/src/libressl/crypto/cmac/cmac.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* $OpenBSD: cmac.c,v 1.24 2024/05/20 14:53:37 tb Exp $ */ |
2 | | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
3 | | * project. |
4 | | */ |
5 | | /* ==================================================================== |
6 | | * Copyright (c) 2010 The OpenSSL Project. All rights reserved. |
7 | | * |
8 | | * Redistribution and use in source and binary forms, with or without |
9 | | * modification, are permitted provided that the following conditions |
10 | | * are met: |
11 | | * |
12 | | * 1. Redistributions of source code must retain the above copyright |
13 | | * notice, this list of conditions and the following disclaimer. |
14 | | * |
15 | | * 2. Redistributions in binary form must reproduce the above copyright |
16 | | * notice, this list of conditions and the following disclaimer in |
17 | | * the documentation and/or other materials provided with the |
18 | | * distribution. |
19 | | * |
20 | | * 3. All advertising materials mentioning features or use of this |
21 | | * software must display the following acknowledgment: |
22 | | * "This product includes software developed by the OpenSSL Project |
23 | | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
24 | | * |
25 | | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
26 | | * endorse or promote products derived from this software without |
27 | | * prior written permission. For written permission, please contact |
28 | | * licensing@OpenSSL.org. |
29 | | * |
30 | | * 5. Products derived from this software may not be called "OpenSSL" |
31 | | * nor may "OpenSSL" appear in their names without prior written |
32 | | * permission of the OpenSSL Project. |
33 | | * |
34 | | * 6. Redistributions of any form whatsoever must retain the following |
35 | | * acknowledgment: |
36 | | * "This product includes software developed by the OpenSSL Project |
37 | | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
38 | | * |
39 | | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
40 | | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
41 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
42 | | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
43 | | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
44 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
45 | | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
46 | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
48 | | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
49 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
50 | | * OF THE POSSIBILITY OF SUCH DAMAGE. |
51 | | * ==================================================================== |
52 | | */ |
53 | | |
54 | | #include <stdio.h> |
55 | | #include <stdlib.h> |
56 | | #include <string.h> |
57 | | |
58 | | #include <openssl/cmac.h> |
59 | | |
60 | | #include "evp_local.h" |
61 | | |
62 | | /* |
63 | | * This implementation follows https://doi.org/10.6028/NIST.SP.800-38B |
64 | | */ |
65 | | |
66 | | /* |
67 | | * CMAC context. k1 and k2 are the secret subkeys, computed as in section 6.1. |
68 | | * The temporary block tbl is a scratch buffer that holds intermediate secrets. |
