Coverage Report

Created: 2022-08-24 06:30

/src/libressl/crypto/ec/ec2_mult.c
Line
Count
Source (jump to first uncovered line)
1
/* $OpenBSD: ec2_mult.c,v 1.13 2018/07/23 18:24:22 tb Exp $ */
2
/* ====================================================================
3
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4
 *
5
 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6
 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7
 * to the OpenSSL project.
8
 *
9
 * The ECC Code is licensed pursuant to the OpenSSL open source
10
 * license provided below.
11
 *
12
 * The software is originally written by Sheueling Chang Shantz and
13
 * Douglas Stebila of Sun Microsystems Laboratories.
14
 *
15
 */
16
/* ====================================================================
17
 * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
18
 *
19
 * Redistribution and use in source and binary forms, with or without
20
 * modification, are permitted provided that the following conditions
21
 * are met:
22
 *
23
 * 1. Redistributions of source code must retain the above copyright
24
 *    notice, this list of conditions and the following disclaimer.
25
 *
26
 * 2. Redistributions in binary form must reproduce the above copyright
27
 *    notice, this list of conditions and the following disclaimer in
28
 *    the documentation and/or other materials provided with the
29
 *    distribution.
30
 *
31
 * 3. All advertising materials mentioning features or use of this
32
 *    software must display the following acknowledgment:
33
 *    "This product includes software developed by the OpenSSL Project
34
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35
 *
36
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37
 *    endorse or promote products derived from this software without
38
 *    prior written permission. For written permission, please contact
39
 *    openssl-core@openssl.org.
40
 *
41
 * 5. Products derived from this software may not be called "OpenSSL"
42
 *    nor may "OpenSSL" appear in their names without prior written
43
 *    permission of the OpenSSL Project.
44
 *
45
 * 6. Redistributions of any form whatsoever must retain the following
46
 *    acknowledgment:
47
 *    "This product includes software developed by the OpenSSL Project
48
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49
 *
50
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61
 * OF THE POSSIBILITY OF SUCH DAMAGE.
62
 * ====================================================================
63
 *
64
 * This product includes cryptographic software written by Eric Young
65
 * (eay@cryptsoft.com).  This product includes software written by Tim
66
 * Hudson (tjh@cryptsoft.com).
67
 *
68
 */
69
70
#include <openssl/opensslconf.h>
71
72
#include <openssl/err.h>
73
74
#include "bn_lcl.h"
75
#include "ec_lcl.h"
76
77
#ifndef OPENSSL_NO_EC2M
78
79
80
/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
81
 * coordinates.
82
 * Uses algorithm Mdouble in appendix of
83
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
84
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
85
 * modified to not require precomputation of c=b^{2^{m-1}}.
86
 */
87
static int
88
gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx)
89
0
{
90
0
  BIGNUM *t1;
91
0
  int ret = 0;
92
93
  /* Since Mdouble is static we can guarantee that ctx != NULL. */
94
0
  BN_CTX_start(ctx);
95
0
  if ((t1 = BN_CTX_get(ctx)) == NULL)
96
0
    goto err;
97
98
0
  if (!group->meth->field_sqr(group, x, x, ctx))
99
0
    goto err;
100
0
  if (!group->meth->field_sqr(group, t1, z, ctx))
101
0
    goto err;
102
0
  if (!group->meth->field_mul(group, z, x, t1, ctx))
103
0
    goto err;
104
0
  if (!group->meth->field_sqr(group, x, x, ctx))
105
0
    goto err;
106
0
  if (!group->meth->field_sqr(group, t1, t1, ctx))
107
0
    goto err;
108
0
  if (!group->meth->field_mul(group, t1, &group->b, t1, ctx))
109
0
    goto err;
110
0
  if (!BN_GF2m_add(x, x, t1))
111
0
    goto err;
112
113
0
  ret = 1;
114
115
0
 err:
116
0
  BN_CTX_end(ctx);
117
0
  return ret;
118
0
}
119
120
/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
121
 * projective coordinates.
