Coverage Report

Created: 2025-08-28 06:29

/src/libspdm/os_stub/mbedtlslib/mbedtls/library/bignum.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 *  Multi-precision integer library
3
 *
4
 *  Copyright The Mbed TLS Contributors
5
 *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6
 */
7
8
/*
9
 *  The following sources were referenced in the design of this Multi-precision
10
 *  Integer library:
11
 *
12
 *  [1] Handbook of Applied Cryptography - 1997
13
 *      Menezes, van Oorschot and Vanstone
14
 *
15
 *  [2] Multi-Precision Math
16
 *      Tom St Denis
17
 *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf
18
 *
19
 *  [3] GNU Multi-Precision Arithmetic Library
20
 *      https://gmplib.org/manual/index.html
21
 *
22
 */
23
24
#include "common.h"
25
26
#if defined(MBEDTLS_BIGNUM_C)
27
28
#include "mbedtls/bignum.h"
29
#include "bignum_core.h"
30
#include "bignum_internal.h"
31
#include "bn_mul.h"
32
#include "mbedtls/platform_util.h"
33
#include "mbedtls/error.h"
34
#include "constant_time_internal.h"
35
36
#include <limits.h>
37
#include <string.h>
38
39
#include "mbedtls/platform.h"
40
41
42
43
/*
44
 * Conditionally select an MPI sign in constant time.
45
 * (MPI sign is the field s in mbedtls_mpi. It is unsigned short and only 1 and -1 are valid
46
 * values.)
47
 */
48
static inline signed short mbedtls_ct_mpi_sign_if(mbedtls_ct_condition_t cond,
49
                                                  signed short sign1, signed short sign2)
50
130M
{
51
130M
    return (signed short) mbedtls_ct_uint_if(cond, sign1 + 1, sign2 + 1) - 1;
52
130M
}
53
54
/*
55
 * Compare signed values in constant time
56
 */
57
int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X,
58
                          const mbedtls_mpi *Y,
59
                          unsigned *ret)
60
0
{
61
0
    mbedtls_ct_condition_t different_sign, X_is_negative, Y_is_negative, result;
62
63
0
    if (X->n != Y->n) {
64
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
65
0
    }
66
67
    /*
68
     * Set N_is_negative to MBEDTLS_CT_FALSE if N >= 0, MBEDTLS_CT_TRUE if N < 0.
69
     * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
70
     */
71
0
    X_is_negative = mbedtls_ct_bool((X->s & 2) >> 1);
72
0
    Y_is_negative = mbedtls_ct_bool((Y->s & 2) >> 1);
73
74
    /*
75
     * If the signs are different, then the positive operand is the bigger.
76
     * That is if X is negative (X_is_negative == 1), then X < Y is true and it
77
     * is false if X is positive (X_is_negative == 0).
78
     */
79
0
    different_sign = mbedtls_ct_bool_ne(X_is_negative, Y_is_negative); // true if different sign
80
0
    result = mbedtls_ct_bool_and(different_sign, X_is_negative);
81
82
    /*
83
     * Assuming signs are the same, compare X and Y. We switch the comparison
84
     * order if they are negative so that we get the right result, regardles of
85
     * sign.
86
     */
87
88
    /* This array is used to conditionally swap the pointers in const time */
89
0
    void * const p[2] = { X->p, Y->p };
90
0
    size_t i = mbedtls_ct_size_if_else_0(X_is_negative, 1);
91
0
    mbedtls_ct_condition_t lt = mbedtls_mpi_core_lt_ct(p[i], p[i ^ 1], X->n);
92
93
    /*
94
     * Store in result iff the signs are the same (i.e., iff different_sign == false). If
95
     * the signs differ, result has already been set, so we don't change it.
96
     */
97
0
    result = mbedtls_ct_bool_or(result,
98
0
                                mbedtls_ct_bool_and(mbedtls_ct_bool_not(different_sign), lt));
99
100
0
    *ret = mbedtls_ct_uint_if_else_0(result, 1);
101
102
0
    return 0;
103
0
}
104
105
/*
106
 * Conditionally assign X = Y, without leaking information
107
 * about whether the assignment was made or not.
108
 * (Leaking information about the respective sizes of X and Y is ok however.)
109
 */
110
#if defined(_MSC_VER) && defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64) && \
111
    (_MSC_FULL_VER < 193131103)
112
/*
113
 * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See:
114
 * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989
115
 */
116
__declspec(noinline)
117
#endif
118
int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X,
119
                                 const mbedtls_mpi *Y,
120
                                 unsigned char assign)
121
130M
{
122
130M
    int ret = 0;
123
124
130M
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
125
126
130M
    {
127
130M
        mbedtls_ct_condition_t do_assign = mbedtls_ct_bool(assign);
128
129
130M
        X->s = mbedtls_ct_mpi_sign_if(do_assign, Y->s, X->s);
130
131
130M
        mbedtls_mpi_core_cond_assign(X->p, Y->p, Y->n, do_assign);
132
133
130M
        mbedtls_ct_condition_t do_not_assign = mbedtls_ct_bool_not(do_assign);
134
130M
        for (size_t i = Y->n; i < X->n; i++) {
135
452k
            X->p[i] = mbedtls_ct_mpi_uint_if_else_0(do_not_assign, X->p[i]);
136
452k
        }
137
130M
    }
138
139
130M
cleanup:
140
130M
    return ret;
141
130M
}
142
143
/*
144
 * Conditionally swap X and Y, without leaking information
145
 * about whether the swap was made or not.
146
 * Here it is not ok to simply swap the pointers, which would lead to
147
 * different memory access patterns when X and Y are used afterwards.
148
 */
149
int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X,
150
                               mbedtls_mpi *Y,
151
                               unsigned char swap)
152
0
{
153
0
    int ret = 0;
154
0
    int s;
155
156
0
    if (X == Y) {
157
0
        return 0;
158
0
    }
159
160
0
    mbedtls_ct_condition_t do_swap = mbedtls_ct_bool(swap);
161
162
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
163
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));
164
165
0
    s = X->s;
166
0
    X->s = mbedtls_ct_mpi_sign_if(do_swap, Y->s, X->s);
167
0
    Y->s = mbedtls_ct_mpi_sign_if(do_swap, s, Y->s);
168
169
0
    mbedtls_mpi_core_cond_swap(X->p, Y->p, X->n, do_swap);
170
171
0
cleanup:
172
0
    return ret;
173
0
}
174
175
/* Implementation that should never be optimized out by the compiler */
176
72.6M
#define mbedtls_mpi_zeroize_and_free(v, n) mbedtls_zeroize_and_free(v, ciL * (n))
177
178
/*
179
 * Initialize one MPI
180
 */
181
void mbedtls_mpi_init(mbedtls_mpi *X)
182
373M
{
183
373M
    X->s = 1;
184
373M
    X->n = 0;
185
373M
    X->p = NULL;
186
373M
}
187
188
/*
189
 * Unallocate one MPI
190
 */
191
void mbedtls_mpi_free(mbedtls_mpi *X)
192
371M
{
193
371M
    if (X == NULL) {
194
0
        return;
195
0
    }
196
197
371M
    if (X->p != NULL) {
198
64.5M
        mbedtls_mpi_zeroize_and_free(X->p, X->n);
199
64.5M
    }
200
201
371M
    X->s = 1;
202
371M
    X->n = 0;
203
371M
    X->p = NULL;
204
371M
}
205
206
/*
207
 * Enlarge to the specified number of limbs
208
 */
209
int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
210
1.41G
{
211
1.41G
    mbedtls_mpi_uint *p;
212
213
1.41G
    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
214
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
215
0
    }
216
217
1.41G
    if (X->n < nblimbs) {
218
71.8M
        if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
219
0
            return MBEDTLS_ERR_MPI_ALLOC_FAILED;
220
0
        }
221
222
71.8M
        if (X->p != NULL) {
223
7.20M
            memcpy(p, X->p, X->n * ciL);
224
7.20M
            mbedtls_mpi_zeroize_and_free(X->p, X->n);
225
7.20M
        }
226
227
        /* nblimbs fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
228
         * fits, and we've checked that nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
229
71.8M
        X->n = (unsigned short) nblimbs;
230
71.8M
        X->p = p;
231
71.8M
    }
232
233
1.41G
    return 0;
234
1.41G
}
235
236
/*
237
 * Resize down as much as possible,
238
 * while keeping at least the specified number of limbs
239
 */
240
int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
241
887k
{
242
887k
    mbedtls_mpi_uint *p;
243
887k
    size_t i;
244
245
887k
    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
246
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
247
0
    }
248
249
    /* Actually resize up if there are currently fewer than nblimbs limbs. */
250
887k
    if (X->n <= nblimbs) {
251
0
        return mbedtls_mpi_grow(X, nblimbs);
252
0
    }
253
    /* After this point, then X->n > nblimbs and in particular X->n > 0. */
254
255
5.70M
    for (i = X->n - 1; i > 0; i--) {
256
5.70M
        if (X->p[i] != 0) {
257
887k
            break;
258
887k
        }
259
5.70M
    }
260
887k
    i++;
261
262
887k
    if (i < nblimbs) {
263
6.46k
        i = nblimbs;
264
6.46k
    }
265
266
887k
    if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
267
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
268
0
    }
269
270
887k
    if (X->p != NULL) {
271
887k
        memcpy(p, X->p, i * ciL);
272
887k
        mbedtls_mpi_zeroize_and_free(X->p, X->n);
273
887k
    }
274
275
    /* i fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
276
     * fits, and we've checked that i <= nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
277
887k
    X->n = (unsigned short) i;
278
887k
    X->p = p;
279
280
887k
    return 0;
281
887k
}
282
283
/* Resize X to have exactly n limbs and set it to 0. */
284
static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
285
975k
{
286
975k
    if (limbs == 0) {
287
11
        mbedtls_mpi_free(X);
288
11
        return 0;
289
975k
    } else if (X->n == limbs) {
290
1.08k
        memset(X->p, 0, limbs * ciL);
291
1.08k
        X->s = 1;
292
1.08k
        return 0;
293
974k
    } else {
294
974k
        mbedtls_mpi_free(X);
295
974k
        return mbedtls_mpi_grow(X, limbs);
296
974k
    }
297
975k
}
298
299
/*
300
 * Copy the contents of Y into X.
