/src/libressl/crypto/bn/bn_isqrt.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* $OpenBSD: bn_isqrt.c,v 1.2 2022/07/13 11:20:00 tb Exp $ */ |
2 | | /* |
3 | | * Copyright (c) 2022 Theo Buehler <tb@openbsd.org> |
4 | | * |
5 | | * Permission to use, copy, modify, and distribute this software for any |
6 | | * purpose with or without fee is hereby granted, provided that the above |
7 | | * copyright notice and this permission notice appear in all copies. |
8 | | * |
9 | | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
10 | | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
11 | | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
12 | | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
13 | | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
14 | | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
15 | | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
16 | | */ |
17 | | |
18 | | #include <stddef.h> |
19 | | #include <stdint.h> |
20 | | |
21 | | #include <openssl/bn.h> |
22 | | #include <openssl/err.h> |
23 | | |
24 | | #include "bn_lcl.h" |
25 | | |
26 | | #define CTASSERT(x) extern char _ctassert[(x) ? 1 : -1 ] \ |
27 | | __attribute__((__unused__)) |
28 | | |
29 | | /* |
30 | | * Calculate integer square root of |n| using a variant of Newton's method. |
31 | | * |
32 | | * Returns the integer square root of |n| in the caller-provided |out_sqrt|; |
33 | | * |*out_perfect| is set to 1 if and only if |n| is a perfect square. |
34 | | * One of |out_sqrt| and |out_perfect| can be NULL; |in_ctx| can be NULL. |
35 | | * |
36 | | * Returns 0 on error, 1 on success. |
37 | | * |
38 | | * Adapted from pure Python describing cpython's math.isqrt(), without bothering |
39 | | * with any of the optimizations in the C code. A correctness proof is here: |
40 | | * https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean |
41 | | * The comments in the Python code also give a rather detailed proof. |
42 | | */ |
43 | | |
44 | | int |
45 | | bn_isqrt(BIGNUM *out_sqrt, int *out_perfect, const BIGNUM *n, BN_CTX *in_ctx) |
46 | 0 | { |
47 | 0 | BN_CTX *ctx = NULL; |
48 | 0 | BIGNUM *a, *b; |
49 | 0 | int c, d, e, s; |
50 | 0 | int cmp, perfect; |
51 | 0 | int ret = 0; |
52 | |
|
53 | 0 | if (out_perfect == NULL && out_sqrt == NULL) { |
54 | 0 | BNerror(ERR_R_PASSED_NULL_PARAMETER); |
55 | 0 | goto err; |
56 | 0 | } |
57 | | |
58 | 0 | if (BN_is_negative(n)) { |
59 | 0 | BNerror(BN_R_INVALID_RANGE); |
60 | 0 | goto err; |
61 | 0 | } |
62 | | |
63 | 0 | if ((ctx = in_ctx) == NULL) |
64 | 0 | ctx = BN_CTX_new(); |
65 | 0 | if (ctx == NULL) |
66 | 0 | goto err; |
67 | | |
68 | 0 | BN_CTX_start(ctx); |
69 | |
|
70 | 0 | if ((a = BN_CTX_get(ctx)) == NULL) |
71 | 0 | goto err; |
72 | 0 | if ((b = BN_CTX_get(ctx)) == NULL) |
73 | 0 | goto err; |
74 | | |
75 | 0 | if (BN_is_zero(n)) { |
76 | 0 | perfect = 1; |
77 | 0 | if (!BN_zero(a)) |
78 | 0 | goto err; |
79 | 0 | goto done; |
80 | 0 | } |
81 | | |
82 | 0 | if (!BN_one(a)) |
83 | 0 | goto err; |
84 | | |
85 | 0 | c = (BN_num_bits(n) - 1) / 2; |
86 | 0 | d = 0; |
87 | | |
88 | | /* Calculate s = floor(log(c)). */ |
89 | 0 | if (!BN_set_word(b, c)) |
90 | 0 | goto err; |
91 | 0 | s = BN_num_bits(b) - 1; |
92 | | |
93 | | /* |
94 | | * By definition, the loop below is run <= floor(log(log(n))) times. |
95 | | * Comments in the cpython code establish the loop invariant that |
96 | | * |
97 | | * (a - 1)^2 < n / 4^(c - d) < (a + 1)^2 |
98 | | * |
99 | | * holds true in every iteration. Once this is proved via induction, |
100 | | * correctness of the algorithm is easy. |
101 | | * |
102 | | * Roughly speaking, A = (a << (d - e)) is used for one Newton step |
103 | | * "a = (A >> 1) + (m >> 1) / A" approximating m = (n >> 2 * (c - d)). |
104 | | */ |
105 | |
|
106 | 0 | for (; s >= 0; s--) { |
107 | 0 | e = d; |
108 | 0 | d = c >> s; |
109 | |
|
110 | 0 | if (!BN_rshift(b, n, 2 * c - d - e + 1)) |
111 | 0 | goto err; |
112 | | |
113 | 0 | if (!BN_div_ct(b, NULL, b, a, ctx)) |
114 | 0 | goto err; |
115 | | |
116 | 0 | if (!BN_lshift(a, a, d - e - 1)) |
