Coverage Report

Created: 2025-07-11 06:50

/src/libtheora/lib/huffdec.c
Line
Count
Source (jump to first uncovered line)
1
/********************************************************************
2
 *                                                                  *
3
 * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE.   *
4
 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
5
 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
6
 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
7
 *                                                                  *
8
 * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009,2025           *
9
 * by the Xiph.Org Foundation and contributors                      *
10
 * https://www.xiph.org/                                            *
11
 *                                                                  *
12
 ********************************************************************
13
14
  function:
15
16
 ********************************************************************/
17
18
#include <stdlib.h>
19
#include <string.h>
20
#include <ogg/ogg.h>
21
#include "huffdec.h"
22
#include "decint.h"
23
24
25
26
/*Instead of storing every branching in the tree, subtrees can be collapsed
27
   into one node, with a table of size 1<<nbits pointing directly to its
28
   descedents nbits levels down.
29
  This allows more than one bit to be read at a time, and avoids following all
30
   the intermediate branches with next to no increased code complexity once
31
   the collapsed tree has been built.
32
  We do _not_ require that a subtree be complete to be collapsed, but instead
33
   store duplicate pointers in the table, and record the actual depth of the
34
   node below its parent.
35
  This tells us the number of bits to advance the stream after reaching it.
36
37
  This turns out to be equivalent to the method described in \cite{Hash95},
38
   without the requirement that codewords be sorted by length.
39
  If the codewords were sorted by length (so-called ``canonical-codes''), they
40
   could be decoded much faster via either Lindell and Moffat's approach or
41
   Hashemian's Condensed Huffman Code approach, the latter of which has an
42
   extremely small memory footprint.
43
  We can't use Choueka et al.'s finite state machine approach, which is
44
   extremely fast, because we can't allow multiple symbols to be output at a
45
   time; the codebook can and does change between symbols.
46
  It also has very large memory requirements, which impairs cache coherency.
47
48
  We store the tree packed in an array of 16-bit integers (words).
49
  Each node consists of a single word, followed consecutively by two or more
50
   indices of its children.
51
  Let n be the value of this first word.
52
  This is the number of bits that need to be read to traverse the node, and
53
   must be positive.
54
  1<<n entries follow in the array, each an index to a child node.
55
  If the child is positive, then it is the index of another internal node in
56
   the table.
57
  If the child is negative or zero, then it is a leaf node.
58
  These are stored directly in the child pointer to save space, since they only
59
   require a single word.
60
  If a leaf node would have been encountered before reading n bits, then it is
61
   duplicated the necessary number of times in this table.
62
  Leaf nodes pack both a token value and their actual depth in the tree.
63
  The token in the leaf node is (-leaf&255).
64
  The number of bits that need to be consumed to reach the leaf, starting from
65
   the current node, is (-leaf>>8).
66
67
  @ARTICLE{Hash95,
68
    author="Reza Hashemian",
69
    title="Memory Efficient and High-Speed Search {Huffman} Coding",
70
    journal="{IEEE} Transactions on Communications",
71
    volume=43,
72
    number=10,
73
    pages="2576--2581",
74
    month=Oct,
75
    year=1995
76
  }*/
77
78
79
80
/*The map from external spec-defined tokens to internal tokens.
81
  This is constructed so that any extra bits read with the original token value
82
   can be masked off the least significant bits of its internal token index.
83
  In addition, all of the tokens which require additional extra bits are placed
84
   at the start of the list, and grouped by type.
85
  OC_DCT_REPEAT_RUN3_TOKEN is placed first, as it is an extra-special case, so
86
   giving it index 0 may simplify comparisons on some architectures.