122
 * Uses algorithm Madd in appendix of
123
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
124
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
125
 */
126
static int
127
gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1,
128
    const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)
129
0
{
130
0
  BIGNUM *t1, *t2;
131
0
  int ret = 0;
132
133
  /* Since Madd is static we can guarantee that ctx != NULL. */
134
0
  BN_CTX_start(ctx);
135
0
  if ((t1 = BN_CTX_get(ctx)) == NULL)
136
0
    goto err;
137
0
  if ((t2 = BN_CTX_get(ctx)) == NULL)
138
0
    goto err;
139
140
0
  if (!BN_copy(t1, x))
141
0
    goto err;
142
0
  if (!group->meth->field_mul(group, x1, x1, z2, ctx))
143
0
    goto err;
144
0
  if (!group->meth->field_mul(group, z1, z1, x2, ctx))
145
0
    goto err;
146
0
  if (!group->meth->field_mul(group, t2, x1, z1, ctx))
147
0
    goto err;
148
0
  if (!BN_GF2m_add(z1, z1, x1))
149
0
    goto err;
150
0
  if (!group->meth->field_sqr(group, z1, z1, ctx))
151
0
    goto err;
152
0
  if (!group->meth->field_mul(group, x1, z1, t1, ctx))
153
0
    goto err;
154
0
  if (!BN_GF2m_add(x1, x1, t2))
155
0
    goto err;
156
157
0
  ret = 1;
158
159
0
 err:
160
0
  BN_CTX_end(ctx);
161
0
  return ret;
162
0
}
163
164
/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
165
 * using Montgomery point multiplication algorithm Mxy() in appendix of
166
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
167
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
168
 * Returns:
169
 *     0 on error
170
 *     1 if return value should be the point at infinity
171
 *     2 otherwise
172
 */
173
static int
174
gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1,
175
    BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)
176
0
{
177
0
  BIGNUM *t3, *t4, *t5;
178
0
  int ret = 0;
179
180
0
  if (BN_is_zero(z1)) {
181
0
    BN_zero(x2);
182
0
    BN_zero(z2);
183
0
    return 1;
184
0
  }
185
0
  if (BN_is_zero(z2)) {
186
0
    if (!BN_copy(x2, x))
187
0
      return 0;
188
0
    if (!BN_GF2m_add(z2, x, y))
189
0
      return 0;
190
0
    return 2;
191
0
  }
192
  /* Since Mxy is static we can guarantee that ctx != NULL. */
193
0
  BN_CTX_start(ctx);
194
0
  if ((t3 = BN_CTX_get(ctx)) == NULL)
195
0
    goto err;
196
0
  if ((t4 = BN_CTX_get(ctx)) == NULL)
197
0
    goto err;
198
0
  if ((t5 = BN_CTX_get(ctx)) == NULL)
199
0
    goto err;
200
201
0
  if (!BN_one(t5))
202
0
    goto err;
203
204
0
  if (!group->meth->field_mul(group, t3, z1, z2, ctx))
205
0
    goto err;
206
207
0
  if (!group->meth->field_mul(group, z1, z1, x, ctx))
208
0
    goto err;
209
0
  if (!BN_GF2m_add(z1, z1, x1))
210
0
    goto err;
211
0
  if (!group->meth->field_mul(group, z2, z2, x, ctx))
212
0
    goto err;
213
0
  if (!group->meth->field_mul(group, x1, z2, x1, ctx))
214
0
    goto err;
215
0
  if (!BN_GF2m_add(z2, z2, x2))
216
0
    goto err;
217
218
0
  if (!group->meth->field_mul(group, z2, z2, z1, ctx))
219
0
    goto err;
220
0
  if (!group->meth->field_sqr(group, t4, x, ctx))
221
0
    goto err;
222
0
  if (!BN_GF2m_add(t4, t4, y))
223
0
    goto err;
224
0
  if (!group->meth->field_mul(group, t4, t4, t3, ctx))
225
0
    goto err;
226
0
  if (!BN_GF2m_add(t4, t4, z2))
227
0
    goto err;
228
229
0
  if (!group->meth->field_mul(group, t3, t3, x, ctx))
230
0
    goto err;
231
0
  if (!group->meth->field_div(group, t3, t5, t3, ctx))
232
0
    goto err;
233
0
  if (!group->meth->field_mul(group, t4, t3, t4, ctx))
234
0
    goto err;
235
0
  if (!group->meth->field_mul(group, x2, x1, t3, ctx))
236
0
    goto err;
237
0
  if (!BN_GF2m_add(z2, x2, x))
238
0
    goto err;
239
240
0
  if (!group->meth->field_mul(group, z2, z2, t4, ctx))
241
0
    goto err;
242
0
  if (!BN_GF2m_add(z2, z2, y))
243
0
    goto err;
244
245
0
  ret = 2;
246
247
0
 err:
248
0
  BN_CTX_end(ctx);
249
0
  return ret;
250
0
}
251
252
253
/* Computes scalar*point and stores the result in r.
