Coverage Report

Created: 2025-03-09 06:52

/src/gmp-6.2.1/mpz/lucnum_ui.c
Line
Count
Source
1
/* mpz_lucnum_ui -- calculate Lucas number.
2
3
Copyright 2001, 2003, 2005, 2011, 2012, 2015, 2016 Free Software Foundation, Inc.
4
5
This file is part of the GNU MP Library.
6
7
The GNU MP Library is free software; you can redistribute it and/or modify
8
it under the terms of either:
9
10
  * the GNU Lesser General Public License as published by the Free
11
    Software Foundation; either version 3 of the License, or (at your
12
    option) any later version.
13
14
or
15
16
  * the GNU General Public License as published by the Free Software
17
    Foundation; either version 2 of the License, or (at your option) any
18
    later version.
19
20
or both in parallel, as here.
21
22
The GNU MP Library is distributed in the hope that it will be useful, but
23
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
24
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
25
for more details.
26
27
You should have received copies of the GNU General Public License and the
28
GNU Lesser General Public License along with the GNU MP Library.  If not,
29
see https://www.gnu.org/licenses/.  */
30
31
#include <stdio.h>
32
#include "gmp-impl.h"
33
34
35
/* change this to "#define TRACE(x) x" for diagnostics */
36
#define TRACE(x)
37
38
39
/* Notes:
40
41
   For the +4 in L[2k+1] when k is even, all L[4m+3] == 4, 5 or 7 mod 8, so
42
   there can't be an overflow applying +4 to just the low limb (since that
43
   would leave 0, 1, 2 or 3 mod 8).
44
45
   For the -4 in L[2k+1] when k is even, it seems (no proof) that
46
   L[3*2^(b-2)-3] == -4 mod 2^b, so for instance with a 32-bit limb
47
   L[0xBFFFFFFD] == 0xFFFFFFFC mod 2^32, and this implies a borrow from the
48
   low limb.  Obviously L[0xBFFFFFFD] is a huge number, but it's at least
49
   conceivable to calculate it, so it probably should be handled.
50
51
   For the -2 in L[2k] with k even, it seems (no proof) L[2^(b-1)] == -1 mod
52
   2^b, so for instance in 32-bits L[0x80000000] has a low limb of
53
   0xFFFFFFFF so there would have been a borrow.  Again L[0x80000000] is
54
   obviously huge, but probably should be made to work.  */
55
56
void
57
mpz_lucnum_ui (mpz_ptr ln, unsigned long n)
58
96
{
59
96
  mp_size_t  lalloc, xalloc, lsize, xsize;
60
96
  mp_ptr     lp, xp;
61
96
  mp_limb_t  c;
62
96
  int        zeros;
63
96
  TMP_DECL;
64
65
96
  TRACE (printf ("mpn_lucnum_ui n=%lu\n", n));
66
67
96
  if (n <= FIB_TABLE_LUCNUM_LIMIT)
68
11
    {
69
      /* L[n] = F[n] + 2F[n-1] */
70
11
      MPZ_NEWALLOC (ln, 1)[0] = FIB_TABLE(n) + 2 * FIB_TABLE ((int) n - 1);
71
11
      SIZ(ln) = 1;
72
11
      return;
73
11
    }
74
75
  /* +1 since L[n]=F[n]+2F[n-1] might be 1 limb bigger than F[n], further +1
76
     since square or mul used below might need an extra limb over the true
77
     size */
78
85
  lalloc = MPN_FIB2_SIZE (n) + 2;
79
85
  lp = MPZ_NEWALLOC (ln, lalloc);
80
81
85
  TMP_MARK;
82
85
  xalloc = lalloc;
83
85
  xp = TMP_ALLOC_LIMBS (xalloc);
84
85
  /* Strip trailing zeros from n, until either an odd number is reached
86
     where the L[2k+1] formula can be used, or until n fits within the
87
     FIB_TABLE data.  The table is preferred of course.  */
88
85
  zeros = 0;
89
85
  for (;;)
90
192
    {
91
192
      if (n & 1)
92
72
  {
93
