Coverage Report

Created: 2025-03-09 06:52

/src/gmp-6.2.1/mpz/pprime_p.c
Line
Count
Source
1
/* mpz_probab_prime_p --
2
   An implementation of the probabilistic primality test found in Knuth's
3
   Seminumerical Algorithms book.  If the function mpz_probab_prime_p()
4
   returns 0 then n is not prime.  If it returns 1, then n is 'probably'
5
   prime.  If it returns 2, n is surely prime.  The probability of a false
6
   positive is (1/4)**reps, where reps is the number of internal passes of the
7
   probabilistic algorithm.  Knuth indicates that 25 passes are reasonable.
8
9
Copyright 1991, 1993, 1994, 1996-2002, 2005, 2015, 2016 Free Software
10
Foundation, Inc.
11
12
This file is part of the GNU MP Library.
13
14
The GNU MP Library is free software; you can redistribute it and/or modify
15
it under the terms of either:
16
17
  * the GNU Lesser General Public License as published by the Free
18
    Software Foundation; either version 3 of the License, or (at your
19
    option) any later version.
20
21
or
22
23
  * the GNU General Public License as published by the Free Software
24
    Foundation; either version 2 of the License, or (at your option) any
25
    later version.
26
27
or both in parallel, as here.
28
29
The GNU MP Library is distributed in the hope that it will be useful, but
30
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
31
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
32
for more details.
33
34
You should have received copies of the GNU General Public License and the
35
GNU Lesser General Public License along with the GNU MP Library.  If not,
36
see https://www.gnu.org/licenses/.  */
37
38
#include "gmp-impl.h"
39
#include "longlong.h"
40
41
static int isprime (unsigned long int);
42
43
44
/* MPN_MOD_OR_MODEXACT_1_ODD can be used instead of mpn_mod_1 for the trial
45
   division.  It gives a result which is not the actual remainder r but a
46
   value congruent to r*2^n mod d.  Since all the primes being tested are
47
   odd, r*2^n mod p will be 0 if and only if r mod p is 0.  */
48
49
int
50
mpz_probab_prime_p (mpz_srcptr n, int reps)
51
758
{
52
758
  mp_limb_t r;
53
758
  mpz_t n2;
54
55
  /* Handle small and negative n.  */
56
758
  if (mpz_cmp_ui (n, 1000000L) <= 0)
57
324
    {
58
324
      if (mpz_cmpabs_ui (n, 1000000L) <= 0)
59
73
  {
60
73
    int is_prime;
61
73
    unsigned long n0;
62
73
    n0 = mpz_get_ui (n);
63
73
    is_prime = n0 & (n0 > 1) ? isprime (n0) : n0 == 2;
64
73
    return is_prime ? 2 : 0;
65
73
  }
66
      /* Negative number.  Negate and fall out.  */
67
251
      PTR(n2) = PTR(n);
68
251
      SIZ(n2) = -SIZ(n);
69
251
      n = n2;
70
251
    }
71
72
  /* If n is now even, it is not a prime.  */
73
685
  if (mpz_even_p (n))
74
16
    return 0;
75
76
669
#if defined (PP)
77
  /* Check if n has small factors.  */
78
669
#if defined (PP_INVERTED)
79
669
  r = MPN_MOD_OR_PREINV_MOD_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) PP,
80
669
             (mp_limb_t) PP_INVERTED);
81
#else
82
  r = mpn_mod_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) PP);
83
#endif
84
669
  if (r % 3 == 0
85
669
#if GMP_LIMB_BITS >= 4
86
669
      || r % 5 == 0
87
669
#endif
88
669
#if GMP_LIMB_BITS >= 8
89
669
      || r % 7 == 0
90
669
#endif
91
669
#if GMP_LIMB_BITS >= 16
92
669
      || r % 11 == 0 || r % 13 == 0
93
669
#endif
94
669
#if GMP_LIMB_BITS >= 32
95
669
      || r % 17 == 0 || r % 19 == 0 || r % 23 == 0 || r % 29 == 0
96
669
#endif
97
669
#if GMP_LIMB_BITS >= 64
98
669
      || r % 31 == 0 || r % 37 == 0 || r % 41 == 0 || r % 43 == 0
99
669
      || r % 47 == 0 || r % 53 == 0
100
669
#endif
101
669
      )
102
194
    {
103
194
      return 0;
104
194
    }
105
475
#endif /* PP */
106
107
  /* Do more dividing.  We collect small primes, using umul_ppmm, until we
108
     overflow a single limb.  We divide our number by the small primes product,
109
     and look for factors in the remainder.  */
110
475
  {
111
475
    unsigned long int ln2;
112
475
    unsigned long int q;
113
475
    mp_limb_t p1, p0, p;
114
475
    unsigned int primes[15];
115
475
    int nprimes;
116
117
475
    nprimes = 0;
118
475
    p = 1;
119
475
    ln2 = mpz_sizeinbase (n, 2);  /* FIXME: tune this limit */
120
492k
    for (q = PP_FIRST_OMITTED; q < ln2; q += 2)
121
492k
      {
122
492k
  if (isprime (q))
123
132k
    {
124
132k
      umul_ppmm (p1, p0, p, q);
125
132k
      if (p1 != 0)
126
23.5k
        {
127
23.5k
    r = MPN_MOD_OR_MODEXACT_1_ODD (PTR(n), (mp_size_t) SIZ(n), p);
128
154k
    while (--nprimes >= 0)
129
130k
      if (r % primes[nprimes] == 0)
130
52
        {
131
52
          ASSERT_ALWAYS (mpn_mod_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) primes[nprimes]) == 0);
132
52
          return 0;
133
52
        }
134
23.5k
    p = q;
135
23.5k
    nprimes = 0;
136
23.5k
        }
137
108k
      else
138
108k
        {
139
108k
    p = p0;
140
108k
        }
141
132k
      primes[nprimes++] = q;
142
132k
    }
143
492k
      }
144
475
  }
145
146
  /* Perform a number of Miller-Rabin tests.  */
147
423
  return mpz_millerrabin (n, reps);
148
475
}
149
150
static int
151
isprime (unsigned long int t)
152
492k
{
153
492k
  unsigned long int q, r, d;
154
155
492k
  ASSERT (t >= 3 && (t & 1) != 0);
156
157
492k
  d = 3;
158
4.53M
  do {
159
4.53M
      q = t / d;
160
4.53M
      r = t - q * d;
161
4.53M
      if (q < d)
162
132k
  return 1;
163
4.40M
      d += 2;
164
4.40M
  } while (r != 0);
165
360k
  return 0;
166
492k
}