87
  These requirements require some substantial reordering.*/
88
static const unsigned char OC_DCT_TOKEN_MAP[TH_NDCT_TOKENS]={
89
  /*OC_DCT_EOB1_TOKEN (0 extra bits)*/
90
  15,
91
  /*OC_DCT_EOB2_TOKEN (0 extra bits)*/
92
  16,
93
  /*OC_DCT_EOB3_TOKEN (0 extra bits)*/
94
  17,
95
  /*OC_DCT_REPEAT_RUN0_TOKEN (2 extra bits)*/
96
  88,
97
  /*OC_DCT_REPEAT_RUN1_TOKEN (3 extra bits)*/
98
  80,
99
  /*OC_DCT_REPEAT_RUN2_TOKEN (4 extra bits)*/
100
   1,
101
  /*OC_DCT_REPEAT_RUN3_TOKEN (12 extra bits)*/
102
   0,
103
  /*OC_DCT_SHORT_ZRL_TOKEN (3 extra bits)*/
104
  48,
105
  /*OC_DCT_ZRL_TOKEN (6 extra bits)*/
106
  14,
107
  /*OC_ONE_TOKEN (0 extra bits)*/
108
  56,
109
  /*OC_MINUS_ONE_TOKEN (0 extra bits)*/
110
  57,
111
  /*OC_TWO_TOKEN (0 extra bits)*/
112
  58,
113
  /*OC_MINUS_TWO_TOKEN (0 extra bits)*/
114
  59,
115
  /*OC_DCT_VAL_CAT2 (1 extra bit)*/
116
  60,
117
  62,
118
  64,
119
  66,
120
  /*OC_DCT_VAL_CAT3 (2 extra bits)*/
121
  68,
122
  /*OC_DCT_VAL_CAT4 (3 extra bits)*/
123
  72,
124
  /*OC_DCT_VAL_CAT5 (4 extra bits)*/
125
   2,
126
  /*OC_DCT_VAL_CAT6 (5 extra bits)*/
127
   4,
128
  /*OC_DCT_VAL_CAT7 (6 extra bits)*/
129
   6,
130
  /*OC_DCT_VAL_CAT8 (10 extra bits)*/
131
   8,
132
  /*OC_DCT_RUN_CAT1A (1 extra bit)*/
133
  18,
134
  20,
135
  22,
136
  24,
137
  26,
138
  /*OC_DCT_RUN_CAT1B (3 extra bits)*/
139
  32,
140
  /*OC_DCT_RUN_CAT1C (4 extra bits)*/
141
  12,
142
  /*OC_DCT_RUN_CAT2A (2 extra bits)*/
143
  28,
144
  /*OC_DCT_RUN_CAT2B (3 extra bits)*/
145
  40
146
};
147
148
/*The log base 2 of number of internal tokens associated with each of the spec
149
   tokens (i.e., how many of the extra bits are folded into the token value).
150
  Increasing the maximum value beyond 3 will enlarge the amount of stack
151
   required for tree construction.*/
152
static const unsigned char OC_DCT_TOKEN_MAP_LOG_NENTRIES[TH_NDCT_TOKENS]={
153
  0,0,0,2,3,0,0,3,0,0,0,0,0,1,1,1,1,2,3,1,1,1,2,1,1,1,1,1,3,1,2,3
154
};
155
156
157
/*The size a lookup table is allowed to grow to relative to the number of
158
   unique nodes it contains.
159
  E.g., if OC_HUFF_SLUSH is 4, then at most 75% of the space in the tree is
160
   wasted (1/4 of the space must be used).
161
  Larger numbers can decode tokens with fewer read operations, while smaller
162
   numbers may save more space.
163
  With a sample file:
164
  32233473 read calls are required when no tree collapsing is done (100.0%).
165
  19269269 read calls are required when OC_HUFF_SLUSH is 1 (59.8%).
166
  11144969 read calls are required when OC_HUFF_SLUSH is 2 (34.6%).
167
  10538563 read calls are required when OC_HUFF_SLUSH is 4 (32.7%).
168
  10192578 read calls are required when OC_HUFF_SLUSH is 8 (31.6%).
169
  Since a value of 2 gets us the vast majority of the speed-up with only a
170
   small amount of wasted memory, this is what we use.