69 | | */ |
70 | | struct CMAC_CTX_st { |
71 | | EVP_CIPHER_CTX *cipher_ctx; |
72 | | unsigned char k1[EVP_MAX_BLOCK_LENGTH]; |
73 | | unsigned char k2[EVP_MAX_BLOCK_LENGTH]; |
74 | | unsigned char tbl[EVP_MAX_BLOCK_LENGTH]; |
75 | | unsigned char last_block[EVP_MAX_BLOCK_LENGTH]; |
76 | | /* Bytes in last block. -1 means not initialized. */ |
77 | | int nlast_block; |
78 | | }; |
79 | | |
80 | | /* |
81 | | * SP 800-38B, section 6.1, steps 2 and 3: given the input key l, calculate |
82 | | * the subkeys k1 and k2: shift l one bit to the left. If the most significant |
83 | | * bit of l was 1, additionally xor the result with Rb to get kn. |
84 | | * |
85 | | * Step 2: calculate k1 with l being the intermediate block CIPH_K(0), |
86 | | * Step 3: calculate k2 from l == k1. |
87 | | * |
88 | | * Per 5.3, Rb is the lexically first irreducible polynomial of degree b with |
89 | | * the minimum number of non-zero terms. This gives R128 = (1 << 128) | 0x87 |
90 | | * and R64 = (1 << 64) | 0x1b for the only supported block sizes 128 and 64. |
91 | | */ |
92 | | static void |
93 | | make_kn(unsigned char *kn, const unsigned char *l, int block_size) |
94 | 1.46k | { |
95 | 1.46k | unsigned char mask, Rb; |
96 | 1.46k | int i; |
97 | | |
98 | | /* Choose Rb according to the block size in bytes. */ |
99 | 1.46k | Rb = block_size == 16 ? 0x87 : 0x1b; |
100 | | |
101 | | /* Compute l << 1 up to last byte. */ |
102 | 16.2k | for (i = 0; i < block_size - 1; i++) |
103 | 14.7k | kn[i] = (l[i] << 1) | (l[i + 1] >> 7); |
104 | | |
105 | | /* Only xor with Rb if the MSB is one. */ |
106 | 1.46k | mask = 0 - (l[0] >> 7); |
107 | 1.46k | kn[block_size - 1] = (l[block_size - 1] << 1) ^ (Rb & mask); |
108 | 1.46k | } |
109 | | |
110 | | CMAC_CTX * |
111 | | CMAC_CTX_new(void) |
112 | 20.6k | { |
113 | 20.6k | CMAC_CTX *ctx; |
114 | | |
115 | 20.6k | if ((ctx = calloc(1, sizeof(CMAC_CTX))) == NULL) |
116 | 0 | goto err; |
117 | 20.6k | if ((ctx->cipher_ctx = EVP_CIPHER_CTX_new()) == NULL) |
118 | 0 | goto err; |
119 | | |
120 | 20.6k | ctx->nlast_block = -1; |
121 | | |
122 | 20.6k | return ctx; |
123 | | |
124 | 0 | err: |
125 | 0 | CMAC_CTX_free(ctx); |
126 | |
|
127 | 0 | return NULL; |
128 | 20.6k | } |
129 | | LCRYPTO_ALIAS(CMAC_CTX_new); |
130 | | |
131 | | void |
132 | | CMAC_CTX_cleanup(CMAC_CTX *ctx) |
133 | 20.6k | { |
134 | 20.6k | (void)EVP_CIPHER_CTX_reset(ctx->cipher_ctx); |
135 | 20.6k | explicit_bzero(ctx->tbl, EVP_MAX_BLOCK_LENGTH); |
136 | 20.6k | explicit_bzero(ctx->k1, EVP_MAX_BLOCK_LENGTH); |
137 | 20.6k | explicit_bzero(ctx->k2, EVP_MAX_BLOCK_LENGTH); |
138 | 20.6k | explicit_bzero(ctx->last_block, EVP_MAX_BLOCK_LENGTH); |
139 | 20.6k | ctx->nlast_block = -1; |
140 | 20.6k | } |
141 | | LCRYPTO_ALIAS(CMAC_CTX_cleanup); |
142 | | |
143 | | EVP_CIPHER_CTX * |
144 | | CMAC_CTX_get0_cipher_ctx(CMAC_CTX *ctx) |
145 | 0 | { |
146 | 0 | return ctx->cipher_ctx; |
147 | 0 | } |
148 | | LCRYPTO_ALIAS(CMAC_CTX_get0_cipher_ctx); |
149 | | |
150 | | void |
151 | | CMAC_CTX_free(CMAC_CTX *ctx) |
152 | 20.6k | { |
153 | 20.6k | if (ctx == NULL) |
154 | 0 | return; |
155 | | |
156 | 20.6k | CMAC_CTX_cleanup(ctx); |
157 | 20.6k | EVP_CIPHER_CTX_free(ctx->cipher_ctx); |
