Coverage Report

Created: 2025-03-09 06:52

/src/gmp-6.2.1/mpz/lucmod.c
Line
Count
Source (jump to first uncovered line)
1
/* mpz_lucas_mod -- Helper function for the strong Lucas
2
   primality test.
3
4
   THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY.  THEY'RE ALMOST
5
   CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
6
   FUTURE GNU MP RELEASES.
7
8
Copyright 2018 Free Software Foundation, Inc.
9
10
Contributed by Marco Bodrato.
11
12
This file is part of the GNU MP Library.
13
14
The GNU MP Library is free software; you can redistribute it and/or modify
15
it under the terms of either:
16
17
  * the GNU Lesser General Public License as published by the Free
18
    Software Foundation; either version 3 of the License, or (at your
19
    option) any later version.
20
21
or
22
23
  * the GNU General Public License as published by the Free Software
24
    Foundation; either version 2 of the License, or (at your option) any
25
    later version.
26
27
or both in parallel, as here.
28
29
The GNU MP Library is distributed in the hope that it will be useful, but
30
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
31
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
32
for more details.
33
34
You should have received copies of the GNU General Public License and the
35
GNU Lesser General Public License along with the GNU MP Library.  If not,
36
see https://www.gnu.org/licenses/.  */
37
38
#include "gmp-impl.h"
39
40
/* Computes V_{k+1}, Q^{k+1} (mod n) for the Lucas' sequence  */
41
/* with P=1, Q=Q; k = n>>b0.  */
42
/* Requires n > 4; b0 > 0; -2*Q must not overflow a long. */
43
/* If U_{k+1}==0 (mod n) or V_{k+1}==0 (mod n), it returns 1, */
44
/* otherwise it returns 0 and sets V=V_{k+1} and Qk=Q^{k+1}.  */
45
/* V will never grow beyond SIZ(n), Qk not beyond 2*SIZ(n). */
46
int
47
mpz_lucas_mod (mpz_ptr V, mpz_ptr Qk, long Q,
48
         mp_bitcnt_t b0, mpz_srcptr n, mpz_ptr T1, mpz_ptr T2)
49
758
{
50
758
  mp_bitcnt_t bs;
51
758
  int res;
52
53
758
  ASSERT (b0 > 0);
54
758
  ASSERT (SIZ (n) > 1 || SIZ (n) > 0 && PTR (n) [0] > 4);
55
56
758
  mpz_set_ui (V, 1); /* U1 = 1 */
57
758
  bs = mpz_sizeinbase (n, 2) - 2;
58
758
  if (UNLIKELY (bs < b0))
59
0
    {
60
      /* n = 2^b0 - 1, should we use Lucas-Lehmer instead? */
61
0
      ASSERT (bs == b0 - 2);
62
0
      mpz_set_si (Qk, Q);
63
0
      return 0;
64
0
    }
65
758
  mpz_set_ui (Qk, 1); /* U2 = 1 */
66
67
758
  do
68
284k
    {
69
      /* We use the iteration suggested in "Elementary Number Theory" */
70
      /* by Peter Hackman (November 1, 2009), section "L.XVII Scalar  */
71
      /* Formulas", from http://hackmat.se/kurser/TATM54/booktot.pdf  */
72
      /* U_{2k} = 2*U_{k+1}*U_k - P*U_k^2 */
73
      /* U_{2k+1} = U_{k+1}^2  - Q*U_k^2  */
74
      /* U_{2k+2} = P*U_{k+1}^2 - 2*Q*U_{k+1}*U_k */
75
      /* We note that U_{2k+2} = P*U_{2k+1} - Q*U_{2k}  */
76
      /* The formulas are specialized for P=1, and only squares:  */
77
      /* U_{2k}   = U_{k+1}^2 - |U_{k+1} - U_k|^2 */
78
      /* U_{2k+1} = U_{k+1}^2 - Q*U_k^2   */
79
      /* U_{2k+2} = U_{2k+1}  - Q*U_{2k}  */
80
284k
      mpz_mul (T1, Qk, Qk);  /* U_{k+1}^2    */
81
284k
      mpz_sub (Qk, V, Qk); /* |U_{k+1} - U_k|  */
82
284k
      mpz_mul (T2, Qk, Qk);  /* |U_{k+1} - U_k|^2  */
83
284k
      mpz_mul (Qk, V, V);  /* U_k^2    */
84
284k
      mpz_sub (T2, T1, T2);  /* U_{k+1}^2 - (U_{k+1} - U_k)^2  */
85
284k
      if (Q > 0)    /* U_{k+1}^2 - Q U_k^2 = U_{2k+1} */
86
237k
  mpz_submul_ui (T1, Qk, Q);
87
46.6k
      else
88
46.6k
  mpz_addmul_ui (T1, Qk, NEG_CAST (unsigned long, Q));
89
90
      /* A step k->k+1 is performed if the bit in $n$ is 1  */
91
284k
      if (mpz_tstbit (n, bs))
92
140k
  {
93
    /* U_{2k+2} = U_{2k+1} - Q*U_{2k} */
94
140k
    mpz_mul_si (T2, T2, Q);
95
140k
    mpz_sub (T2, T1, T2);
96
140k
    mpz_swap (T1, T2);
97
140k
  }
98
284k
      mpz_tdiv_r (Qk, T1, n);
99
284k
      mpz_tdiv_r (V, T2, n);
100
284k
    } while (--bs >= b0);
101
102
758
  res = SIZ (Qk) == 0;
103
758
  if (!res) {
104
462
    mpz_mul_si (T1, V, -2*Q);
105
462
    mpz_add (T1, Qk, T1);  /* V_k = U_k - 2Q*U_{k-1} */
106
462
    mpz_tdiv_r (V, T1, n);
107
462
    res = SIZ (V) == 0;
108
462
    if (!res && b0 > 1) {
109
      /* V_k and Q^k will be needed for further check, compute them.  */
110
      /* FIXME: Here we compute V_k^2 and store V_k, but the former */
111
      /* will be recomputed by the calling function, shoul we store */
112
      /* that instead?              */
113
232
      mpz_mul (T2, T1, T1);  /* V_k^2 */
114
232
      mpz_mul (T1, Qk, Qk);  /* P^2 U_k^2 = U_k^2 */
115
232
      mpz_sub (T2, T2, T1);
116
232
      ASSERT (SIZ (T2) == 0 || PTR (T2) [0] % 4 == 0);
117
232
      mpz_tdiv_q_2exp (T2, T2, 2); /* (V_k^2 - P^2 U_k^2) / 4 */
118
232
      if (Q > 0)    /* (V_k^2 - (P^2 -4Q) U_k^2) / 4 = Q^k */
119
199
  mpz_addmul_ui (T2, T1, Q);
120
33
      else
121
33
  mpz_submul_ui (T2, T1, NEG_CAST (unsigned long, Q));
122
232
      mpz_tdiv_r (Qk, T2, n);
123
232
    }
124
462
  }
125
126
758
  return res;
127
758
}