171
  This value must be less than 128, or you could create a tree with more than
172
   32767 entries, which would overflow the 16-bit words used to index it.*/
173
5.14k
#define OC_HUFF_SLUSH (2)
174
/*The root of the tree is on the fast path, and a larger value here is more
175
   beneficial than elsewhere in the tree.
176
  7 appears to give the best performance, trading off between increased use of
177
   the single-read fast path and cache footprint for the tables, though
178
   obviously this will depend on your cache size.
179
  Using 7 here, the VP3 tables are about twice as large compared to using 2.*/
180
336k
#define OC_ROOT_HUFF_SLUSH (7)
181
182
183
184
/*Unpacks a Huffman codebook.
185
  _opb:    The buffer to unpack from.
186
  _tokens: Stores a list of internal tokens, in the order they were found in
187
            the codebook, and the lengths of their corresponding codewords.
188
           This is enough to completely define the codebook, while minimizing
189
            stack usage and avoiding temporary allocations (for platforms
190
            where free() is a no-op).
191
  Return: The number of internal tokens in the codebook, or a negative value
192
   on error.*/
193
83.0k
int oc_huff_tree_unpack(oc_pack_buf *_opb,unsigned char _tokens[256][2]){
194
83.0k
  ogg_uint32_t code;
195
83.0k
  int          len;
196
83.0k
  int          ntokens;
197
83.0k
  int          nleaves;
198
83.0k
  code=0;
199
83.0k
  len=ntokens=nleaves=0;
200
89.8k
  for(;;){
201
89.8k
    long bits;
202
89.8k
    bits=oc_pack_read1(_opb);
203
    /*Only process nodes so long as there's more bits in the buffer.*/
204
89.8k
    if(oc_pack_bytes_left(_opb)<0)return TH_EBADHEADER;
205
    /*Read an internal node:*/
206
89.7k
    if(!bits){
207
3.70k
      len++;
208
      /*Don't allow codewords longer than 32 bits.*/
209
3.70k
      if(len>32)return TH_EBADHEADER;
210
3.70k
    }
211
    /*Read a leaf node:*/
212
86.0k
    else{
213
86.0k
      ogg_uint32_t code_bit;
214
86.0k
      int          neb;
215
86.0k
      int          nentries;
216
86.0k
      int          token;
217
      /*Don't allow more than 32 spec-tokens per codebook.*/
218
86.0k
      if(++nleaves>32)return TH_EBADHEADER;
219
86.0k
      bits=oc_pack_read(_opb,OC_NDCT_TOKEN_BITS);
220
86.0k
      neb=OC_DCT_TOKEN_MAP_LOG_NENTRIES[bits];
221
86.0k
      token=OC_DCT_TOKEN_MAP[bits];
222
86.0k
      nentries=1<<neb;
223
447k
      while(nentries-->0){
224
361k
        _tokens[ntokens][0]=(unsigned char)token++;
225
361k
        _tokens[ntokens][1]=(unsigned char)(len+neb);
226
361k
        ntokens++;
227
361k
      }
228
86.0k
      if(len<=0)break;
229
3.77k
      code_bit=0x80000000U>>len-1;
230
6.83k
      while(len>0&&(code&code_bit)){
231
3.06k
        code^=code_bit;
232
3.06k
        code_bit<<=1;
233
3.06k
        len--;
234
3.06k
      }
235
3.77k
      if(len<=0)break;
236
3.15k
      code|=code_bit;
237
3.15k
    }
238
89.7k
  }
239
82.9k
  return ntokens;
240
83.0k
}
241
242
/*Count how many tokens would be required to fill a subtree at depth _depth.
243
  _tokens: A list of internal tokens, in the order they are found in the
244
            codebook, and the lengths of their corresponding codewords.
245
  _depth:  The depth of the desired node in the corresponding tree structure.
246
  Return: The number of tokens that belong to that subtree.*/
247
272k
static int oc_huff_subtree_tokens(unsigned char _tokens[][2],int _depth){
248
272k
  ogg_uint32_t code;
249
272k
  int          ti;
250
272k
  code=0;
251
272k
  ti=0;
252
778k
  do{
253
778k
    if(_tokens[ti][1]-_depth<32)code+=0x80000000U>>_tokens[ti++][1]-_depth;
254
136
    else{
255
      /*Because of the expanded internal tokens, we can have codewords as long
256
         as 35 bits.