158 | 20.6k | freezero(ctx, sizeof(CMAC_CTX)); |
159 | 20.6k | } |
160 | | LCRYPTO_ALIAS(CMAC_CTX_free); |
161 | | |
162 | | int |
163 | | CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) |
164 | 17.9k | { |
165 | 17.9k | int block_size; |
166 | | |
167 | 17.9k | if (in->nlast_block == -1) |
168 | 2.44k | return 0; |
169 | 15.5k | if (!EVP_CIPHER_CTX_copy(out->cipher_ctx, in->cipher_ctx)) |
170 | 0 | return 0; |
171 | 15.5k | block_size = EVP_CIPHER_CTX_block_size(in->cipher_ctx); |
172 | 15.5k | memcpy(out->k1, in->k1, block_size); |
173 | 15.5k | memcpy(out->k2, in->k2, block_size); |
174 | 15.5k | memcpy(out->tbl, in->tbl, block_size); |
175 | 15.5k | memcpy(out->last_block, in->last_block, block_size); |
176 | 15.5k | out->nlast_block = in->nlast_block; |
177 | 15.5k | return 1; |
178 | 15.5k | } |
179 | | LCRYPTO_ALIAS(CMAC_CTX_copy); |
180 | | |
181 | | int |
182 | | CMAC_Init(CMAC_CTX *ctx, const void *key, size_t keylen, |
183 | | const EVP_CIPHER *cipher, ENGINE *impl) |
184 | 2.00k | { |
185 | 2.00k | static const unsigned char zero_iv[EVP_MAX_BLOCK_LENGTH]; |
186 | 2.00k | int block_size; |
187 | | |
188 | | /* All zeros means restart */ |
189 | 2.00k | if (key == NULL && cipher == NULL && keylen == 0) { |
190 | | /* Not initialised */ |
191 | 0 | if (ctx->nlast_block == -1) |
192 | 0 | return 0; |
193 | 0 | if (!EVP_EncryptInit_ex(ctx->cipher_ctx, NULL, NULL, NULL, zero_iv)) |
194 | 0 | return 0; |
195 | 0 | explicit_bzero(ctx->tbl, sizeof(ctx->tbl)); |
196 | 0 | ctx->nlast_block = 0; |
197 | 0 | return 1; |
198 | 0 | } |
199 | | |
200 | | /* Initialise context. */ |
201 | 2.00k | if (cipher != NULL) { |
202 | | /* |
203 | | * Disallow ciphers for which EVP_Cipher() behaves differently. |
204 | | * These are AEAD ciphers (or AES keywrap) for which the CMAC |
205 | | * construction makes little sense. |
206 | | */ |
207 | 2.00k | if ((cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) != 0) |
208 | 193 | return 0; |
209 | 1.81k | if (!EVP_EncryptInit_ex(ctx->cipher_ctx, cipher, NULL, NULL, NULL)) |
210 | 0 | return 0; |
211 | 1.81k | } |
212 | | |
213 | | /* Non-NULL key means initialisation is complete. */ |
214 | 1.81k | if (key != NULL) { |
215 | 1.35k | if (EVP_CIPHER_CTX_cipher(ctx->cipher_ctx) == NULL) |
216 | 0 | return 0; |
217 | | |
218 | | /* make_kn() only supports block sizes of 8 and 16 bytes. */ |
219 | 1.35k | block_size = EVP_CIPHER_CTX_block_size(ctx->cipher_ctx); |
220 | 1.35k | if (block_size != 8 && block_size != 16) |
221 | 538 | return 0; |
222 | | |
223 | | /* |
224 | | * Section 6.1, step 1: store the intermediate secret CIPH_K(0) |
225 | | * in ctx->tbl. |
226 | | */ |
227 | 814 | if (!EVP_CIPHER_CTX_set_key_length(ctx->cipher_ctx, keylen)) |
228 | 80 | return 0; |
229 | 734 | if (!EVP_EncryptInit_ex(ctx->cipher_ctx, NULL, NULL, key, zero_iv)) |
230 | 0 | return 0; |
231 | 734 | if (!EVP_Cipher(ctx->cipher_ctx, ctx->tbl, zero_iv, block_size)) |
232 | 0 | return 0; |
233 | | |
234 | | /* Section 6.1, step 2: compute k1 from intermediate secret. */ |
235 | 734 | make_kn(ctx->k1, ctx->tbl, block_size); |
236 | | /* Section 6.1, step 3: compute k2 from k1. */ |
237 | 734 | make_kn(ctx->k2, ctx->k1, block_size); |
238 | | |