    /* L[2k+1] = 5*F[k-1]*(2*F[k]+F[k-1]) - 4*(-1)^k */
94
95
72
    mp_size_t  yalloc, ysize;
96
72
    mp_ptr     yp;
97
98
72
    TRACE (printf ("  initial odd n=%lu\n", n));
99
100
72
    yalloc = MPN_FIB2_SIZE (n/2);
101
72
    yp = TMP_ALLOC_LIMBS (yalloc);
102
72
    ASSERT (xalloc >= yalloc);
103
104
72
    xsize = mpn_fib2_ui (xp, yp, n/2);
105
106
    /* possible high zero on F[k-1] */
107
72
    ysize = xsize;
108
72
    ysize -= (yp[ysize-1] == 0);
109
72
    ASSERT (yp[ysize-1] != 0);
110
111
    /* xp = 2*F[k] + F[k-1] */
112
72
#if HAVE_NATIVE_mpn_addlsh1_n
113
72
    c = mpn_addlsh1_n (xp, yp, xp, xsize);
114
#else
115
    c = mpn_lshift (xp, xp, xsize, 1);
116
    c += mpn_add_n (xp, xp, yp, xsize);
117
#endif
118
72
    ASSERT (xalloc >= xsize+1);
119
72
    xp[xsize] = c;
120
72
    xsize += (c != 0);
121
72
    ASSERT (xp[xsize-1] != 0);
122
123
72
    ASSERT (lalloc >= xsize + ysize);
124
72
    c = mpn_mul (lp, xp, xsize, yp, ysize);
125
72
    lsize = xsize + ysize;
126
72
    lsize -= (c == 0);
127
128
    /* lp = 5*lp */
129
72
#if HAVE_NATIVE_mpn_addlsh2_n
130
72
    c = mpn_addlsh2_n (lp, lp, lp, lsize);
131
#else
132
    /* FIXME: Is this faster than mpn_mul_1 ? */
133
    c = mpn_lshift (xp, lp, lsize, 2);
134
    c += mpn_add_n (lp, lp, xp, lsize);
135
#endif
136
72
    ASSERT (lalloc >= lsize+1);
137
72
    lp[lsize] = c;
138
72
    lsize += (c != 0);
139
140
    /* lp = lp - 4*(-1)^k */
141
72
    if (n & 2)
142
37
      {
143
        /* no overflow, see comments above */
144
37
        ASSERT (lp[0] <= MP_LIMB_T_MAX-4);
145
37
        lp[0] += 4;
146
37
      }
147
35
    else
148
35
      {
149
        /* won't go negative */
150
35
        MPN_DECR_U (lp, lsize, CNST_LIMB(4));
151
35
      }
152
153
72
    TRACE (mpn_trace ("  l",lp, lsize));
154
72
    break;
155
72
  }
156
157
120
      MP_PTR_SWAP (xp, lp); /* balance the swaps wanted in the L[2k] below */
158
120
      zeros++;
159
120
      n /= 2;
160
161
120
      if (n <= FIB_TABLE_LUCNUM_LIMIT)
162
13
  {
163
    /* L[n] = F[n] + 2F[n-1] */
164
13
    lp[0] = FIB_TABLE (n) + 2 * FIB_TABLE ((int) n - 1);
165
13
    lsize = 1;
166
167
13
    TRACE (printf ("  initial small n=%lu\n", n);
168
13
     mpn_trace ("  l",lp, lsize));
169
13
    break;
170
13
  }
171
120
    }
172
173
205
  for ( ; zeros != 0; zeros--)
174
120
    {
175
      /* L[2k] = L[k]^2 + 2*(-1)^k */
176
177
120
      TRACE (printf ("  zeros=%d\n", zeros));
178
179
120
      ASSERT (xalloc >= 2*lsize);
180
120
      mpn_sqr (xp, lp, lsize);
181
120
      lsize *= 2;
182
120
      lsize -= (xp[lsize-1] == 0);
183
184
      /* First time around the loop k==n determines (-1)^k, after that k is
185
   always even and we set n=0 to indicate that.  */
186
120
      if (n & 1)
187
39
  {
188
    /* L[n]^2 == 0 or 1 mod 4, like all squares, so +2 gives no carry */
189
39
    ASSERT (xp[0] <= MP_LIMB_T_MAX-2);
190
39
    xp[0] += 2;
191
39
    n = 0;
192
39
  }
193
81
      else
194
81
  {
195
    /* won't go negative */
196
81
    MPN_DECR_U (xp, lsize, CNST_LIMB(2));
197
81
  }
198
199
120
      MP_PTR_SWAP (xp, lp);
200
120
      ASSERT (lp[lsize-1] != 0);
201
120
    }
202
203
  /* should end up in the right spot after all the xp/lp swaps */
204
85
  ASSERT (lp == PTR(ln));
205
85
  SIZ(ln) = lsize;
206
207
85
  TMP_FREE;
208
85
}