117 | 0 | goto err; |
118 | | |
119 | 0 | if (!BN_add(a, a, b)) |
120 | 0 | goto err; |
121 | 0 | } |
122 | | |
123 | | /* |
124 | | * The loop invariant implies that either a or a - 1 is isqrt(n). |
125 | | * Figure out which one it is. The invariant also implies that for |
126 | | * a perfect square n, a must be the square root. |
127 | | */ |
128 | | |
129 | 0 | if (!BN_sqr(b, a, ctx)) |
130 | 0 | goto err; |
131 | | |
132 | | /* If a^2 > n, we must have isqrt(n) == a - 1. */ |
133 | 0 | if ((cmp = BN_cmp(b, n)) > 0) { |
134 | 0 | if (!BN_sub_word(a, 1)) |
135 | 0 | goto err; |
136 | 0 | } |
137 | | |
138 | 0 | perfect = cmp == 0; |
139 | |
|
140 | 0 | done: |
141 | 0 | if (out_perfect != NULL) |
142 | 0 | *out_perfect = perfect; |
143 | |
|
144 | 0 | if (out_sqrt != NULL) { |
145 | 0 | if (!BN_copy(out_sqrt, a)) |
146 | 0 | goto err; |
147 | 0 | } |
148 | | |
149 | 0 | ret = 1; |
150 | |
|
151 | 0 | err: |
152 | 0 | BN_CTX_end(ctx); |
153 | |
|
154 | 0 | if (ctx != in_ctx) |
155 | 0 | BN_CTX_free(ctx); |
156 | |
|
157 | 0 | return ret; |
158 | 0 | } |
159 | | |
160 | | /* |
161 | | * is_square_mod_N[r % N] indicates whether r % N has a square root modulo N. |
162 | | * The tables are generated in regress/lib/libcrypto/bn/bn_isqrt.c. |
163 | | */ |
164 | | |
165 | | const uint8_t is_square_mod_11[] = { |
166 | | 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, |
167 | | }; |
168 | | CTASSERT(sizeof(is_square_mod_11) == 11); |
169 | | |
170 | | const uint8_t is_square_mod_63[] = { |
171 | | 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, |
172 | | 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, |
173 | | 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, |
174 | | 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, |
175 | | }; |
176 | | CTASSERT(sizeof(is_square_mod_63) == 63); |
177 | | |
178 | | const uint8_t is_square_mod_64[] = { |
179 | | 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, |
180 | | 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, |
181 | | 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, |
182 | | 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, |
183 | | }; |
184 | | CTASSERT(sizeof(is_square_mod_64) == 64); |
185 | | |
186 | | const uint8_t is_square_mod_65[] = { |
187 | | 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, |
188 | | 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, |
189 | | 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, |
190 | | 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, |
191 | | 1, |
192 | | }; |
193 | | CTASSERT(sizeof(is_square_mod_65) == 65); |
194 | | |
195 | | /* |
196 | | * Determine whether n is a perfect square or not. |
197 | | * |
198 | | * Returns 1 on success and 0 on error. In case of success, |*out_perfect| is |
199 | | * set to 1 if and only if |n| is a perfect square. |
200 | | */ |
201 | | |
202 | | int |
203 | | bn_is_perfect_square(int *out_perfect, const BIGNUM *n, BN_CTX *ctx) |
204 | 0 | { |
205 | 0 | BN_ULONG r; |
206 | |
|
207 | 0 | *out_perfect = 0; |
208 | |
|
209 | 0 | if (BN_is_negative(n)) |
210 | 0 | return 1; |
211 | | |
212 | | /* |
213 | | * Before performing an expensive bn_isqrt() operation, weed out many |
214 | | * obvious non-squares. See H. Cohen, "A course in computational |
215 | | * algebraic number theory", Algorithm 1.7.3. |
216 | | * |
217 | | * The idea is that a square remains a square when reduced modulo any |
218 | | * number. The moduli are chosen in such a way that a non-square has |
219 | | * probability < 1% of passing the four table lookups. |
220 | | */ |
221 | | |
222 | | /* n % 64 */ |
223 | 0 | r = BN_lsw(n) & 0x3f; |
224 | |
|
225 | 0 | if (!is_square_mod_64[r % 64]) |
226 | 0 | return 1; |
227 | | |
228 | 0 | if ((r = BN_mod_word(n, 11 * 63 * 65)) == (BN_ULONG)-1) |
229 | 0 | return 0; |
230 | | |
231 | 0 | if (!is_square_mod_63[r % 63] || |
232 | 0 | !is_square_mod_65[r % 65] || |
233 | 0 | !is_square_mod_11[r % 11]) |
234 | 0 | return 1; |
235 | | |
236 | 0 | return bn_isqrt(NULL, out_perfect, n, ctx); |
237 | 0 | } |