254
 * point can not equal r.
255
 * Uses a modified algorithm 2P of
256
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
257
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
258
 *
259
 * To protect against side-channel attack the function uses constant time swap,
260
 * avoiding conditional branches.
261
 */
262
static int
263
ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r,
264
    const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx)
265
0
{
266
0
  BIGNUM *x1, *x2, *z1, *z2;
267
0
  int ret = 0, i;
268
0
  BN_ULONG mask, word;
269
270
0
  if (r == point) {
271
0
    ECerror(EC_R_INVALID_ARGUMENT);
272
0
    return 0;
273
0
  }
274
  /* if result should be point at infinity */
275
0
  if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
276
0
      EC_POINT_is_at_infinity(group, point) > 0) {
277
0
    return EC_POINT_set_to_infinity(group, r);
278
0
  }
279
  /* only support affine coordinates */
280
0
  if (!point->Z_is_one)
281
0
    return 0;
282
283
  /* Since point_multiply is static we can guarantee that ctx != NULL. */
284
0
  BN_CTX_start(ctx);
285
0
  if ((x1 = BN_CTX_get(ctx)) == NULL)
286
0
    goto err;
287
0
  if ((z1 = BN_CTX_get(ctx)) == NULL)
288
0
    goto err;
289
290
0
  x2 = &r->X;
291
0
  z2 = &r->Y;
292
293
0
  if (!bn_wexpand(x1, group->field.top))
294
0
                goto err;
295
0
  if (!bn_wexpand(z1, group->field.top))
296
0
                goto err;
297
0
  if (!bn_wexpand(x2, group->field.top))
298
0
                goto err;
299
0
  if (!bn_wexpand(z2, group->field.top))
300
0
                goto err;
301
302
0
  if (!BN_GF2m_mod_arr(x1, &point->X, group->poly))
303
0
    goto err; /* x1 = x */
304
0
  if (!BN_one(z1))
305
0
    goto err; /* z1 = 1 */
306
0
  if (!group->meth->field_sqr(group, z2, x1, ctx))
307
0
    goto err; /* z2 = x1^2 = x^2 */
308
0
  if (!group->meth->field_sqr(group, x2, z2, ctx))
309
0
    goto err;
310
0
  if (!BN_GF2m_add(x2, x2, &group->b))
311
0
    goto err; /* x2 = x^4 + b */
312
313
  /* find top most bit and go one past it */
314
0
  i = scalar->top - 1;
315
0
  mask = BN_TBIT;
316
0
  word = scalar->d[i];
317
0
  while (!(word & mask))
318
0
    mask >>= 1;
319
0
  mask >>= 1;
320
  /* if top most bit was at word break, go to next word */
321
0
  if (!mask) {
322
0
    i--;
323
0
    mask = BN_TBIT;
324
0
  }
325
0
  for (; i >= 0; i--) {
326
0
    word = scalar->d[i];
327
0
    while (mask) {
328
0
      if (!BN_swap_ct(word & mask, x1, x2, group->field.top))
329
0
        goto err;
330
0
      if (!BN_swap_ct(word & mask, z1, z2, group->field.top))
331
0
        goto err;
332
0
      if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx))
333
0
        goto err;
334
0
      if (!gf2m_Mdouble(group, x1, z1, ctx))
335
0
        goto err;
336
0
      if (!BN_swap_ct(word & mask, x1, x2, group->field.top))
337
0
        goto err;
338
0
      if (!BN_swap_ct(word & mask, z1, z2, group->field.top))
339
0
        goto err;
340
0
      mask >>= 1;
341
0
    }
342
0
    mask = BN_TBIT;
343
0
  }
344
345
  /* convert out of "projective" coordinates */