301
 *
302
 * This function is not constant-time. Leading zeros in Y may be removed.
303
 *
304
 * Ensure that X does not shrink. This is not guaranteed by the public API,
305
 * but some code in the bignum module might still rely on this property.
306
 */
307
int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
308
129M
{
309
129M
    int ret = 0;
310
129M
    size_t i;
311
312
129M
    if (X == Y) {
313
1.44M
        return 0;
314
1.44M
    }
315
316
128M
    if (Y->n == 0) {
317
76.3k
        if (X->n != 0) {
318
0
            X->s = 1;
319
0
            memset(X->p, 0, X->n * ciL);
320
0
        }
321
76.3k
        return 0;
322
76.3k
    }
323
324
735M
    for (i = Y->n - 1; i > 0; i--) {
325
735M
        if (Y->p[i] != 0) {
326
127M
            break;
327
127M
        }
328
735M
    }
329
128M
    i++;
330
331
128M
    X->s = Y->s;
332
333
128M
    if (X->n < i) {
334
53.5M
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
335
74.8M
    } else {
336
74.8M
        memset(X->p + i, 0, (X->n - i) * ciL);
337
74.8M
    }
338
339
128M
    memcpy(X->p, Y->p, i * ciL);
340
341
128M
cleanup:
342
343
128M
    return ret;
344
128M
}
345
346
/*
347
 * Swap the contents of X and Y
348
 */
349
void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
350
0
{
351
0
    mbedtls_mpi T;
352
353
0
    memcpy(&T,  X, sizeof(mbedtls_mpi));
354
0
    memcpy(X,  Y, sizeof(mbedtls_mpi));
355
0
    memcpy(Y, &T, sizeof(mbedtls_mpi));
356
0
}
357
358
static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
359
509M
{
360
509M
    if (z >= 0) {
361
509M
        return z;
362
509M
    }
363
    /* Take care to handle the most negative value (-2^(biL-1)) correctly.
364
     * A naive -z would have undefined behavior.
365
     * Write this in a way that makes popular compilers happy (GCC, Clang,
366
     * MSVC). */
367
87.9k
    return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
368
509M
}
369
370
/* Convert x to a sign, i.e. to 1, if x is positive, or -1, if x is negative.
371
 * This looks awkward but generates smaller code than (x < 0 ? -1 : 1) */
372
509M
#define TO_SIGN(x) ((mbedtls_mpi_sint) (((mbedtls_mpi_uint) x) >> (biL - 1)) * -2 + 1)
373
374
/*
375
 * Set value from integer
376
 */
377
int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
378
184M
{
379
184M
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
380
381
184M
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
382
184M
    memset(X->p, 0, X->n * ciL);
383
384
184M
    X->p[0] = mpi_sint_abs(z);
385
184M
    X->s    = TO_SIGN(z);
386
387
184M
cleanup:
388
389
184M
    return ret;
390
184M
}
391
392
/*
393
 * Get a specific bit
394
 */
395
int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
396
24.0M
{
397
24.0M
    if (X->n * biL <= pos) {
398
186k
        return 0;
399
186k
    }
400
401
23.8M
    return (X->p[pos / biL] >> (pos % biL)) & 0x01;
402
24.0M
}
403
404
/*
405
 * Set a bit to a specific value of 0 or 1
406
 */
407
int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
408
1.87k
{
409
1.87k
    int ret = 0;
410
1.87k
    size_t off = pos / biL;
411
1.87k
    size_t idx = pos % biL;
412
413
1.87k
    if (val != 0 && val != 1) {
414
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
415
0
    }
416
417
1.87k
    if (X->n * biL <= pos) {
418
946
        if (val == 0) {
419
0
            return 0;
420
0
        }
421
422
946
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
423
946
    }
424
425
1.87k
    X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
426
1.87k
    X->p[off] |= (mbedtls_mpi_uint) val << idx;
427
428
1.87k
cleanup:
429
430
1.87k
    return ret;
431
1.87k
}
432
433
/*
434
 * Return the number of less significant zero-bits
435
 */
436
size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
437
98.0M
{
438
98.0M
    size_t i;
439
440
98.0M
#if defined(__has_builtin)
441
#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_ctz)
442
    #define mbedtls_mpi_uint_ctz __builtin_ctz
443
#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_ctzl)
444
98.0M
    #define mbedtls_mpi_uint_ctz __builtin_ctzl
445
#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_ctzll)
446
    #define mbedtls_mpi_uint_ctz __builtin_ctzll
447
#endif
448
98.0M
#endif
449
450
98.0M
#if defined(mbedtls_mpi_uint_ctz)
451
98.0M
    for (i = 0; i < X->n; i++) {
452
98.0M
        if (X->p[i] != 0) {
453
98.0M
            return i * biL + mbedtls_mpi_uint_ctz(X->p[i]);
454
98.0M
        }
455
98.0M
    }
456
#else
457
    size_t count = 0;
458
    for (i = 0; i < X->n; i++) {
459
        for (size_t j = 0; j < biL; j++, count++) {
460
            if (((X->p[i] >> j) & 1) != 0) {
461
                return count;
462
            }
463
        }
464
    }
465
#endif
466
467
0
    return 0;
468
98.0M
}
469
470
/*
471
 * Return the number of bits
472
 */
473
size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
474
238M
{
475
238M
    return mbedtls_mpi_core_bitlen(X->p, X->n);
476
238M
}
477
478
/*
479
 * Return the total size in bytes
480
 */
481
size_t mbedtls_mpi_size(const mbedtls_mpi *X)
482
535k
{
483
535k
    return (mbedtls_mpi_bitlen(X) + 7) >> 3;
484
535k
}
485
486
/*
487
 * Convert an ASCII character to digit value
488
 */
489
static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
490
0
{
491
0
    *d = 255;
492
493
0
    if (c >= 0x30 && c <= 0x39) {
494
0
        *d = c - 0x30;
495
0
    }
496
0
    if (c >= 0x41 && c <= 0x46) {
497
0
        *d = c - 0x37;
498
0
    }
499
0
    if (c >= 0x61 && c <= 0x66) {
500
0
        *d = c - 0x57;
501
0
    }
502
503
0
    if (*d >= (mbedtls_mpi_uint) radix) {
504
0
        return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
505
0
    }
506
507
0
    return 0;
508
0
}
509
510
/*
511
 * Import from an ASCII string
512
 */
513
int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
514
0
{
515
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
516
0
    size_t i, j, slen, n;
517
0
    int sign = 1;
518
0
    mbedtls_mpi_uint d;
519
0
    mbedtls_mpi T;
520
521
0
    if (radix < 2 || radix > 16) {
522
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
523
0
    }
524
525
0
    mbedtls_mpi_init(&T);
526
527
0
    if (s[0] == 0) {
528
0
        mbedtls_mpi_free(X);
529
0
        return 0;
530
0
    }
531
532
0
    if (s[0] == '-') {
533
0
        ++s;
534
0
        sign = -1;
535
0
    }
536
537
0
    slen = strlen(s);
538
539
0
    if (radix == 16) {
540
0
        if (slen > SIZE_MAX >> 2) {
541
0
            return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
542
0
        }
543
544
0
        n = BITS_TO_LIMBS(slen << 2);
545
546
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
547
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
548
549
0
        for (i = slen, j = 0; i > 0; i--, j++) {
550
0
            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
551
0
            X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
552
0
        }
553
0
    } else {
554
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
555
556
0
        for (i = 0; i < slen; i++) {
557
0
            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
558
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
559
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
560
0
        }
561
0
    }
562
563
0
    if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
564
0
        X->s = -1;
565
0
    }
566
567
0
cleanup:
568
569
0
    mbedtls_mpi_free(&T);
570
571
0
    return ret;
572
0
}
573
574
/*
575
 * Helper to write the digits high-order first.
576
 */
577
static int mpi_write_hlp(mbedtls_mpi *X, int radix,
578
                         char **p, const size_t buflen)
579
0
{
580
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
581
0
    mbedtls_mpi_uint r;
582
0
    size_t length = 0;
583
0
    char *p_end = *p + buflen;
584
585
0
    do {
586
0
        if (length >= buflen) {
587
0
            return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
588
0
        }
589
590
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
591
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
592
        /*
593
         * Write the residue in the current position, as an ASCII character.
