Coverage Report

Created: 2025-03-09 06:52

/src/gmp-6.2.1/mpn/sec_powm.c
Line
Count
Source (jump to first uncovered line)
1
/* mpn_sec_powm -- Compute R = U^E mod M.  Secure variant, side-channel silent
2
   under the assumption that the multiply instruction is side channel silent.
3
4
   Contributed to the GNU project by Torbjörn Granlund.
5
6
Copyright 2007-2009, 2011-2014, 2018-2019 Free Software Foundation, Inc.
7
8
This file is part of the GNU MP Library.
9
10
The GNU MP Library is free software; you can redistribute it and/or modify
11
it under the terms of either:
12
13
  * the GNU Lesser General Public License as published by the Free
14
    Software Foundation; either version 3 of the License, or (at your
15
    option) any later version.
16
17
or
18
19
  * the GNU General Public License as published by the Free Software
20
    Foundation; either version 2 of the License, or (at your option) any
21
    later version.
22
23
or both in parallel, as here.
24
25
The GNU MP Library is distributed in the hope that it will be useful, but
26
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
27
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
28
for more details.
29
30
You should have received copies of the GNU General Public License and the
31
GNU Lesser General Public License along with the GNU MP Library.  If not,
32
see https://www.gnu.org/licenses/.  */
33
34
35
/*
36
  BASIC ALGORITHM, Compute U^E mod M, where M < B^n is odd.
37
38
  1. T <- (B^n * U) mod M; convert to REDC form
39
40
  2. Compute table U^0, U^1, U^2... of floor(log(E))-dependent size
41
42
  3. While there are more bits in E
43
       W <- power left-to-right base-k
44
45
  The article "Defeating modexp side-channel attacks with data-independent
46
  execution traces", https://gmplib.org/~tege/modexp-silent.pdf, has details.
47
48
49
  TODO:
50
51
   * Make getbits a macro, thereby allowing it to update the index operand.
52
     That will simplify the code using getbits.  (Perhaps make getbits' sibling
53
     getbit then have similar form, for symmetry.)
54
55
   * Choose window size without looping.  (Superoptimize or think(tm).)
56
57
   * REDC_1_TO_REDC_2_THRESHOLD might actually represent the cutoff between
58
     redc_1 and redc_n.  On such systems, we will switch to redc_2 causing
59
     slowdown.
60
*/
61
62
#include "gmp-impl.h"
63
#include "longlong.h"
64
65
#undef MPN_REDC_1_SEC
66
#if HAVE_NATIVE_mpn_sbpi1_bdiv_r
67
#define MPN_REDC_1_SEC(rp, up, mp, n, invm)       \
68
  do {                  \
69
    mp_limb_t cy;             \
70
    cy = mpn_sbpi1_bdiv_r (up, 2 * n, mp, n, invm);     \
71
    mpn_cnd_sub_n (cy, rp, up + n, mp, n);        \
72
  } while (0)
73
#else
74
#define MPN_REDC_1_SEC(rp, up, mp, n, invm)       \
75
119k
  do {                 \
76
119k
    mp_limb_t cy;             \
77
119k
    cy = mpn_redc_1 (rp, up, mp, n, invm);       \
78
119k
    mpn_cnd_sub_n (cy, rp, rp, mp, n);         \
79
119k
  } while (0)
80
#endif
81
82
#if HAVE_NATIVE_mpn_addmul_2 || HAVE_NATIVE_mpn_redc_2
83
#undef MPN_REDC_2_SEC
84
#define MPN_REDC_2_SEC(rp, up, mp, n, mip)        \
85
73.8k
  do {                 \
86
73.8k
    mp_limb_t cy;             \
87
73.8k
    cy = mpn_redc_2 (rp, up, mp, n, mip);        \
88
73.8k
    mpn_cnd_sub_n (cy, rp, rp, mp, n);         \
89
73.8k
  } while (0)
90
#else
91
#define MPN_REDC_2_SEC(rp, up, mp, n, mip) /* empty */
92
#undef REDC_1_TO_REDC_2_THRESHOLD
93
#define REDC_1_TO_REDC_2_THRESHOLD MP_SIZE_T_MAX
94