257
        A single recursion here is enough to advance past them.*/
258
136
      code++;
259
136
      ti+=oc_huff_subtree_tokens(_tokens+ti,_depth+31);
260
136
    }
261
778k
  }
262
778k
  while(code<0x80000000U);
263
272k
  return ti;
264
272k
}
265
266
/*Compute the number of bits to use for a collapsed tree node at the given
267
   depth.
268
  _tokens:  A list of internal tokens, in the order they are found in the
269
             codebook, and the lengths of their corresponding codewords.
270
  _ntokens: The number of tokens corresponding to this tree node.
271
  _depth:   The depth of this tree node.
272
  Return: The number of bits to use for a collapsed tree node rooted here.
273
          This is always at least one, even if this was a leaf node.*/
274
static int oc_huff_tree_collapse_depth(unsigned char _tokens[][2],
275
170k
 int _ntokens,int _depth){
276
170k
  int got_leaves;
277
170k
  int loccupancy;
278
170k
  int occupancy;
279
170k
  int slush;
280
170k
  int nbits;
281
170k
  int best_nbits;
282
170k
  slush=_depth>0?OC_HUFF_SLUSH:OC_ROOT_HUFF_SLUSH;
283
  /*It's legal to have a tree with just a single node, which requires no bits
284
     to decode and always returns the same token.
285
    However, no encoder actually does this (yet).
286
    To avoid a special case in oc_huff_token_decode(), we force the number of
287
     lookahead bits to be at least one.
288
    This will produce a tree that looks ahead one bit and then advances the
289
     stream zero bits.*/
290
170k
  nbits=1;
291
170k
  occupancy=2;
292
170k
  got_leaves=1;
293
313k
  do{
294
313k
    int ti;
295
313k
    if(got_leaves)best_nbits=nbits;
296
313k
    nbits++;
297
313k
    got_leaves=0;
298
313k
    loccupancy=occupancy;
299
1.89M
    for(occupancy=ti=0;ti<_ntokens;occupancy++){
300
1.58M
      if(_tokens[ti][1]<_depth+nbits)ti++;
301
845k
      else if(_tokens[ti][1]==_depth+nbits){
302
578k
        got_leaves=1;
303
578k
        ti++;
304
578k
      }
305
267k
      else ti+=oc_huff_subtree_tokens(_tokens+ti,_depth+nbits);
306
1.58M
    }
307
313k
  }
308
313k
  while(occupancy>loccupancy&&occupancy*slush>=1<<nbits);
309
170k
  return best_nbits;
310
170k
}
311
312
/*Determines the size in words of a Huffman tree node that represents a
313
   subtree of depth _nbits.
314
  _nbits: The depth of the subtree.
315
          This must be greater than zero.
316
  Return: The number of words required to store the node.*/
317
251k
static size_t oc_huff_node_size(int _nbits){
318
251k
  return 1+(1<<_nbits);
319
251k
}
320
321
/*Produces a collapsed-tree representation of the given token list.
322
  _tree: The storage for the collapsed Huffman tree.
323
         This may be NULL to compute the required storage size instead of
324
          constructing the tree.
325
  _tokens:  A list of internal tokens, in the order they are found in the
326
             codebook, and the lengths of their corresponding codewords.
327
  _ntokens: The number of tokens corresponding to this tree node.