594
         */
595
0
        if (r < 0xA) {
596
0
            *(--p_end) = (char) ('0' + r);
597
0
        } else {
598
0
            *(--p_end) = (char) ('A' + (r - 0xA));
599
0
        }
600
601
0
        length++;
602
0
    } while (mbedtls_mpi_cmp_int(X, 0) != 0);
603
604
0
    memmove(*p, p_end, length);
605
0
    *p += length;
606
607
0
cleanup:
608
609
0
    return ret;
610
0
}
611
612
/*
613
 * Export into an ASCII string
614
 */
615
int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
616
                             char *buf, size_t buflen, size_t *olen)
617
0
{
618
0
    int ret = 0;
619
0
    size_t n;
620
0
    char *p;
621
0
    mbedtls_mpi T;
622
623
0
    if (radix < 2 || radix > 16) {
624
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
625
0
    }
626
627
0
    n = mbedtls_mpi_bitlen(X);   /* Number of bits necessary to present `n`. */
628
0
    if (radix >=  4) {
629
0
        n >>= 1;                 /* Number of 4-adic digits necessary to present
630
                                  * `n`. If radix > 4, this might be a strict
631
                                  * overapproximation of the number of
632
                                  * radix-adic digits needed to present `n`. */
633
0
    }
634
0
    if (radix >= 16) {
635
0
        n >>= 1;                 /* Number of hexadecimal digits necessary to
636
                                  * present `n`. */
637
638
0
    }
639
0
    n += 1; /* Terminating null byte */
640
0
    n += 1; /* Compensate for the divisions above, which round down `n`
641
             * in case it's not even. */
642
0
    n += 1; /* Potential '-'-sign. */
643
0
    n += (n & 1);   /* Make n even to have enough space for hexadecimal writing,
644
                     * which always uses an even number of hex-digits. */
645
646
0
    if (buflen < n) {
647
0
        *olen = n;
648
0
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
649
0
    }
650
651
0
    p = buf;
652
0
    mbedtls_mpi_init(&T);
653
654
0
    if (X->s == -1) {
655
0
        *p++ = '-';
656
0
        buflen--;
657
0
    }
658
659
0
    if (radix == 16) {
660
0
        int c;
661
0
        size_t i, j, k;
662
663
0
        for (i = X->n, k = 0; i > 0; i--) {
664
0
            for (j = ciL; j > 0; j--) {
665
0
                c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
666
667
0
                if (c == 0 && k == 0 && (i + j) != 2) {
668
0
                    continue;
669
0
                }
670
671
0
                *(p++) = "0123456789ABCDEF" [c / 16];
672
0
                *(p++) = "0123456789ABCDEF" [c % 16];
673
0
                k = 1;
674
0
            }
675
0
        }
676
0
    } else {
677
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
678
679
0
        if (T.s == -1) {
680
0
            T.s = 1;
681
0
        }
682
683
0
        MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
684
0
    }
685
686
0
    *p++ = '\0';
687
0
    *olen = (size_t) (p - buf);
688
689
0
cleanup:
690
691
0
    mbedtls_mpi_free(&T);
692
693
0
    return ret;
694
0
}
695
696
#if defined(MBEDTLS_FS_IO)
697
/*
698
 * Read X from an opened file
699
 */
700
int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
701
{
702
    mbedtls_mpi_uint d;
703
    size_t slen;
704
    char *p;
705
    /*
706
     * Buffer should have space for (short) label and decimal formatted MPI,
707
     * newline characters and '\0'
708
     */
709
    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
710
711
    if (radix < 2 || radix > 16) {
712
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
713
    }
714
715
    memset(s, 0, sizeof(s));
716
    if (fgets(s, sizeof(s) - 1, fin) == NULL) {
717
        return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
718
    }
719
720
    slen = strlen(s);
721
    if (slen == sizeof(s) - 2) {
722
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
723
    }
724
725
    if (slen > 0 && s[slen - 1] == '\n') {
726
        slen--; s[slen] = '\0';
727
    }
728
    if (slen > 0 && s[slen - 1] == '\r') {
729
        slen--; s[slen] = '\0';
730
    }
731
732
    p = s + slen;
733
    while (p-- > s) {
734
        if (mpi_get_digit(&d, radix, *p) != 0) {
735
            break;
736
        }
737
    }
738
739
    return mbedtls_mpi_read_string(X, radix, p + 1);
740
}
741
742
/*
743
 * Write X into an opened file (or stdout if fout == NULL)
744
 */
745
int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
746
{
747
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
748
    size_t n, slen, plen;
749
    /*
750
     * Buffer should have space for (short) label and decimal formatted MPI,
751
     * newline characters and '\0'
752
     */
753
    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
754
755
    if (radix < 2 || radix > 16) {
756
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
757
    }
758
759
    memset(s, 0, sizeof(s));
760
761
    MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
762
763
    if (p == NULL) {
764
        p = "";
765
    }
766
767
    plen = strlen(p);
768
    slen = strlen(s);
769
    s[slen++] = '\r';
770
    s[slen++] = '\n';
771
772
    if (fout != NULL) {
773
        if (fwrite(p, 1, plen, fout) != plen ||
774
            fwrite(s, 1, slen, fout) != slen) {
775
            return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
776
        }
777
    } else {
778
        mbedtls_printf("%s%s", p, s);
779
    }
780
781
cleanup:
782
783
    return ret;
784
}
785
#endif /* MBEDTLS_FS_IO */
786
787
/*
788
 * Import X from unsigned binary data, little endian
789
 *
790
 * This function is guaranteed to return an MPI with exactly the necessary
791
 * number of limbs (in particular, it does not skip 0s in the input).
792
 */
793
int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
794
                               const unsigned char *buf, size_t buflen)
795
932
{
796
932
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
797
932
    const size_t limbs = CHARS_TO_LIMBS(buflen);
798
799
    /* Ensure that target MPI has exactly the necessary number of limbs */
800
932
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
801
802
932
    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
803
804
932
cleanup:
805
806
    /*
807
     * This function is also used to import keys. However, wiping the buffers
808
     * upon failure is not necessary because failure only can happen before any
809
     * input is copied.
810
     */
811
932
    return ret;
812
932
}
813
814
/*
815
 * Import X from unsigned binary data, big endian
816
 *
817
 * This function is guaranteed to return an MPI with exactly the necessary
818
 * number of limbs (in particular, it does not skip 0s in the input).
819
 */
820
int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
821
964k
{
822
964k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
823
964k
    const size_t limbs = CHARS_TO_LIMBS(buflen);
824
825
    /* Ensure that target MPI has exactly the necessary number of limbs */
826
964k
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
827
828
964k
    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
829
830
964k
cleanup:
831
832
    /*
833
     * This function is also used to import keys. However, wiping the buffers
834
     * upon failure is not necessary because failure only can happen before any
835
     * input is copied.
836
     */
837
964k
    return ret;
838
964k
}
839
840
/*
841
 * Export X into unsigned binary data, little endian
842
 */
843
int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
844
                                unsigned char *buf, size_t buflen)
845
0
{
846
0
    return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
847
0
}
848
849
/*
850
 * Export X into unsigned binary data, big endian
851
 */
852
int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
853
                             unsigned char *buf, size_t buflen)
854
12.6k
{
855
12.6k
    return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
856
12.6k
}
857
858
/*
859
 * Left-shift: X <<= count
860
 */
861
int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
862
61.6M
{
863
61.6M
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
864
61.6M
    size_t i;
865
866
61.6M
    i = mbedtls_mpi_bitlen(X) + count;
867
868
61.6M
    if (X->n * biL < i) {
869
298k
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
870
298k
    }
871
872
61.6M
    ret = 0;
873
874
61.6M
    mbedtls_mpi_core_shift_l(X->p, X->n, count);
875
61.6M
cleanup:
876
877
61.6M
    return ret;
878
61.6M
}
879
880
/*
881
 * Right-shift: X >>= count
882
 */
883
int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
884
437M
{
885
437M
    if (X->n != 0) {
886
437M
        mbedtls_mpi_core_shift_r(X->p, X->n, count);
887
437M
    }
888
437M
    return 0;
889
437M
}
890
891
/*
892
 * Compare unsigned values
893
 */
894
int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
895
436M
{
896
436M
    size_t i, j;
897
898
1.99G
    for (i = X->n; i > 0; i--) {
899
1.99G
        if (X->p[i - 1] != 0) {
900
436M
            break;
901
436M
        }
902
1.99G
    }
903
904
1.08G
    for (j = Y->n; j > 0; j--) {
905
1.08G
        if (Y->p[j - 1] != 0) {
906
436M
            break;
907
436M
        }
908
1.08G
    }
909
910
    /* If i == j == 0, i.e. abs(X) == abs(Y),
911
     * we end up returning 0 at the end of the function. */
912
913
436M
    if (i > j) {
914
44.6M
        return 1;
915
44.6M
    }
916
392M
    if (j > i) {
917
780k
        return -1;
918
780k
    }
919
920
393M
    for (; i > 0; i--) {
921
393M
        if (X->p[i - 1] > Y->p[i - 1]) {
922
131M
            return 1;
923
131M
        }
924
262M
        if (X->p[i - 1] < Y->p[i - 1]) {
925
259M
            return -1;
926
259M
        }
927
262M
    }
928
929
622k
    return 0;
930
391M
}
931
932
/*
933
 * Compare signed values
934
 */
935
int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
936
770M
{
937
770M
    size_t i, j;
938
939
3.76G
    for (i = X->n; i > 0; i--) {
940
3.76G
        if (X->p[i - 1] != 0) {
941
769M
            break;
942
769M
        }
943
3.76G
    }
944
945
1.25G
    for (j = Y->n; j > 0; j--) {
946
936M
        if (Y->p[j - 1] != 0) {
947
453M
            break;
948
453M
        }
949
936M
    }
950
951
770M
    if (i == 0 && j == 0) {
952
860k
        return 0;
953
860k
    }
954
955
769M
    if (i > j) {
956
399M
        return X->s;
957
399M
    }
958
370M
    if (j > i) {
959
1.98M
        return -Y->s;
960
1.98M
    }
961
962
368M
    if (X->s > 0 && Y->s < 0) {
963
0
        return 1;
964
0
    }
965
368M
    if (Y->s > 0 && X->s < 0) {
966
0
        return -1;
967
0
    }
968
969
378M
    for (; i > 0; i--) {
970
371M
        if (X->p[i - 1] > Y->p[i - 1]) {
971
48.6M
            return X->s;
972
48.6M
        }
973
322M
        if (X->p[i - 1] < Y->p[i - 1]) {
974
312M
            return -X->s;
975
312M
        }
976
322M
    }
977
978
7.42M
    return 0;
979
368M
}
980
981
/*
982
 * Compare signed values
983
 */
984
int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
985
324M
{
986
324M
    mbedtls_mpi Y;
987
324M
    mbedtls_mpi_uint p[1];
988
989
324M
    *p  = mpi_sint_abs(z);
990
324M
    Y.s = TO_SIGN(z);
991
324M
    Y.n = 1;
992
324M
    Y.p = p;
993
994
324M
    return mbedtls_mpi_cmp_mpi(X, &Y);
995
324M
}
996
997
/*
998
 * Unsigned addition: X = |A| + |B|  (HAC 14.7)
999
 */
1000
int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1001
109M
{
1002
109M
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1003
109M
    size_t j;
1004
109M
    mbedtls_mpi_uint *p;
1005
109M
    mbedtls_mpi_uint c;
1006
1007
109M
    if (X == B) {
1008
0
        const mbedtls_mpi *T = A; A = X; B = T;
1009
0
    }
1010
1011
109M
    if (X != A) {
1012
13.6M
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1013
13.6M
    }
1014
1015
    /*
1016
     * X must always be positive as a result of unsigned additions.