#endif
95
96
/* Define our own mpn squaring function.  We do this since we cannot use a
97
   native mpn_sqr_basecase over TUNE_SQR_TOOM2_MAX, or a non-native one over
98
   SQR_TOOM2_THRESHOLD.  This is so because of fixed size stack allocations
99
   made inside mpn_sqr_basecase.  */
100
101
#if ! HAVE_NATIVE_mpn_sqr_basecase
102
/* The limit of the generic code is SQR_TOOM2_THRESHOLD.  */
103
#define SQR_BASECASE_LIM  SQR_TOOM2_THRESHOLD
104
#endif
105
106
#if HAVE_NATIVE_mpn_sqr_basecase
107
#ifdef TUNE_SQR_TOOM2_MAX
108
/* We slightly abuse TUNE_SQR_TOOM2_MAX here.  If it is set for an assembly
109
   mpn_sqr_basecase, it comes from SQR_TOOM2_THRESHOLD_MAX in the assembly
110
   file.  An assembly mpn_sqr_basecase that does not define it should allow
111
   any size.  */
112
#define SQR_BASECASE_LIM  SQR_TOOM2_THRESHOLD
113
#endif
114
#endif
115
116
#ifdef WANT_FAT_BINARY
117
/* For fat builds, we use SQR_TOOM2_THRESHOLD which will expand to a read from
118
   __gmpn_cpuvec.  Perhaps any possible sqr_basecase.asm allow any size, and we
119
   limit the use unnecessarily.  We cannot tell, so play it safe.  FIXME.  */
120
#define SQR_BASECASE_LIM  SQR_TOOM2_THRESHOLD
121
#endif
122
123
#ifndef SQR_BASECASE_LIM
124
/* If SQR_BASECASE_LIM is now not defined, use mpn_sqr_basecase for any operand
125
   size.  */
126
#define SQR_BASECASE_LIM  MP_SIZE_T_MAX
127
#endif
128
129
#define mpn_local_sqr(rp,up,n)            \
130
163k
  do {                 \
131
163k
    if (ABOVE_THRESHOLD (n, SQR_BASECASE_THRESHOLD)      \
132
163k
  && BELOW_THRESHOLD (n, SQR_BASECASE_LIM))     \
133
163k
      mpn_sqr_basecase (rp, up, n);         \
134
163k
    else                \
135
163k
      mpn_mul_basecase(rp, up, n, up, n);       \
136
163k
  } while (0)
137
138
#define getbit(p,bi) \
139
  ((p[(bi - 1) / GMP_NUMB_BITS] >> (bi - 1) % GMP_NUMB_BITS) & 1)
140
141
/* FIXME: Maybe some things would get simpler if all callers ensure
142
   that bi >= nbits. As far as I understand, with the current code bi
143
   < nbits can happen only for the final iteration. */
144
static inline mp_limb_t
145
getbits (const mp_limb_t *p, mp_bitcnt_t bi, int nbits)
146
28.6k
{
147
28.6k
  int nbits_in_r;
148
28.6k
  mp_limb_t r;
149
28.6k
  mp_size_t i;
150
151
28.6k
  if (bi < nbits)
152
93
    {
153
93
      return p[0] & (((mp_limb_t) 1 << bi) - 1);
154
93
    }
155
28.5k
  else
156
28.5k
    {
157
28.5k
      bi -= nbits;      /* bit index of low bit to extract */
158
28.5k
      i = bi / GMP_NUMB_BITS;   /* word index of low bit to extract */
159
28.5k
      bi %= GMP_NUMB_BITS;   /* bit index in low word */
160
28.5k
      r = p[i] >> bi;     /* extract (low) bits */
161
28.5k
      nbits_in_r = GMP_NUMB_BITS - bi;  /* number of bits now in r */
162
28.5k
      if (nbits_in_r < nbits)    /* did we get enough bits? */
163
1.63k
  r += p[i + 1] << nbits_in_r; /* prepend bits from higher word */
164
28.5k
      return r & (((mp_limb_t ) 1 << nbits) - 1);
165
28.5k
    }
166
28.6k
}
167
168
#ifndef POWM_SEC_TABLE
169
#if GMP_NUMB_BITS < 50
170
#define POWM_SEC_TABLE  2,33,96,780,2741
171
#else
172
#define POWM_SEC_TABLE  2,130,524,2578
173
#endif
174
#endif
175
176
#if TUNE_PROGRAM_BUILD
177
extern int win_size (mp_bitcnt_t);
178
#else
179
static inline int
180
win_size (mp_bitcnt_t enb)
181
361
{
182
361
  int k;
183
  /* Find k, such that x[k-1] < enb <= x[k].
184
185
     We require that x[k] >= k, then it follows that enb > x[k-1] >=
186
     k-1, which implies k <= enb.