328
  Return: The number of words required to store the tree.*/
329
static size_t oc_huff_tree_collapse(ogg_int16_t *_tree,
330
165k
 unsigned char _tokens[][2],int _ntokens){
331
165k
  ogg_int16_t   node[34];
332
165k
  unsigned char depth[34];
333
165k
  unsigned char last[34];
334
165k
  size_t        ntree;
335
165k
  int           ti;
336
165k
  int           l;
337
165k
  depth[0]=0;
338
165k
  last[0]=(unsigned char)(_ntokens-1);
339
165k
  ntree=0;
340
165k
  ti=0;
341
165k
  l=0;
342
170k
  do{
343
170k
    int nbits;
344
170k
    nbits=oc_huff_tree_collapse_depth(_tokens+ti,last[l]+1-ti,depth[l]);
345
170k
    node[l]=(ogg_int16_t)ntree;
346
170k
    ntree+=oc_huff_node_size(nbits);
347
170k
    if(_tree!=NULL)_tree[node[l]++]=(ogg_int16_t)nbits;
348
176k
    do{
349
897k
      while(ti<=last[l]&&_tokens[ti][1]<=depth[l]+nbits){
350
721k
        if(_tree!=NULL){
351
360k
          ogg_int16_t leaf;
352
360k
          int         nentries;
353
360k
          nentries=1<<depth[l]+nbits-_tokens[ti][1];
354
360k
          leaf=(ogg_int16_t)-(_tokens[ti][1]-depth[l]<<8|_tokens[ti][0]);
355
766k
          while(nentries-->0)_tree[node[l]++]=leaf;
356
360k
        }
357
721k
        ti++;
358
721k
      }
359
176k
      if(ti<=last[l]){
360
        /*We need to recurse*/
361
5.14k
        depth[l+1]=(unsigned char)(depth[l]+nbits);
362
5.14k
        if(_tree!=NULL)_tree[node[l]++]=(ogg_int16_t)ntree;
363
5.14k
        l++;
364
5.14k
        last[l]=
365
5.14k
         (unsigned char)(ti+oc_huff_subtree_tokens(_tokens+ti,depth[l])-1);
366
5.14k
        break;
367
5.14k
      }
368
      /*Pop back up a level of recursion.*/
369
170k
      else if(l-->0)nbits=depth[l+1]-depth[l];
370
176k
    }
371
170k
    while(l>=0);
372
170k
  }
373
170k
  while(l>=0);
374
0
  return ntree;
375
165k
}
376
377
/*Unpacks a set of Huffman trees, and reduces them to a collapsed
378
   representation.
379
  _opb:   The buffer to unpack the trees from.
380
  _nodes: The table to fill with the Huffman trees.
381
  Return: 0 on success, or a negative value on error.
382
          The caller is responsible for cleaning up any partially initialized
383
           _nodes on failure.*/
384
int oc_huff_trees_unpack(oc_pack_buf *_opb,
385
1.15k
 ogg_int16_t *_nodes[TH_NHUFFMAN_TABLES]){
386
1.15k
  int i;
387
84.0k
  for(i=0;i<TH_NHUFFMAN_TABLES;i++){
388
83.0k
    unsigned char  tokens[256][2];
389
83.0k
    int            ntokens;
390
83.0k
    ogg_int16_t   *tree;
391
83.0k
    size_t         size;
392
    /*Unpack the full tree into a temporary buffer.*/
393
83.0k
    ntokens=oc_huff_tree_unpack(_opb,tokens);
394
83.0k
    if(ntokens<0)return ntokens;
395
    /*Figure out how big the collapsed tree will be and allocate space for it.*/
396
82.9k
    size=oc_huff_tree_collapse(NULL,tokens,ntokens);
397
    /*This should never happen; if it does it means you set OC_HUFF_SLUSH or
398
       OC_ROOT_HUFF_SLUSH too large.*/
399
82.9k
    if(size>32767)return TH_EIMPL;
400
82.9k
    tree=(ogg_int16_t *)_ogg_malloc(size*sizeof(*tree));
401
82.9k
    if(tree==NULL)return TH_EFAULT;
402
    /*Construct the collapsed the tree.*/
403
82.9k
    oc_huff_tree_collapse(tree,tokens,ntokens);
404
82.9k
    _nodes[i]=tree;
405
82.9k
  }
406
1.02k
  return 0;
407
1.15k
}
408
409
/*Determines the size in words of a Huffman subtree.
410
  _tree: The complete Huffman tree.