346
0
  i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
347
0
  if (i == 0)
348
0
    goto err;
349
0
  else if (i == 1) {
350
0
    if (!EC_POINT_set_to_infinity(group, r))
351
0
      goto err;
352
0
  } else {
353
0
    if (!BN_one(&r->Z))
354
0
      goto err;
355
0
    r->Z_is_one = 1;
356
0
  }
357
358
  /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
359
0
  BN_set_negative(&r->X, 0);
360
0
  BN_set_negative(&r->Y, 0);
361
362
0
  ret = 1;
363
364
0
 err:
365
0
  BN_CTX_end(ctx);
366
0
  return ret;
367
0
}
368
369
370
/* Computes the sum
371
 *     scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
372
 * gracefully ignoring NULL scalar values.
373
 */
374
int
375
ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
376
    size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
377
0
{
378
0
  BN_CTX *new_ctx = NULL;
379
0
  int ret = 0;
380
0
  size_t i;
381
0
  EC_POINT *p = NULL;
382
0
  EC_POINT *acc = NULL;
383
384
0
  if (ctx == NULL) {
385
0
    ctx = new_ctx = BN_CTX_new();
386
0
    if (ctx == NULL)
387
0
      return 0;
388
0
  }
389
  /*
390
   * This implementation is more efficient than the wNAF implementation
391
   * for 2 or fewer points.  Use the ec_wNAF_mul implementation for 3
392
   * or more points, or if we can perform a fast multiplication based
393
   * on precomputation.
394
   */
395
0
  if ((scalar && (num > 1)) || (num > 2) ||
396
0
      (num == 0 && EC_GROUP_have_precompute_mult(group))) {
397
0
    ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
398
0
    goto err;
399
0
  }
400
0
  if ((p = EC_POINT_new(group)) == NULL)
401
0
    goto err;
402
0
  if ((acc = EC_POINT_new(group)) == NULL)
403
0
    goto err;
404
405
0
  if (!EC_POINT_set_to_infinity(group, acc))
406
0
    goto err;
407
408
0
  if (scalar) {
409
0
    if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx))
410
0
      goto err;
411
0
    if (BN_is_negative(scalar))
412
0
      if (!group->meth->invert(group, p, ctx))
413
0
        goto err;
414
0
    if (!group->meth->add(group, acc, acc, p, ctx))
415
0
      goto err;
416
0
  }
417
0
  for (i = 0; i < num; i++) {
418
0
    if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx))
419
0
      goto err;
420
0
    if (BN_is_negative(scalars[i]))
421
0
      if (!group->meth->invert(group, p, ctx))
422
0
        goto err;
423
0
    if (!group->meth->add(group, acc, acc, p, ctx))
424
0
      goto err;
425
0
  }
426
427
0
  if (!EC_POINT_copy(r, acc))
428
0
    goto err;
429
430
0
  ret = 1;
431
432
0
 err:
433
0
  EC_POINT_free(p);
434
0
  EC_POINT_free(acc);
435
0
  BN_CTX_free(new_ctx);
436
0
  return ret;
437
0
}
438
439
440
/* Precomputation for point multiplication: fall back to wNAF methods
441
 * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */
442
443
int
444
ec_GF2m_precompute_mult(EC_GROUP * group, BN_CTX * ctx)
445
0
{
446
0
  return ec_wNAF_precompute_mult(group, ctx);
447
0
}
448
449
int
450
ec_GF2m_have_precompute_mult(const EC_GROUP * group)
451
0
{
452
0
  return ec_wNAF_have_precompute_mult(group);
453
0
}
454
455
#endif