POINT_copy(s, group->generator)) |
1534 | 0 | goto err; |
1535 | 2.69k | } else { |
1536 | 27 | if (!EC_POINT_copy(s, point)) |
1537 | 0 | goto err; |
1538 | 27 | } |
1539 | | |
1540 | 2.72k | EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); |
1541 | | |
1542 | 2.72k | if ((cardinality = BN_CTX_get(ctx)) == NULL) |
1543 | 0 | goto err; |
1544 | 2.72k | if ((lambda = BN_CTX_get(ctx)) == NULL) |
1545 | 0 | goto err; |
1546 | 2.72k | if ((k = BN_CTX_get(ctx)) == NULL) |
1547 | 0 | goto err; |
1548 | 2.72k | if (!BN_mul(cardinality, &group->order, &group->cofactor, ctx)) |
1549 | 0 | goto err; |
1550 | | |
1551 | | /* |
1552 | | * Group cardinalities are often on a word boundary. |
1553 | | * So when we pad the scalar, some timing diff might |
1554 | | * pop if it needs to be expanded due to carries. |
1555 | | * So expand ahead of time. |
1556 | | */ |
1557 | 2.72k | cardinality_bits = BN_num_bits(cardinality); |
1558 | 2.72k | group_top = cardinality->top; |
1559 | 2.72k | if ((bn_wexpand(k, group_top + 2) == NULL) || |
1560 | 2.72k | (bn_wexpand(lambda, group_top + 2) == NULL)) |
1561 | 0 | goto err; |
1562 | | |
1563 | 2.72k | if (!BN_copy(k, scalar)) |
1564 | 0 | goto err; |
1565 | | |
1566 | 2.72k | BN_set_flags(k, BN_FLG_CONSTTIME); |
1567 | | |
1568 | 2.72k | if (BN_num_bits(k) > cardinality_bits || BN_is_negative(k)) { |
1569 | | /* |
1570 | | * This is an unusual input, and we don't guarantee |
1571 | | * constant-timeness |
1572 | | */ |
1573 | 434 | if (!BN_nnmod(k, k, cardinality, ctx)) |
1574 | 0 | goto err; |
1575 | 434 | } |
1576 | | |
1577 | 2.72k | if (!BN_add(lambda, k, cardinality)) |
1578 | 0 | goto err; |
1579 | 2.72k | BN_set_flags(lambda, BN_FLG_CONSTTIME); |
1580 | 2.72k | if (!BN_add(k, lambda, cardinality)) |
1581 | 0 | goto err; |
1582 | | /* |
1583 | | * lambda := scalar + cardinality |
1584 | | * k := scalar + 2*cardinality |
1585 | | */ |
1586 | 2.72k | kbit = BN_is_bit_set(lambda, cardinality_bits); |
1587 | 2.72k | if (!BN_swap_ct(kbit, k, lambda, group_top + 2)) |
1588 | 0 | goto err; |
1589 | | |
1590 | 2.72k | group_top = group->field.top; |
1591 | 2.72k | if ((bn_wexpand(&s->X, group_top) == NULL) || |
1592 | 2.72k | (bn_wexpand(&s->Y, group_top) == NULL) || |
1593 | 2.72k | (bn_wexpand(&s->Z, group_top) == NULL) || |
1594 | 2.72k | (bn_wexpand(&r->X, group_top) == NULL) || |
1595 | 2.72k | (bn_wexpand(&r->Y, group_top) == NULL) || |
1596 | 2.72k | (bn_wexpand(&r->Z, group_top) == NULL)) |
1597 | 0 | goto err; |
1598 | | |
1599 | | /* |
1600 | | * Apply coordinate blinding for EC_POINT if the underlying EC_METHOD |
1601 | | * implements it. |
1602 | | */ |
1603 | 2.72k | if (!ec_point_blind_coordinates(group, s, ctx)) |
1604 | 0 | goto err; |
1605 | | |
1606 | | /* top bit is a 1, in a fixed pos */ |
1607 | 2.72k | if (!EC_POINT_copy(r, s)) |
1608 | 0 | goto err; |
1609 | | |
1610 | 2.72k | EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); |
1611 | | |
1612 | 2.72k | if (!EC_POINT_dbl(group, s, s, ctx)) |
1613 | 0 | goto err; |
1614 | | |
1615 | 2.72k | pbit = 0; |
1616 | | |
1617 | | /* |
1618 | | * The ladder step, with branches, is |
1619 | | * |
1620 | | * k[i] == 0: S = add(R, S), R = dbl(R) |
1621 | | * k[i] == 1: R = add(S, R), S = dbl(S) |
1622 | | * |
1623 | | * Swapping R, S conditionally on k[i] leaves you with state |
1624 | | * |
1625 | | * k[i] == 0: T, U = R, S |