187
  */
188
361
  static const mp_bitcnt_t x[] = {0,POWM_SEC_TABLE,~(mp_bitcnt_t)0};
189
1.35k
  for (k = 1; enb > x[k]; k++)
190
995
    ;
191
361
  ASSERT (k <= enb);
192
361
  return k;
193
361
}
194
#endif
195
196
/* Convert U to REDC form, U_r = B^n * U mod M.
197
   Uses scratch space at tp of size 2un + n + 1.  */
198
static void
199
redcify (mp_ptr rp, mp_srcptr up, mp_size_t un, mp_srcptr mp, mp_size_t n, mp_ptr tp)
200
246
{
201
246
  MPN_ZERO (tp, n);
202
246
  MPN_COPY (tp + n, up, un);
203
204
246
  mpn_sec_div_r (tp, un + n, mp, n, tp + un + n);
205
246
  MPN_COPY (rp, tp, n);
206
246
}
207
208
/* {rp, n} <-- {bp, bn} ^ {ep, en} mod {mp, n},
209
   where en = ceil (enb / GMP_NUMB_BITS)
210
   Requires that {mp, n} is odd (and hence also mp[0] odd).
211
   Uses scratch space at tp as defined by mpn_sec_powm_itch.  */
212
void
213
mpn_sec_powm (mp_ptr rp, mp_srcptr bp, mp_size_t bn,
214
        mp_srcptr ep, mp_bitcnt_t enb,
215
        mp_srcptr mp, mp_size_t n, mp_ptr tp)
216
123
{
217
123
  mp_limb_t ip[2], *mip;
218
123
  int windowsize, this_windowsize;
219
123
  mp_limb_t expbits;
220
123
  mp_ptr pp, this_pp, ps;
221
123
  long i;
222
123
  int cnd;
223
224
123
  ASSERT (enb > 0);
225
123
  ASSERT (n > 0);
226
  /* The code works for bn = 0, but the defined scratch space is 2 limbs
227
     greater than we supply, when converting 1 to redc form .  */
228
123
  ASSERT (bn > 0);
229
123
  ASSERT ((mp[0] & 1) != 0);
230
231
123
  windowsize = win_size (enb);
232
233
123
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
234
111
    {
235
111
      mip = ip;
236
111
      binvert_limb (mip[0], mp[0]);
237
111
      mip[0] = -mip[0];
238
111
    }
239
12
  else
240
12
    {
241
12
      mip = ip;
242
12
      mpn_binvert (mip, mp, 2, tp);
243
12
      mip[0] = -mip[0]; mip[1] = ~mip[1];
244
12
    }
245
246
123
  pp = tp;
247
123
  tp += (n << windowsize);  /* put tp after power table */
248
249
  /* Compute pp[0] table entry */
250
  /* scratch: |   n   | 1 |   n+2    |  */
251
  /*          | pp[0] | 1 | redcify  |  */
252
123
  this_pp = pp;
253
123
  this_pp[n] = 1;
254
123
  redcify (this_pp, this_pp + n, 1, mp, n, this_pp + n + 1);
255
123
  this_pp += n;
256
257
  /* Compute pp[1] table entry.  To avoid excessive scratch usage in the
258
     degenerate situation where B >> M, we let redcify use scratch space which
259
     will later be used by the pp table (element 2 and up).  */
260
  /* scratch: |   n   |   n   |  bn + n + 1  |  */
261
  /*          | pp[0] | pp[1] |   redcify    |  */
262
123
  redcify (this_pp, bp, bn, mp, n, this_pp + n);
263
264
  /* Precompute powers of b and put them in the temporary area at pp.  */
265
  /* scratch: |   n   |   n   | ...  |                    |   2n      |  */
266
  /*          | pp[0] | pp[1] | ...  | pp[2^windowsize-1] |  product  |  */
267
123
  ps = pp + n;    /* initially B^1 */
268
123
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
269
111
    {
270
1.01k
      for (i = (1 << windowsize) - 2; i > 0; i -= 2)
271
905
  {
272
905
    mpn_local_sqr (tp, ps, n);
273
905
    ps += n;
274
905
    this_pp += n;
275
905
    MPN_REDC_1_SEC (this_pp, tp, mp, n, mip[0]);
276
277
905
    mpn_mul_basecase (tp, this_pp, n, pp + n, n);
278
905
    this_pp += n;
279
905
    MPN_REDC_1_SEC (this_pp, tp, mp, n, mip[0]);
280
905
  }
281
111
    }
282
12
  else
283
12
    {
284
360
      for (i = (1 << windowsize) - 2; i > 0; i -= 2)
285
348
  {
286
348
    mpn_local_sqr (tp, ps, n);
287
348
    ps += n;
288
348
    this_pp += n;
289
348
    MPN_REDC_2_SEC (this_pp, tp, mp, n, mip);
290
291
348