1017
     */
1018
109M
    X->s = 1;
1019
1020
201M
    for (j = B->n; j > 0; j--) {
1021
201M
        if (B->p[j - 1] != 0) {
1022
109M
            break;
1023
109M
        }
1024
201M
    }
1025
1026
    /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
1027
     * and B is 0 (of any size). */
1028
109M
    if (j == 0) {
1029
22.5k
        return 0;
1030
22.5k
    }
1031
1032
109M
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
1033
1034
    /* j is the number of non-zero limbs of B. Add those to X. */
1035
1036
109M
    p = X->p;
1037
1038
109M
    c = mbedtls_mpi_core_add(p, p, B->p, j);
1039
1040
109M
    p += j;
1041
1042
    /* Now propagate any carry */
1043
1044
157M
    while (c != 0) {
1045
47.8M
        if (j >= X->n) {
1046
512k
            MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
1047
512k
            p = X->p + j;
1048
512k
        }
1049
1050
47.8M
        *p += c; c = (*p < c); j++; p++;
1051
47.8M
    }
1052
1053
109M
cleanup:
1054
1055
109M
    return ret;
1056
109M
}
1057
1058
/*
1059
 * Unsigned subtraction: X = |A| - |B|  (HAC 14.9, 14.10)
1060
 */
1061
int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1062
566M
{
1063
566M
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1064
566M
    size_t n;
1065
566M
    mbedtls_mpi_uint carry;
1066
1067
2.06G
    for (n = B->n; n > 0; n--) {
1068
2.06G
        if (B->p[n - 1] != 0) {
1069
566M
            break;
1070
566M
        }
1071
2.06G
    }
1072
566M
    if (n > A->n) {
1073
        /* B >= (2^ciL)^n > A */
1074
0
        ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1075
0
        goto cleanup;
1076
0
    }
1077
1078
566M
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
1079
1080
    /* Set the high limbs of X to match A. Don't touch the lower limbs
1081
     * because X might be aliased to B, and we must not overwrite the
1082
     * significant digits of B. */
1083
566M
    if (A->n > n && A != X) {
1084
80.7M
        memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
1085
80.7M
    }
1086
566M
    if (X->n > A->n) {
1087
179M
        memset(X->p + A->n, 0, (X->n - A->n) * ciL);
1088
179M
    }
1089
1090
566M
    carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
1091
566M
    if (carry != 0) {
1092
        /* Propagate the carry through the rest of X. */
1093
125M
        carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
1094
1095
        /* If we have further carry/borrow, the result is negative. */
1096
125M
        if (carry != 0) {
1097
0
            ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1098
0
            goto cleanup;
1099
0
        }
1100
125M
    }
1101
1102
    /* X should always be positive as a result of unsigned subtractions. */
1103
566M
    X->s = 1;
1104
1105
566M
cleanup:
1106
566M
    return ret;
1107
566M
}
1108
1109
/* Common function for signed addition and subtraction.
1110
 * Calculate A + B * flip_B where flip_B is 1 or -1.
1111
 */
1112
static int add_sub_mpi(mbedtls_mpi *X,
1113
                       const mbedtls_mpi *A, const mbedtls_mpi *B,
1114
                       int flip_B)
1115
545M
{
1116
545M
    int ret, s;
1117
1118
545M
    s = A->s;
1119
545M
    if (A->s * B->s * flip_B < 0) {
1120
436M
        int cmp = mbedtls_mpi_cmp_abs(A, B);
1121
436M
        if (cmp >= 0) {
1122
176M
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
1123
            /* If |A| = |B|, the result is 0 and we must set the sign bit
1124
             * to +1 regardless of which of A or B was negative. Otherwise,
1125
             * since |A| > |B|, the sign is the sign of A. */
1126
176M
            X->s = cmp == 0 ? 1 : s;
1127
260M
        } else {
1128
260M
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
1129
            /* Since |A| < |B|, the sign is the opposite of A. */
1130
260M
            X->s = -s;
1131
260M
        }
1132
436M
    } else {
1133
109M
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
1134
109M
        X->s = s;
1135
109M
    }
1136
1137
545M
cleanup:
1138
1139
545M
    return ret;
1140
545M
}
1141
1142
/*
1143
 * Signed addition: X = A + B
1144
 */
1145
int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1146
248M
{
1147
248M
    return add_sub_mpi(X, A, B, 1);
1148
248M
}
1149
1150
/*
1151
 * Signed subtraction: X = A - B
1152
 */
1153
int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1154
296M
{
1155
296M
    return add_sub_mpi(X, A, B, -1);
1156
296M
}
1157
1158
/*
1159
 * Signed addition: X = A + b
1160
 */
1161
int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1162
1.28k
{
1163
1.28k
    mbedtls_mpi B;
1164
1.28k
    mbedtls_mpi_uint p[1];
1165
1166
1.28k
    p[0] = mpi_sint_abs(b);
1167
1.28k
    B.s = TO_SIGN(b);
1168
1.28k
    B.n = 1;
1169
1.28k
    B.p = p;
1170
1171
1.28k
    return mbedtls_mpi_add_mpi(X, A, &B);
1172
1.28k
}
1173
1174
/*
1175
 * Signed subtraction: X = A - b
1176
 */
1177
int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1178
448k
{
1179
448k
    mbedtls_mpi B;
1180
448k
    mbedtls_mpi_uint p[1];
1181
1182
448k
    p[0] = mpi_sint_abs(b);
1183
448k
    B.s = TO_SIGN(b);
1184
448k
    B.n = 1;
1185
448k
    B.p = p;
1186
1187
448k
    return mbedtls_mpi_sub_mpi(X, A, &B);
1188
448k
}
1189
1190
/*
1191
 * Baseline multiplication: X = A * B  (HAC 14.12)
1192
 */
1193
int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1194
175M
{
1195
175M
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1196
175M
    size_t i, j;
1197
175M
    mbedtls_mpi TA, TB;
1198
175M
    int result_is_zero = 0;
1199
1200
175M
    mbedtls_mpi_init(&TA);
1201
175M
    mbedtls_mpi_init(&TB);
1202
1203
175M
    if (X == A) {
1204
49.6M
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1205
49.6M
    }
1206
175M
    if (X == B) {
1207
579k
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1208
579k
    }
1209
1210
594M
    for (i = A->n; i > 0; i--) {
1211
594M
        if (A->p[i - 1] != 0) {
1212
175M
            break;
1213
175M
        }
1214
594M
    }
1215
175M
    if (i == 0) {
1216
16
        result_is_zero = 1;
1217
16
    }
1218
1219
785M
    for (j = B->n; j > 0; j--) {
1220
785M
        if (B->p[j - 1] != 0) {
1221
175M
            break;
1222
175M
        }
1223
785M
    }
1224
175M
    if (j == 0) {
1225
28
        result_is_zero = 1;
1226
28
    }
1227
1228
175M
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1229
175M
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
1230
1231
175M
    mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j);
1232
1233
    /* If the result is 0, we don't shortcut the operation, which reduces
1234
     * but does not eliminate side channels leaking the zero-ness. We do
1235
     * need to take care to set the sign bit properly since the library does
1236
     * not fully support an MPI object with a value of 0 and s == -1. */
1237
175M
    if (result_is_zero) {
1238
28
        X->s = 1;
1239
175M
    } else {
1240
175M
        X->s = A->s * B->s;
1241
175M
    }
1242
1243
175M
cleanup:
1244
1245
175M
    mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
1246
1247
175M
    return ret;
1248
175M
}
1249
1250
/*
1251
 * Baseline multiplication: X = A * b
1252
 */
1253
int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
1254
15.8M
{
1255
15.8M
    size_t n = A->n;
1256
199M
    while (n > 0 && A->p[n - 1] == 0) {
1257
183M
        --n;
1258
183M
    }
1259
1260
    /* The general method below doesn't work if b==0. */
1261
15.8M
    if (b == 0 || n == 0) {
1262
0
        return mbedtls_mpi_lset(X, 0);
1263
0
    }
1264
1265
    /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
1266
15.8M
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1267
    /* In general, A * b requires 1 limb more than b. If
1268
     * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1269
     * number of limbs as A and the call to grow() is not required since
1270
     * copy() will take care of the growth if needed. However, experimentally,
1271
     * making the call to grow() unconditional causes slightly fewer
1272
     * calls to calloc() in ECP code, presumably because it reuses the
1273
     * same mpi for a while and this way the mpi is more likely to directly
1274
     * grow to its final size.