239 | | /* Destroy intermediate secret and reset last block count. */ |
240 | 734 | explicit_bzero(ctx->tbl, sizeof(ctx->tbl)); |
241 | 734 | ctx->nlast_block = 0; |
242 | | |
243 | | /* Reset context again to get ready for the first data block. */ |
244 | 734 | if (!EVP_EncryptInit_ex(ctx->cipher_ctx, NULL, NULL, NULL, zero_iv)) |
245 | 0 | return 0; |
246 | 734 | } |
247 | | |
248 | 1.19k | return 1; |
249 | 1.81k | } |
250 | | LCRYPTO_ALIAS(CMAC_Init); |
251 | | |
252 | | int |
253 | | CMAC_Update(CMAC_CTX *ctx, const void *in, size_t dlen) |
254 | 15.2k | { |
255 | 15.2k | const unsigned char *data = in; |
256 | 15.2k | size_t block_size; |
257 | | |
258 | 15.2k | if (ctx->nlast_block == -1) |
259 | 464 | return 0; |
260 | 14.7k | if (dlen == 0) |
261 | 12.9k | return 1; |
262 | 1.87k | block_size = EVP_CIPHER_CTX_block_size(ctx->cipher_ctx); |
263 | | /* Copy into partial block if we need to */ |
264 | 1.87k | if (ctx->nlast_block > 0) { |
265 | 1.43k | size_t nleft; |
266 | | |
267 | 1.43k | nleft = block_size - ctx->nlast_block; |
268 | 1.43k | if (dlen < nleft) |
269 | 835 | nleft = dlen; |
270 | 1.43k | memcpy(ctx->last_block + ctx->nlast_block, data, nleft); |
271 | 1.43k | dlen -= nleft; |
272 | 1.43k | ctx->nlast_block += nleft; |
273 | | /* If no more to process return */ |
274 | 1.43k | if (dlen == 0) |
275 | 959 | return 1; |
276 | 479 | data += nleft; |
277 | | /* Else not final block so encrypt it */ |
278 | 479 | if (!EVP_Cipher(ctx->cipher_ctx, ctx->tbl, ctx->last_block, |
279 | 479 | block_size)) |
280 | 0 | return 0; |
281 | 479 | } |
282 | | /* Encrypt all but one of the complete blocks left */ |
283 | 38.2k | while (dlen > block_size) { |
284 | 37.2k | if (!EVP_Cipher(ctx->cipher_ctx, ctx->tbl, data, block_size)) |
285 | 0 | return 0; |
286 | 37.2k | dlen -= block_size; |
287 | 37.2k | data += block_size; |
288 | 37.2k | } |
289 | | /* Copy any data left to last block buffer */ |
290 | 920 | memcpy(ctx->last_block, data, dlen); |
291 | 920 | ctx->nlast_block = dlen; |
292 | 920 | return 1; |
293 | 920 | } |
294 | | LCRYPTO_ALIAS(CMAC_Update); |
295 | | |
296 | | int |
297 | | CMAC_Final(CMAC_CTX *ctx, unsigned char *out, size_t *poutlen) |
298 | 734 | { |
299 | 734 | int i, block_size, lb; |
300 | | |
301 | 734 | if (ctx->nlast_block == -1) |
302 | 0 | return 0; |
303 | 734 | block_size = EVP_CIPHER_CTX_block_size(ctx->cipher_ctx); |
304 | 734 | *poutlen = (size_t)block_size; |
305 | 734 | if (!out) |
306 | 0 | return 1; |
307 | 734 | lb = ctx->nlast_block; |
308 | | /* Is last block complete? */ |
309 | 734 | if (lb == block_size) { |
310 | 2.09k | for (i = 0; i < block_size; i++) |
311 | 1.93k | out[i] = ctx->last_block[i] ^ ctx->k1[i]; |
312 | 575 | } else { |
313 | 575 | ctx->last_block[lb] = 0x80; |
314 | 575 | if (block_size - lb > 1) |
315 | 567 | memset(ctx->last_block + lb + 1, 0, block_size - lb - 1); |
316 | 6.75k | for (i = 0; i < block_size; i++) |
317 | 6.17k | out[i] = ctx->last_block[i] ^ ctx->k2[i]; |
318 | 575 | } |
319 | 734 | if (!EVP_Cipher(ctx->cipher_ctx, out, out, block_size)) { |
320 | 0 | explicit_bzero(out, block_size); |
321 | 0 | return 0; |
322 | 0 | } |
323 | 734 | return 1; |
324 | 734 | } |
325 | | LCRYPTO_ALIAS(CMAC_Final); |