1626 | | * k[i] == 1: T, U = S, R |
1627 | | * |
1628 | | * Then perform the ECC ops. |
1629 | | * |
1630 | | * U = add(T, U) |
1631 | | * T = dbl(T) |
1632 | | * |
1633 | | * Which leaves you with state |
1634 | | * |
1635 | | * k[i] == 0: U = add(R, S), T = dbl(R) |
1636 | | * k[i] == 1: U = add(S, R), T = dbl(S) |
1637 | | * |
1638 | | * Swapping T, U conditionally on k[i] leaves you with state |
1639 | | * |
1640 | | * k[i] == 0: R, S = T, U |
1641 | | * k[i] == 1: R, S = U, T |
1642 | | * |
1643 | | * Which leaves you with state |
1644 | | * |
1645 | | * k[i] == 0: S = add(R, S), R = dbl(R) |
1646 | | * k[i] == 1: R = add(S, R), S = dbl(S) |
1647 | | * |
1648 | | * So we get the same logic, but instead of a branch it's a |
1649 | | * conditional swap, followed by ECC ops, then another conditional swap. |
1650 | | * |
1651 | | * Optimization: The end of iteration i and start of i-1 looks like |
1652 | | * |
1653 | | * ... |
1654 | | * CSWAP(k[i], R, S) |
1655 | | * ECC |
1656 | | * CSWAP(k[i], R, S) |
1657 | | * (next iteration) |
1658 | | * CSWAP(k[i-1], R, S) |
1659 | | * ECC |
1660 | | * CSWAP(k[i-1], R, S) |
1661 | | * ... |
1662 | | * |
1663 | | * So instead of two contiguous swaps, you can merge the condition |
1664 | | * bits and do a single swap. |
1665 | | * |
1666 | | * k[i] k[i-1] Outcome |
1667 | | * 0 0 No Swap |
1668 | | * 0 1 Swap |
1669 | | * 1 0 Swap |
1670 | | * 1 1 No Swap |
1671 | | * |
1672 | | * This is XOR. pbit tracks the previous bit of k. |
1673 | | */ |
1674 | | |
1675 | 1.16M | for (i = cardinality_bits - 1; i >= 0; i--) { |
1676 | 1.16M | kbit = BN_is_bit_set(k, i) ^ pbit; |
1677 | 1.16M | EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); |
1678 | 1.16M | if (!EC_POINT_add(group, s, r, s, ctx)) |
1679 | 0 | goto err; |
1680 | 1.16M | if (!EC_POINT_dbl(group, r, r, ctx)) |
1681 | 0 | goto err; |
1682 | | /* |
1683 | | * pbit logic merges this cswap with that of the |
1684 | | * next iteration |
1685 | | */ |
1686 | 1.16M | pbit ^= kbit; |
1687 | 1.16M | } |
1688 | | /* one final cswap to move the right value into r */ |
1689 | 2.72k | EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); |
1690 | | |
1691 | 2.72k | ret = 1; |
1692 | | |
1693 | 2.72k | err: |
1694 | 2.72k | EC_POINT_free(s); |
1695 | 2.72k | if (ctx != NULL) |
1696 | 2.72k | BN_CTX_end(ctx); |
1697 | 2.72k | BN_CTX_free(new_ctx); |
1698 | | |
1699 | 2.72k | return ret; |
1700 | 2.72k | } |
1701 | | |
1702 | | #undef EC_POINT_BN_set_flags |
1703 | | #undef EC_POINT_CSWAP |
1704 | | |
1705 | | int |
1706 | | ec_GFp_simple_mul_generator_ct(const EC_GROUP *group, EC_POINT *r, |
1707 | | const BIGNUM *scalar, BN_CTX *ctx) |
1708 | 2.69k | { |
1709 | 2.69k | return ec_GFp_simple_mul_ct(group, r, scalar, NULL, ctx); |
1710 | 2.69k | } |
1711 | | |
1712 | | int |
1713 | | ec_GFp_simple_mul_single_ct(const EC_GROUP *group, EC_POINT *r, |
1714 | | const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) |
1715 | 27 | { |
1716 | 27 | return ec_GFp_simple_mul_ct(group, r, scalar, point, ctx); |
1717 | 27 | } |
1718 | | |
1719 | | int |
1720 | | ec_GFp_simple_mul_double_nonct(const EC_GROUP *group, EC_POINT *r, |
1721 | | const BIGNUM *g_scalar, const BIGNUM *p_scalar, const EC_POINT *point, |
1722 | | BN_CTX *ctx) |
1723 | 441 | { |
1724 | 441 | return ec_wNAF_mul(group, r, g_scalar, 1, &point, &p_scalar, ctx); |
1725 | 441 | } |