Coverage Report

Created: 2025-03-09 06:52

/src/gmp-6.2.1/mpn/toom_eval_pm2exp.c
Line
Count
Source
1
/* mpn_toom_eval_pm2exp -- Evaluate a polynomial in +2^k and -2^k
2
3
   Contributed to the GNU project by Niels Möller
4
5
   THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.  IT IS ONLY
6
   SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
7
   GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
8
9
Copyright 2009 Free Software Foundation, Inc.
10
11
This file is part of the GNU MP Library.
12
13
The GNU MP Library is free software; you can redistribute it and/or modify
14
it under the terms of either:
15
16
  * the GNU Lesser General Public License as published by the Free
17
    Software Foundation; either version 3 of the License, or (at your
18
    option) any later version.
19
20
or
21
22
  * the GNU General Public License as published by the Free Software
23
    Foundation; either version 2 of the License, or (at your option) any
24
    later version.
25
26
or both in parallel, as here.
27
28
The GNU MP Library is distributed in the hope that it will be useful, but
29
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
30
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
31
for more details.
32
33
You should have received copies of the GNU General Public License and the
34
GNU Lesser General Public License along with the GNU MP Library.  If not,
35
see https://www.gnu.org/licenses/.  */
36
37
38
#include "gmp-impl.h"
39
40
/* Evaluates a polynomial of degree k > 2, in the points +2^shift and -2^shift. */
41
int
42
mpn_toom_eval_pm2exp (mp_ptr xp2, mp_ptr xm2, unsigned k,
43
          mp_srcptr xp, mp_size_t n, mp_size_t hn, unsigned shift,
44
          mp_ptr tp)
45
142k
{
46
142k
  unsigned i;
47
142k
  int neg;
48
142k
#if HAVE_NATIVE_mpn_addlsh_n
49
142k
  mp_limb_t cy;
50
142k
#endif
51
52
142k
  ASSERT (k >= 3);
53
142k
  ASSERT (shift*k < GMP_NUMB_BITS);
54
55
142k
  ASSERT (hn > 0);
56
142k
  ASSERT (hn <= n);
57
58
  /* The degree k is also the number of full-size coefficients, so
59
   * that last coefficient, of size hn, starts at xp + k*n. */
60
61
142k
#if HAVE_NATIVE_mpn_addlsh_n
62
142k
  xp2[n] = mpn_addlsh_n (xp2, xp, xp + 2*n, n, 2*shift);
63
379k
  for (i = 4; i < k; i += 2)
64
237k
    xp2[n] += mpn_addlsh_n (xp2, xp2, xp + i*n, n, i*shift);
65
66
142k
  tp[n] = mpn_lshift (tp, xp+n, n, shift);
67
380k
  for (i = 3; i < k; i+= 2)
68
238k
    tp[n] += mpn_addlsh_n (tp, tp, xp+i*n, n, i*shift);
69
70
142k
  if (k & 1)
71
141k
    {
72
141k
      cy = mpn_addlsh_n (tp, tp, xp+k*n, hn, k*shift);
73
141k
      MPN_INCR_U (tp + hn, n+1 - hn, cy);
74
141k
    }
75
978
  else
76
978
    {
77
978
      cy = mpn_addlsh_n (xp2, xp2, xp+k*n, hn, k*shift);
78
978
      MPN_INCR_U (xp2 + hn, n+1 - hn, cy);
79
978
    }
80
81
#else /* !HAVE_NATIVE_mpn_addlsh_n */
82
  xp2[n] = mpn_lshift (tp, xp+2*n, n, 2*shift);
83
  xp2[n] += mpn_add_n (xp2, xp, tp, n);
84
  for (i = 4; i < k; i += 2)
85
    {
86
      xp2[n] += mpn_lshift (tp, xp + i*n, n, i*shift);
87
      xp2[n] += mpn_add_n (xp2, xp2, tp, n);
88
    }
89
90
  tp[n] = mpn_lshift (tp, xp+n, n, shift);
91
  for (i = 3; i < k; i+= 2)
92
    {
93
      tp[n] += mpn_lshift (xm2, xp + i*n, n, i*shift);
94
      tp[n] += mpn_add_n (tp, tp, xm2, n);
95
    }
96
97
  xm2[hn] = mpn_lshift (xm2, xp + k*n, hn, k*shift);
98
  if (k & 1)
99
    mpn_add (tp, tp, n+1, xm2, hn+1);
100
  else
101
    mpn_add (xp2, xp2, n+1, xm2, hn+1);
102
#endif /* !HAVE_NATIVE_mpn_addlsh_n */
103
104
142k
  neg = (mpn_cmp (xp2, tp, n + 1) < 0) ? ~0 : 0;
105
106
#if HAVE_NATIVE_mpn_add_n_sub_n
107
  if (neg)
108
    mpn_add_n_sub_n (xp2, xm2, tp, xp2, n + 1);
109
  else
110
    mpn_add_n_sub_n (xp2, xm2, xp2, tp, n + 1);
111
#else /* !HAVE_NATIVE_mpn_add_n_sub_n */
112
142k
  if (neg)
113
17.3k
    mpn_sub_n (xm2, tp, xp2, n + 1);
114
124k
  else
115
124k
    mpn_sub_n (xm2, xp2, tp, n + 1);
116
117
142k
  mpn_add_n (xp2, xp2, tp, n + 1);
118
142k
#endif /* !HAVE_NATIVE_mpn_add_n_sub_n */
119
120
  /* FIXME: the following asserts are useless if (k+1)*shift >= GMP_LIMB_BITS */
121
142k
  ASSERT ((k+1)*shift >= GMP_LIMB_BITS ||
122
142k
    xp2[n] < ((CNST_LIMB(1)<<((k+1)*shift))-1)/((CNST_LIMB(1)<<shift)-1));
123
142k
  ASSERT ((k+2)*shift >= GMP_LIMB_BITS ||
124
142k
    xm2[n] < ((CNST_LIMB(1)<<((k+2)*shift))-((k&1)?(CNST_LIMB(1)<<shift):1))/((CNST_LIMB(1)<<(2*shift))-1));
125
126
142k
  return neg;
127
142k
}