1275
     *
1276
     * Note that calculating A*b as 0 + A*b doesn't work as-is because
1277
     * A,X can be the same. */
1278
15.8M
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1279
15.8M
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1280
15.8M
    mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
1281
1282
15.8M
cleanup:
1283
15.8M
    return ret;
1284
15.8M
}
1285
1286
/*
1287
 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1288
 * mbedtls_mpi_uint divisor, d
1289
 */
1290
static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1291
                                            mbedtls_mpi_uint u0,
1292
                                            mbedtls_mpi_uint d,
1293
                                            mbedtls_mpi_uint *r)
1294
822k
{
1295
822k
#if defined(MBEDTLS_HAVE_UDBL)
1296
822k
    mbedtls_t_udbl dividend, quotient;
1297
#else
1298
    const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1299
    const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
1300
    mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1301
    mbedtls_mpi_uint u0_msw, u0_lsw;
1302
    size_t s;
1303
#endif
1304
1305
    /*
1306
     * Check for overflow
1307
     */
1308
822k
    if (0 == d || u1 >= d) {
1309
0
        if (r != NULL) {
1310
0
            *r = ~(mbedtls_mpi_uint) 0u;
1311
0
        }
1312
1313
0
        return ~(mbedtls_mpi_uint) 0u;
1314
0
    }
1315
1316
822k
#if defined(MBEDTLS_HAVE_UDBL)
1317
822k
    dividend  = (mbedtls_t_udbl) u1 << biL;
1318
822k
    dividend |= (mbedtls_t_udbl) u0;
1319
822k
    quotient = dividend / d;
1320
822k
    if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1321
0
        quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1322
0
    }
1323
1324
822k
    if (r != NULL) {
1325
0
        *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1326
0
    }
1327
1328
822k
    return (mbedtls_mpi_uint) quotient;
1329
#else
1330
1331
    /*
1332
     * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1333
     *   Vol. 2 - Seminumerical Algorithms, Knuth
1334
     */
1335
1336
    /*
1337
     * Normalize the divisor, d, and dividend, u0, u1
1338
     */
1339
    s = mbedtls_mpi_core_clz(d);
1340
    d = d << s;
1341
1342
    u1 = u1 << s;
1343
    u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
1344
    u0 =  u0 << s;
1345
1346
    d1 = d >> biH;
1347
    d0 = d & uint_halfword_mask;
1348
1349
    u0_msw = u0 >> biH;
1350
    u0_lsw = u0 & uint_halfword_mask;
1351
1352
    /*
1353
     * Find the first quotient and remainder
1354
     */
1355
    q1 = u1 / d1;
1356
    r0 = u1 - d1 * q1;
1357
1358
    while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
1359
        q1 -= 1;
1360
        r0 += d1;
1361
1362
        if (r0 >= radix) {
1363
            break;
1364
        }
1365
    }
1366
1367
    rAX = (u1 * radix) + (u0_msw - q1 * d);
1368
    q0 = rAX / d1;
1369
    r0 = rAX - q0 * d1;
1370
1371
    while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
1372
        q0 -= 1;
1373
        r0 += d1;
1374
1375
        if (r0 >= radix) {
1376
            break;
1377
        }
1378
    }
1379
1380
    if (r != NULL) {
1381
        *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1382
    }
1383
1384
    quotient = q1 * radix + q0;
1385
1386
    return quotient;
1387
#endif
1388
822k
}
1389
1390
/*
1391
 * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20)
1392
 */
1393
int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1394
                        const mbedtls_mpi *B)
1395
410k
{
1396
410k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1397
410k
    size_t i, n, t, k;
1398
410k
    mbedtls_mpi X, Y, Z, T1, T2;
1399
410k
    mbedtls_mpi_uint TP2[3];
1400
1401
410k
    if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1402
0
        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1403
0
    }
1404
1405
410k
    mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1406
410k
    mbedtls_mpi_init(&T1);
1407
    /*
1408
     * Avoid dynamic memory allocations for constant-size T2.
1409
     *
1410
     * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1411
     * so nobody increase the size of the MPI and we're safe to use an on-stack
1412
     * buffer.
1413
     */
1414
410k
    T2.s = 1;
1415
410k
    T2.n = sizeof(TP2) / sizeof(*TP2);
1416
410k
    T2.p = TP2;
1417
1418
410k
    if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1419
311k
        if (Q != NULL) {
1420
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1421
0
        }
1422
311k
        if (R != NULL) {
1423
311k
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1424
311k
        }
1425
311k
        return 0;
1426
311k
    }
1427
1428
99.0k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1429
99.0k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
1430
99.0k
    X.s = Y.s = 1;
1431
1432
99.0k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1433
99.0k
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z,  0));
1434
99.0k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
1435
1436
99.0k
    k = mbedtls_mpi_bitlen(&Y) % biL;
1437
99.0k
    if (k < biL - 1) {
1438
99.0k
        k = biL - 1 - k;
1439
99.0k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1440
99.0k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1441
99.0k
    } else {
1442
0
        k = 0;
1443
0
    }
1444
1445
99.0k
    n = X.n - 1;
1446
99.0k
    t = Y.n - 1;
1447
99.0k
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
1448
1449
107k
    while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
1450
8.33k
        Z.p[n - t]++;
1451
8.33k
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
1452
8.33k
    }
1453
99.0k
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
1454
1455
921k
    for (i = n; i > t; i--) {
1456
822k
        if (X.p[i] >= Y.p[t]) {
1457
0
            Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1458
822k
        } else {
1459
822k
            Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1460
822k
                                                 Y.p[t], NULL);
1461
822k
        }
1462
1463
822k
        T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1464
822k
        T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
1465
822k
        T2.p[2] = X.p[i];
1466
1467
822k
        Z.p[i - t - 1]++;
1468
1.39M
        do {
1469
1.39M
            Z.p[i - t - 1]--;
1470
1471
1.39M
            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1472
1.39M
            T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
1473
1.39M
            T1.p[1] = Y.p[t];
1474
1.39M
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1475
1.39M
        } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
1476
1477
822k
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1478
822k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1,  biL * (i - t - 1)));
1479
822k
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
1480
1481
822k
        if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1482
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1483
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1484
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
1485
0
            Z.p[i - t - 1]--;
1486
0
        }
1487
822k
    }
1488
1489
99.0k
    if (Q != NULL) {
1490
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
1491
0
        Q->s = A->s * B->s;
1492
0
    }
1493
1494
99.0k
    if (R != NULL) {
1495
99.0k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
1496
99.0k
        X.s = A->s;
1497
99.0k
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
1498
1499
99.0k
        if (mbedtls_mpi_cmp_int(R, 0) == 0) {
1500
0
            R->s = 1;
1501
0
        }
1502
99.0k
    }
1503
1504
99.0k
cleanup:
1505
1506
99.0k
    mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1507
99.0k
    mbedtls_mpi_free(&T1);
1508
99.0k
    mbedtls_platform_zeroize(TP2, sizeof(TP2));
1509
1510
99.0k
    return ret;
1511
99.0k
}
1512
1513
/*
1514
 * Division by int: A = Q * b + R
1515
 */
1516
int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1517
                        const mbedtls_mpi *A,
1518
                        mbedtls_mpi_sint b)
1519
0
{
1520
0
    mbedtls_mpi B;
1521
0
    mbedtls_mpi_uint p[1];
1522
1523
0
    p[0] = mpi_sint_abs(b);
1524
0
    B.s = TO_SIGN(b);
1525
0
    B.n = 1;
1526
0
    B.p = p;
1527
1528
0
    return mbedtls_mpi_div_mpi(Q, R, A, &B);
1529
0
}
1530
1531
/*
1532
 * Modulo: R = A mod B
1533
 */
1534
int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
1535
410k
{
1536
410k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1537
1538
410k
    if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1539
0
        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1540
0
    }
1541
1542
410k
    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
1543
1544
410k
    while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1545
166
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1546
166
    }
1547
1548
410k
    while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1549
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1550
0
    }
1551
1552
410k
cleanup:
1553
1554
410k
    return ret;
1555
410k
}
1556
1557
/*
1558
 * Modulo: r = A mod b
1559
 */
1560
int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1561
0
{
1562
0
    size_t i;
1563
0
    mbedtls_mpi_uint x, y, z;
1564
1565
0
    if (b == 0) {
1566
0
        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1567
0
    }
1568
1569
0
    if (b < 0) {
1570
0
        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1571
0
    }
1572
1573
    /*
1574
     * handle trivial cases
1575
     */
1576
0
    if (b == 1 || A->n == 0) {
1577
0
        *r = 0;
1578
0
        return 0;
1579
0
    }
1580
1581
0
    if (b == 2) {
1582
0
        *r = A->p[0] & 1;
1583
0
        return 0;
1584
0
    }
1585
1586
    /*
1587
     * general case
1588
     */
1589
0
    for (i = A->n, y = 0; i > 0; i--) {
1590
0
        x  = A->p[i - 1];
1591
0
        y  = (y << biH) | (x >> biH);
1592
0
        z  = y / b;
1593
0
        y -= z * b;
1594
1595
0
        x <<= biH;
1596
0
        y  = (y << biH) | (x >> biH);
1597
0
        z  = y / b;
1598
0
        y -= z * b;
1599
0
    }
1600
1601
    /*
1602
     * If A is negative, then the current y represents a negative value.
1603
     * Flipping it to the positive side.