    mpn_mul_basecase (tp, this_pp, n, pp + n, n);
292
348
    this_pp += n;
293
348
    MPN_REDC_2_SEC (this_pp, tp, mp, n, mip);
294
348
  }
295
12
    }
296
297
123
  expbits = getbits (ep, enb, windowsize);
298
123
  ASSERT_ALWAYS (enb >= windowsize);
299
123
  enb -= windowsize;
300
301
123
  mpn_sec_tabselect (rp, pp, n, 1 << windowsize, expbits);
302
303
  /* Main exponentiation loop.  */
304
  /* scratch: |   n   |   n   | ...  |                    |     3n-4n     |  */
305
  /*          | pp[0] | pp[1] | ...  | pp[2^windowsize-1] |  loop scratch |  */
306
307
123
#define INNERLOOP             \
308
28.6k
  while (enb != 0)             \
309
28.4k
    {                 \
310
28.4k
      expbits = getbits (ep, enb, windowsize);        \
311
28.4k
      this_windowsize = windowsize;         \
312
28.4k
      if (enb < windowsize)           \
313
28.4k
  {               \
314
93
    this_windowsize -= windowsize - enb;        \
315
93
    enb = 0;              \
316
93
  }                \
317
28.4k
      else                \
318
28.4k
  enb -= windowsize;           \
319
28.4k
                  \
320
28.4k
      do                \
321
162k
  {               \
322
162k
    mpn_local_sqr (tp, rp, n);         \
323
162k
    MPN_REDUCE (rp, tp, mp, n, mip);        \
324
162k
    this_windowsize--;            \
325
162k
  }                \
326
162k
      while (this_windowsize != 0);          \
327
28.4k
                  \
328
28.4k
      mpn_sec_tabselect (tp + 2*n, pp, n, 1 << windowsize, expbits); \
329
28.4k
      mpn_mul_basecase (tp, rp, n, tp + 2*n, n);      \
330
28.4k
                  \
331
28.4k
      MPN_REDUCE (rp, tp, mp, n, mip);          \
332
28.4k
    }
333
334
123
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
335
111
    {
336
111
#undef MPN_REDUCE
337
117k
#define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_1_SEC (rp, tp, mp, n, mip[0])
338
111
      INNERLOOP;
339
111
    }
340
12
  else
341
12
    {
342
12
#undef MPN_REDUCE
343
73.1k
#define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_2_SEC (rp, tp, mp, n, mip)
344
12
      INNERLOOP;
345
12
    }
346
347
123
  MPN_COPY (tp, rp, n);
348
123
  MPN_ZERO (tp + n, n);
349
350
123
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
351
111
    MPN_REDC_1_SEC (rp, tp, mp, n, mip[0]);
352
12
  else
353
12
    MPN_REDC_2_SEC (rp, tp, mp, n, mip);
354
355
123
  cnd = mpn_sub_n (tp, rp, mp, n); /* we need just retval */
356
123
  mpn_cnd_sub_n (!cnd, rp, rp, mp, n);
357
123
}
358
359
mp_size_t
360
mpn_sec_powm_itch (mp_size_t bn, mp_bitcnt_t enb, mp_size_t n)
361
238
{
362
238
  int windowsize;
363
238
  mp_size_t redcify_itch, itch;
364
365
  /* FIXME: no more _local/_basecase difference. */
366
  /* The top scratch usage will either be when reducing B in the 2nd redcify
367
     call, or more typically n*2^windowsize + 3n or 4n, in the main loop.  (It
368
     is 3n or 4n depending on if we use mpn_local_sqr or a native
369
     mpn_sqr_basecase.  We assume 4n always for now.) */
370
371
238
  windowsize = win_size (enb);
372
373
  /* The 2n term is due to pp[0] and pp[1] at the time of the 2nd redcify call,
374
     the (bn + n) term is due to redcify's own usage, and the rest is due to
375
     mpn_sec_div_r's usage when called from redcify.  */
376
238
  redcify_itch = (2 * n) + (bn + n) + ((bn + n) + 2 * n + 2);
377
378
  /* The n * 2^windowsize term is due to the power table, the 4n term is due to
379
     scratch needs of squaring/multiplication in the exponentiation loop.  */
380
238
  itch = (n << windowsize) + (4 * n);
381
382
238
  return MAX (itch, redcify_itch);
383
238
}