1604
     */
1605
0
    if (A->s < 0 && y != 0) {
1606
0
        y = b - y;
1607
0
    }
1608
1609
0
    *r = y;
1610
1611
0
    return 0;
1612
0
}
1613
1614
/*
1615
 * Warning! If the parameter E_public has MBEDTLS_MPI_IS_PUBLIC as its value,
1616
 * this function is not constant time with respect to the exponent (parameter E).
1617
 */
1618
static int mbedtls_mpi_exp_mod_optionally_safe(mbedtls_mpi *X, const mbedtls_mpi *A,
1619
                                               const mbedtls_mpi *E, int E_public,
1620
                                               const mbedtls_mpi *N, mbedtls_mpi *prec_RR)
1621
8.69k
{
1622
8.69k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1623
1624
8.69k
    if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
1625
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1626
0
    }
1627
1628
8.69k
    if (mbedtls_mpi_cmp_int(E, 0) < 0) {
1629
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1630
0
    }
1631
1632
8.69k
    if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
1633
8.69k
        mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
1634
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1635
0
    }
1636
1637
    /*
1638
     * Ensure that the exponent that we are passing to the core is not NULL.
1639
     */
1640
8.69k
    if (E->n == 0) {
1641
0
        ret = mbedtls_mpi_lset(X, 1);
1642
0
        return ret;
1643
0
    }
1644
1645
    /*
1646
     * Allocate working memory for mbedtls_mpi_core_exp_mod()
1647
     */
1648
8.69k
    size_t T_limbs = mbedtls_mpi_core_exp_mod_working_limbs(N->n, E->n);
1649
8.69k
    mbedtls_mpi_uint *T = (mbedtls_mpi_uint *) mbedtls_calloc(T_limbs, sizeof(mbedtls_mpi_uint));
1650
8.69k
    if (T == NULL) {
1651
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
1652
0
    }
1653
1654
8.69k
    mbedtls_mpi RR;
1655
8.69k
    mbedtls_mpi_init(&RR);
1656
1657
    /*
1658
     * If 1st call, pre-compute R^2 mod N
1659
     */
1660
8.69k
    if (prec_RR == NULL || prec_RR->p == NULL) {
1661
7.97k
        MBEDTLS_MPI_CHK(mbedtls_mpi_core_get_mont_r2_unsafe(&RR, N));
1662
1663
7.97k
        if (prec_RR != NULL) {
1664
7.61k
            *prec_RR = RR;
1665
7.61k
        }
1666
7.97k
    } else {
1667
726
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(prec_RR, N->n));
1668
726
        RR = *prec_RR;
1669
726
    }
1670
1671
    /*
1672
     * To preserve constness we need to make a copy of A. Using X for this to
1673
     * save memory.
1674
     */
1675
8.69k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1676
1677
    /*
1678
     * Compensate for negative A (and correct at the end).
1679
     */
1680
8.69k
    X->s = 1;
1681
1682
    /*
1683
     * Make sure that X is in a form that is safe for consumption by
1684
     * the core functions.
1685
     *
1686
     * - The core functions will not touch the limbs of X above N->n. The
1687
     *   result will be correct if those limbs are 0, which the mod call
1688
     *   ensures.
1689
     * - Also, X must have at least as many limbs as N for the calls to the
1690
     *   core functions.
1691
     */
1692
8.69k
    if (mbedtls_mpi_cmp_mpi(X, N) >= 0) {
1693
726
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
1694
726
    }
1695
8.69k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, N->n));
1696
1697
    /*
1698
     * Convert to and from Montgomery around mbedtls_mpi_core_exp_mod().
1699
     */
1700
8.69k
    {
1701
8.69k
        mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N->p);
1702
8.69k
        mbedtls_mpi_core_to_mont_rep(X->p, X->p, N->p, N->n, mm, RR.p, T);
1703
8.69k
        if (E_public == MBEDTLS_MPI_IS_PUBLIC) {
1704
6.88k
            mbedtls_mpi_core_exp_mod_unsafe(X->p, X->p, N->p, N->n, E->p, E->n, RR.p, T);
1705
6.88k
        } else {
1706
1.81k
            mbedtls_mpi_core_exp_mod(X->p, X->p, N->p, N->n, E->p, E->n, RR.p, T);
1707
1.81k
        }
1708
8.69k
        mbedtls_mpi_core_from_mont_rep(X->p, X->p, N->p, N->n, mm, T);
1709
8.69k
    }
1710
1711
    /*
1712
     * Correct for negative A.
1713
     */
1714
8.69k
    if (A->s == -1 && (E->p[0] & 1) != 0) {
1715
0
        mbedtls_ct_condition_t is_x_non_zero = mbedtls_mpi_core_check_zero_ct(X->p, X->n);
1716
0
        X->s = mbedtls_ct_mpi_sign_if(is_x_non_zero, -1, 1);
1717
1718
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, N, X));
1719
0
    }
1720
1721
8.69k
cleanup:
1722
1723
8.69k
    mbedtls_mpi_zeroize_and_free(T, T_limbs);
1724
1725
8.69k
    if (prec_RR == NULL || prec_RR->p == NULL) {
1726
359
        mbedtls_mpi_free(&RR);
1727
359
    }
1728
1729
8.69k
    return ret;
1730
8.69k
}
1731
1732
int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
1733
                        const mbedtls_mpi *E, const mbedtls_mpi *N,
1734
                        mbedtls_mpi *prec_RR)
1735
1.81k
{
1736
1.81k
    return mbedtls_mpi_exp_mod_optionally_safe(X, A, E, MBEDTLS_MPI_IS_SECRET, N, prec_RR);
1737
1.81k
}
1738
1739
int mbedtls_mpi_exp_mod_unsafe(mbedtls_mpi *X, const mbedtls_mpi *A,
1740
                               const mbedtls_mpi *E, const mbedtls_mpi *N,
1741
                               mbedtls_mpi *prec_RR)
1742
6.88k
{
1743
6.88k
    return mbedtls_mpi_exp_mod_optionally_safe(X, A, E, MBEDTLS_MPI_IS_PUBLIC, N, prec_RR);
1744
6.88k
}
1745
1746
/*
1747
 * Greatest common divisor: G = gcd(A, B)  (HAC 14.54)
1748
 */
1749
int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
1750
267k
{
1751
267k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1752
267k
    size_t lz, lzt;
1753
267k
    mbedtls_mpi TA, TB;
1754
1755
267k
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
1756
1757
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
1758
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
1759
1760
267k
    lz = mbedtls_mpi_lsb(&TA);
1761
267k
    lzt = mbedtls_mpi_lsb(&TB);
1762
1763
    /* The loop below gives the correct result when A==0 but not when B==0.
1764
     * So have a special case for B==0. Leverage the fact that we just
1765
     * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1766
     * slightly more efficient than cmp_int(). */
1767
267k
    if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
1768
0
        ret = mbedtls_mpi_copy(G, A);
1769
0
        goto cleanup;
1770
0
    }
1771
1772
267k
    if (lzt < lz) {
1773
155k
        lz = lzt;
1774
155k
    }
1775
1776
267k
    TA.s = TB.s = 1;
1777
1778
    /* We mostly follow the procedure described in HAC 14.54, but with some
1779
     * minor differences:
1780
     * - Sequences of multiplications or divisions by 2 are grouped into a
1781
     *   single shift operation.
1782
     * - The procedure in HAC assumes that 0 < TB <= TA.
1783
     *     - The condition TB <= TA is not actually necessary for correctness.
1784
     *       TA and TB have symmetric roles except for the loop termination
1785
     *       condition, and the shifts at the beginning of the loop body
1786
     *       remove any significance from the ordering of TA vs TB before
1787
     *       the shifts.
1788
     *     - If TA = 0, the loop goes through 0 iterations and the result is
1789
     *       correctly TB.
1790
     *     - The case TB = 0 was short-circuited above.
1791
     *
1792
     * For the correctness proof below, decompose the original values of
1793
     * A and B as
1794
     *   A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1795
     *   B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1796
     * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1797
     * and gcd(A',B') is odd or 0.
1798
     *
1799
     * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1800
     * The code maintains the following invariant:
1801
     *     gcd(A,B) = 2^k * gcd(TA,TB) for some k   (I)
1802
     */
1803
1804
    /* Proof that the loop terminates:
1805
     * At each iteration, either the right-shift by 1 is made on a nonzero
1806
     * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1807
     * by at least 1, or the right-shift by 1 is made on zero and then
1808
     * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
1809
     * since in that case TB is calculated from TB-TA with the condition TB>TA).
1810
     */
1811
49.0M
    while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
1812
        /* Divisions by 2 preserve the invariant (I). */
1813
48.7M
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
1814
48.7M
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
1815
1816
        /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
1817
         * TA-TB is even so the division by 2 has an integer result.
1818
         * Invariant (I) is preserved since any odd divisor of both TA and TB
1819
         * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
1820
         * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
1821
         * divides TA.
1822
         */
1823
48.7M
        if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
1824
24.9M
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
1825
24.9M
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
1826
24.9M
        } else {
1827
23.7M
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
1828
23.7M
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
1829
23.7M
        }
1830
        /* Note that one of TA or TB is still odd. */
1831
48.7M
    }
1832
1833
    /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
1834
     * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
1835
     * - If there was at least one loop iteration, then one of TA or TB is odd,
1836
     *   and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
1837
     *   lz = min(a,b) so gcd(A,B) = 2^lz * TB.
1838
     * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
1839
     *   In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
1840
     */
1841
1842
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
1843
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
1844
1845
267k
cleanup:
1846
1847
267k
    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
1848
1849
267k
    return ret;
1850
267k
}
1851
1852
/*
1853
 * Fill X with size bytes of random.
1854
 * The bytes returned from the RNG are used in a specific order which
1855
 * is suitable for deterministic ECDSA (see the specification of
1856
 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
1857
 */
1858
int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
1859
                            int (*f_rng)(void *, unsigned char *, size_t),
1860
                            void *p_rng)
1861
1.45k
{
1862
1.45k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1863
1.45k
    const size_t limbs = CHARS_TO_LIMBS(size);
1864
1865
    /* Ensure that target MPI has exactly the necessary number of limbs */
1866
1.45k
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
1867
1.45k
    if (size == 0) {
1868
0
        return 0;
1869
0
    }
1870
1871
1.45k
    ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
1872
1873
1.45k
cleanup:
1874
1.45k
    return ret;
1875
1.45k
}
1876
1877
int mbedtls_mpi_random(mbedtls_mpi *X,
1878
                       mbedtls_mpi_sint min,
1879
                       const mbedtls_mpi *N,
1880
                       int (*f_rng)(void *, unsigned char *, size_t),
1881
                       void *p_rng)
1882
8.36k
{
1883
8.36k
    if (min < 0) {
1884
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1885
0
    }
1886
8.36k
    if (mbedtls_mpi_cmp_int(N, min) <= 0) {
1887
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1888
0
    }
1889
1890
    /* Ensure that target MPI has exactly the same number of limbs
1891
     * as the upper bound, even if the upper bound has leading zeros.
1892
     * This is necessary for mbedtls_mpi_core_random. */
1893
8.36k
    int ret = mbedtls_mpi_resize_clear(X, N->n);
1894
8.36k
    if (ret != 0) {
1895
0
        return ret;
1896
0
    }
1897
1898
8.36k
    return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
1899
8.36k
}
1900
1901
/*
1902
 * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64)
1903
 */
1904
int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
1905
267k
{
1906
267k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1907
267k
    mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
1908
1909
267k
    if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
1910
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1911
0
    }
1912
1913
267k
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
1914
267k
    mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
1915
267k
    mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
1916
1917
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
1918
1919
267k
    if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
1920
0
        ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
1921
0
        goto cleanup;
1922
0
    }
1923
1924
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
1925
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
1926
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
1927
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
1928
1929
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
1930
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
1931
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
1932
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
1933
1934
48.7M
    do {
1935
97.7M
        while ((TU.p[0] & 1) == 0) {
1936
49.0M
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
1937
1938
49.0M
            if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
1939
20.3M
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
1940
20.3M
                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
1941
20.3M
            }
1942
1943
49.0M
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
1944
49.0M
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
1945
49.0M
        }
1946
1947
96.7M
        while ((TV.p[0] & 1) == 0) {
1948
47.9M
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
1949
1950
47.9M
            if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
1951
21.4M
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
1952
21.4M
                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
1953
21.4M
            }
1954
1955
47.9M
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
1956
47.9M
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
1957
47.9M
        }
1958
1959
48.7M
        if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
1960
24.9M
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
1961
24.9M
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
1962
24.9M
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
1963
24.9M
        } else {
1964
23.7M
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
1965
23.7M
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
1966
23.7M
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
1967
23.7M
        }
1968
48.7M
    } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
1969
1970
289k
    while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
1971
22.6k
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
1972
22.6k
    }
1973
1974
267k
    while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
1975
24
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
1976
24
    }
1977
1978
267k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
1979
1980
267k
cleanup:
1981
1982
267k
    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
1983
267k
    mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
1984
267k
    mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
1985
1986
267k
    return ret;
1987
267k
}
1988
1989
#if defined(MBEDTLS_GENPRIME)
1990
1991
/* Gaps between primes, starting at 3. https://oeis.org/A001223 */
1992
static const unsigned char small_prime_gaps[] = {
1993
    2, 2, 4, 2, 4, 2, 4, 6,
1994
    2, 6, 4, 2, 4, 6, 6, 2,
1995
    6, 4, 2, 6, 4, 6, 8, 4,
1996
    2, 4, 2, 4, 14, 4, 6, 2,
1997
    10, 2, 6, 6, 4, 6, 6, 2,
1998
    10, 2, 4, 2, 12, 12, 4, 2,
1999
    4, 6, 2, 10, 6, 6, 6, 2,
2000
    6, 4, 2, 10, 14, 4, 2, 4,
2001
    14, 6, 10, 2, 4, 6, 8, 6,
2002
    6, 4, 6, 8, 4, 8, 10, 2,
2003
    10, 2, 6, 4, 6, 8, 4, 2,
2004
    4, 12, 8, 4, 8, 4, 6, 12,
2005
    2, 18, 6, 10, 6, 6, 2, 6,
2006
    10, 6, 6, 2, 6, 6, 4, 2,
2007
    12, 10, 2, 4, 6, 6, 2, 12,
2008
    4, 6, 8, 10, 8, 10, 8, 6,
2009
    6, 4, 8, 6, 4, 8, 4, 14,
2010
    10, 12, 2, 10, 2, 4, 2, 10,
2011
    14, 4, 2, 4, 14, 4, 2, 4,
2012
    20, 4, 8, 10, 8, 4, 6, 6,
2013
    14, 4, 6, 6, 8, 6, /*reaches 997*/
2014
    0 /* the last entry is effectively unused */
2015
};
2016
2017
/*
2018
 * Small divisors test (X must be positive)
2019
 *
2020
 * Return values:
2021
 * 0: no small factor (possible prime, more tests needed)
2022
 * 1: certain prime
2023
 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
2024
 * other negative: error
2025
 */
2026
static int mpi_check_small_factors(const mbedtls_mpi *X)
2027
0
{
2028
0
    int ret = 0;
2029
0
    size_t i;
2030
0
    mbedtls_mpi_uint r;
2031
0
    unsigned p = 3; /* The first odd prime */
2032
2033
0
    if ((X->p[0] & 1) == 0) {
2034
0
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2035
0
    }
2036
2037
0
    for (i = 0; i < sizeof(small_prime_gaps); p += small_prime_gaps[i], i++) {
2038
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, p));
2039
0
        if (r == 0) {
2040
0
            if (mbedtls_mpi_cmp_int(X, p) == 0) {
2041
0
                return 1;
2042
0
            } else {
2043
0
                return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2044
0
            }
2045
0
        }
2046
0
    }
2047
2048
0
cleanup:
2049
0
    return ret;
2050
0
}
2051
2052
/*
2053
 * Miller-Rabin pseudo-primality test  (HAC 4.24)
2054
 */
2055
static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2056
                            int (*f_rng)(void *, unsigned char *, size_t),
2057
                            void *p_rng)
2058
0
{
2059
0
    int ret, count;
2060
0
    size_t i, j, k, s;
2061
0
    mbedtls_mpi W, R, T, A, RR;
2062
2063
0
    mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2064
0
    mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2065
0
    mbedtls_mpi_init(&RR);
2066
2067
    /*
2068
     * W = |X| - 1
2069
     * R = W >> lsb( W )
2070
     */
2071
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2072
0
    s = mbedtls_mpi_lsb(&W);
2073
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2074
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
2075
2076
0
    for (i = 0; i < rounds; i++) {
2077
        /*
2078
         * pick a random A, 1 < A < |X| - 1
2079
         */
2080
0
        count = 0;
2081
0
        do {
2082
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
2083
2084
0
            j = mbedtls_mpi_bitlen(&A);
2085
0
            k = mbedtls_mpi_bitlen(&W);
2086
0
            if (j > k) {
2087
0
                A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
2088
0
            }
2089
2090
0
            if (count++ > 30) {
2091
0
                ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2092
0
                goto cleanup;
2093
0
            }
2094
2095
0
        } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2096
0
                 mbedtls_mpi_cmp_int(&A, 1)  <= 0);
2097
2098
        /*
2099
         * A = A^R mod |X|
2100
         */
2101
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
2102
2103
0
        if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2104
0
            mbedtls_mpi_cmp_int(&A,  1) == 0) {
2105
0
            continue;
2106
0
        }
2107
2108
0
        j = 1;
2109
0
        while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
2110
            /*
2111
             * A = A * A mod |X|
2112
             */
2113
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2114
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
2115
2116
0
            if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
2117
0
                break;
2118
0
            }
2119
2120
0
            j++;
2121
0
        }
2122
2123
        /*
2124
         * not prime if A != |X| - 1 or A == 1
2125
         */
2126
0
        if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2127
0
            mbedtls_mpi_cmp_int(&A,  1) == 0) {
2128
0
            ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2129
0
            break;
2130
0
        }
2131
0
    }
2132
2133
0
cleanup:
2134
0
    mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2135
0
    mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2136
0
    mbedtls_mpi_free(&RR);
2137
2138
0
    return ret;
2139
0
}
2140
2141
/*
2142
 * Pseudo-primality test: small factors, then Miller-Rabin
2143
 */
2144
int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2145
                             int (*f_rng)(void *, unsigned char *, size_t),
2146
                             void *p_rng)
2147
0
{
2148
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2149
0
    mbedtls_mpi XX;
2150
2151
0
    XX.s = 1;
2152
0
    XX.n = X->n;
2153
0
    XX.p = X->p;
2154
2155
0
    if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2156
0
        mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2157
0
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2158
0
    }
2159
2160
0
    if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2161
0
        return 0;
2162
0
    }
2163
2164
0
    if ((ret = mpi_check_small_factors(&XX)) != 0) {
2165
0
        if (ret == 1) {
2166
0
            return 0;
2167
0
        }
2168
2169
0
        return ret;
2170
0
    }
2171
2172
0
    return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
2173
0
}
2174
2175
/*
2176
 * Prime number generation
2177
 *
2178
 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2179
 * be either 1024 bits or 1536 bits long, and flags must contain
2180
 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
2181
 */
2182
int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2183
                          int (*f_rng)(void *, unsigned char *, size_t),
2184
                          void *p_rng)
2185
0
{
2186
0
#ifdef MBEDTLS_HAVE_INT64
2187
// ceil(2^63.5)
2188
0
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2189
#else
2190
// ceil(2^31.5)
2191
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2192
#endif
2193
0
    int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2194
0
    size_t k, n;
2195
0
    int rounds;
2196
0
    mbedtls_mpi_uint r;
2197
0
    mbedtls_mpi Y;
2198
2199
0
    if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2200
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2201
0
    }
2202
2203
0
    mbedtls_mpi_init(&Y);
2204
2205
0
    n = BITS_TO_LIMBS(nbits);
2206
2207
0
    if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
2208
        /*
2209
         * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2210
         */
2211
0
        rounds = ((nbits >= 1300) ?  2 : (nbits >=  850) ?  3 :
2212
0
                  (nbits >=  650) ?  4 : (nbits >=  350) ?  8 :
2213
0
                  (nbits >=  250) ? 12 : (nbits >=  150) ? 18 : 27);
2214
0
    } else {
2215
        /*
2216
         * 2^-100 error probability, number of rounds computed based on HAC,
2217
         * fact 4.48
2218
         */
2219
0
        rounds = ((nbits >= 1450) ?  4 : (nbits >=  1150) ?  5 :
2220
0
                  (nbits >= 1000) ?  6 : (nbits >=   850) ?  7 :
2221
0
                  (nbits >=  750) ?  8 : (nbits >=   500) ? 13 :
2222
0
                  (nbits >=  250) ? 28 : (nbits >=   150) ? 40 : 51);
2223
0
    }
2224
2225
0
    while (1) {
2226
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
2227
        /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2228
0
        if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2229
0
            continue;
2230
0
        }
2231
2232
0
        k = n * biL;
2233
0
        if (k > nbits) {
2234
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2235
0
        }
2236
0
        X->p[0] |= 1;
2237
2238
0
        if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2239
0
            ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
2240
2241
0
            if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2242
0
                goto cleanup;
2243
0
            }
2244
0
        } else {
2245
            /*
2246
             * A necessary condition for Y and X = 2Y + 1 to be prime
2247
             * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2248
             * Make sure it is satisfied, while keeping X = 3 mod 4
2249
             */
2250
2251
0
            X->p[0] |= 2;
2252
2253
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2254
0
            if (r == 0) {
2255
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2256
0
            } else if (r == 1) {
2257
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2258
0
            }
2259
2260
            /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2261
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2262
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
2263
2264
0
            while (1) {
2265
                /*
2266
                 * First, check small factors for X and Y
2267
                 * before doing Miller-Rabin on any of them
2268
                 */
2269
0
                if ((ret = mpi_check_small_factors(X)) == 0 &&
2270
0
                    (ret = mpi_check_small_factors(&Y)) == 0 &&
2271
0
                    (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2272
0
                    == 0 &&
2273
0
                    (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2274
0
                    == 0) {
2275
0
                    goto cleanup;
2276
0
                }
2277
2278
0
                if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2279
0
                    goto cleanup;
2280
0
                }
2281
2282
                /*
2283
                 * Next candidates. We want to preserve Y = (X-1) / 2 and
2284
                 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2285
                 * so up Y by 6 and X by 12.
2286
                 */
2287
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X,  X, 12));
2288
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
2289
0
            }
2290
0
        }
2291
0
    }
2292
2293
0
cleanup:
2294
2295
0
    mbedtls_mpi_free(&Y);
2296
2297
0
    return ret;
2298
0
}
2299
2300
#endif /* MBEDTLS_GENPRIME */
2301
2302
#if defined(MBEDTLS_SELF_TEST)
2303
2304
0
#define GCD_PAIR_COUNT  3
2305
2306
static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2307
{
2308
    { 693, 609, 21 },
2309
    { 1764, 868, 28 },
2310
    { 768454923, 542167814, 1 }
2311
};
2312
2313
/*
2314
 * Checkup routine
2315
 */
2316
int mbedtls_mpi_self_test(int verbose)
2317
0
{
2318
0
    int ret, i;
2319
0
    mbedtls_mpi A, E, N, X, Y, U, V;
2320
2321
0
    mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
2322
0
    mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
2323
2324
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
2325
0
                                            "EFE021C2645FD1DC586E69184AF4A31E" \
2326
0
                                            "D5F53E93B5F123FA41680867BA110131" \
2327
0
                                            "944FE7952E2517337780CB0DB80E61AA" \
2328
0
                                            "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
2329
2330
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
2331
0
                                            "B2E7EFD37075B9F03FF989C7C5051C20" \
2332
0
                                            "34D2A323810251127E7BF8625A4F49A5" \
2333
0
                                            "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2334
0
                                            "5B5C25763222FEFCCFC38B832366C29E"));
2335
2336
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
2337
0
                                            "0066A198186C18C10B2F5ED9B522752A" \
2338
0
                                            "9830B69916E535C8F047518A889A43A5" \
2339
0
                                            "94B6BED27A168D31D4A52F88925AA8F5"));
2340
2341
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
2342
2343
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2344
0
                                            "602AB7ECA597A3D6B56FF9829A5E8B85" \
2345
0
                                            "9E857EA95A03512E2BAE7391688D264A" \
2346
0
                                            "A5663B0341DB9CCFD2C4C5F421FEC814" \
2347
0
                                            "8001B72E848A38CAE1C65F78E56ABDEF" \
2348
0
                                            "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2349
0
                                            "ECF677152EF804370C1A305CAF3B5BF1" \
2350
0
                                            "30879B56C61DE584A0F53A2447A51E"));
2351
2352
0
    if (verbose != 0) {
2353
0
        mbedtls_printf("  MPI test #1 (mul_mpi): ");
2354
0
    }
2355
2356
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2357
0
        if (verbose != 0) {
2358
0
            mbedtls_printf("failed\n");
2359
0
        }
2360
2361
0
        ret = 1;
2362
0
        goto cleanup;
2363
0
    }
2364
2365
0
    if (verbose != 0) {
2366
0
        mbedtls_printf("passed\n");
2367
0
    }
2368
2369
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
2370
2371
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2372
0
                                            "256567336059E52CAE22925474705F39A94"));
2373
2374
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
2375
0
                                            "6613F26162223DF488E9CD48CC132C7A" \
2376
0
                                            "0AC93C701B001B092E4E5B9F73BCD27B" \
2377
0
                                            "9EE50D0657C77F374E903CDFA4C642"));
2378
2379
0
    if (verbose != 0) {
2380
0
        mbedtls_printf("  MPI test #2 (div_mpi): ");
2381
0
    }
2382
2383
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
2384
0
        mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
2385
0
        if (verbose != 0) {
2386
0
            mbedtls_printf("failed\n");
2387
0
        }
2388
2389
0
        ret = 1;
2390
0
        goto cleanup;
2391
0
    }
2392
2393
0
    if (verbose != 0) {
2394
0
        mbedtls_printf("passed\n");
2395
0
    }
2396
2397
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
2398
2399
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2400
0
                                            "36E139AEA55215609D2816998ED020BB" \
2401
0
                                            "BD96C37890F65171D948E9BC7CBAA4D9" \
2402
0
                                            "325D24D6A3C12710F10A09FA08AB87"));
2403
2404
0
    if (verbose != 0) {
2405
0
        mbedtls_printf("  MPI test #3 (exp_mod): ");
2406
0
    }
2407
2408
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2409
0
        if (verbose != 0) {
2410
0
            mbedtls_printf("failed\n");
2411
0
        }
2412
2413
0
        ret = 1;
2414
0
        goto cleanup;
2415
0
    }
2416
2417
0
    if (verbose != 0) {
2418
0
        mbedtls_printf("passed\n");
2419
0
    }
2420
2421
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
2422
2423
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2424
0
                                            "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2425
0
                                            "C3DBA76456363A10869622EAC2DD84EC" \
2426
0
                                            "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
2427
2428
0
    if (verbose != 0) {
2429
0
        mbedtls_printf("  MPI test #4 (inv_mod): ");
2430
0
    }
2431
2432
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2433
0
        if (verbose != 0) {
2434
0
            mbedtls_printf("failed\n");
2435
0
        }
2436
2437
0
        ret = 1;
2438
0
        goto cleanup;
2439
0
    }
2440
2441
0
    if (verbose != 0) {
2442
0
        mbedtls_printf("passed\n");
2443
0
    }
2444
2445
0
    if (verbose != 0) {
2446
0
        mbedtls_printf("  MPI test #5 (simple gcd): ");
2447
0
    }
2448
2449
0
    for (i = 0; i < GCD_PAIR_COUNT; i++) {
2450
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
2451
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
2452
2453
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
2454
2455
0
        if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
2456
0
            if (verbose != 0) {
2457
0
                mbedtls_printf("failed at %d\n", i);
2458
0
            }
2459
2460
0
            ret = 1;
2461
0
            goto cleanup;
2462
0
        }
2463
0
    }
2464
2465
0
    if (verbose != 0) {
2466
0
        mbedtls_printf("passed\n");
2467
0
    }
2468
2469
0
cleanup:
2470
2471
0
    if (ret != 0 && verbose != 0) {
2472
0
        mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
2473
0
    }
2474
2475
0
    mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
2476
0
    mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
2477
2478
0
    if (verbose != 0) {
2479
0
        mbedtls_printf("\n");
2480
0
    }
2481
2482
0
    return ret;
2483
0
}
2484
2485
#endif /* MBEDTLS_SELF_TEST */
2486
2487
#endif /* MBEDTLS_BIGNUM_C */