411
  _node: The index of the root of the desired subtree.
412
  Return: The number of words required to store the tree.*/
413
80.5k
static size_t oc_huff_tree_size(const ogg_int16_t *_tree,int _node){
414
80.5k
  size_t size;
415
80.5k
  int    nchildren;
416
80.5k
  int    n;
417
80.5k
  int    i;
418
80.5k
  n=_tree[_node];
419
80.5k
  size=oc_huff_node_size(n);
420
80.5k
  nchildren=1<<n;
421
80.5k
  i=0;
422
338k
  do{
423
338k
    int child;
424
338k
    child=_tree[_node+i+1];
425
338k
    if(child<=0)i+=1<<n-(-child>>8);
426
1.32k
    else{
427
1.32k
      size+=oc_huff_tree_size(_tree,child);
428
1.32k
      i++;
429
1.32k
    }
430
338k
  }
431
338k
  while(i<nchildren);
432
80.5k
  return size;
433
80.5k
}
434
435
/*Makes a copy of the given set of Huffman trees.
436
  _dst: The array to store the copy in.
437
  _src: The array of trees to copy.*/
438
int oc_huff_trees_copy(ogg_int16_t *_dst[TH_NHUFFMAN_TABLES],
439
990
 const ogg_int16_t *const _src[TH_NHUFFMAN_TABLES]){
440
990
  int i;
441
80.1k
  for(i=0;i<TH_NHUFFMAN_TABLES;i++){
442
79.2k
    size_t size;
443
79.2k
    size=oc_huff_tree_size(_src[i],0);
444
79.2k
    _dst[i]=(ogg_int16_t *)_ogg_malloc(size*sizeof(*_dst[i]));
445
79.2k
    if(_dst[i]==NULL){
446
0
      while(i-->0)_ogg_free(_dst[i]);
447
0
      return TH_EFAULT;
448
0
    }
449
79.2k
    memcpy(_dst[i],_src[i],size*sizeof(*_dst[i]));
450
79.2k
  }
451
990
  return 0;
452
990
}
453
454
/*Frees the memory used by a set of Huffman trees.
455
  _nodes: The array of trees to free.*/
456
2.16k
void oc_huff_trees_clear(ogg_int16_t *_nodes[TH_NHUFFMAN_TABLES]){
457
2.16k
  int i;
458
175k
  for(i=0;i<TH_NHUFFMAN_TABLES;i++)_ogg_free(_nodes[i]);
459
2.16k
}
460
461
462
/*Unpacks a single token using the given Huffman tree.
463
  _opb:  The buffer to unpack the token from.
464
  _node: The tree to unpack the token with.
465
  Return: The token value.*/
466
90.9M
int oc_huff_token_decode_c(oc_pack_buf *_opb,const ogg_int16_t *_tree){
467
90.9M
  const unsigned char *ptr;
468
90.9M
  const unsigned char *stop;
469
90.9M
  oc_pb_window         window;
470
90.9M
  int                  available;
471
90.9M
  long                 bits;
472
90.9M
  int                  node;
473
90.9M
  int                  n;
474
90.9M
  ptr=_opb->ptr;
475
90.9M
  window=_opb->window;
476
90.9M
  stop=_opb->stop;
477
90.9M
  available=_opb->bits;
478
90.9M
  node=0;
479
90.9M
  for(;;){
480
90.9M
    n=_tree[node];
481
90.9M
    if(n>available){
482
22.1k
      unsigned shift;
483
22.1k
      shift=OC_PB_WINDOW_SIZE-available;
484
160k
      do{
485
        /*We don't bother setting eof because we won't check for it after we've
486
           started decoding DCT tokens.*/
487
160k
        if(ptr>=stop){
488
310
          shift=(unsigned)-OC_LOTS_OF_BITS;
489
310
          break;
490
310
        }
491
160k
        shift-=8;
492
160k
        window|=(oc_pb_window)*ptr++<<shift;
493
160k
      }
494
160k
      while(shift>=8);
495
      /*Note: We never request more than 24 bits, so there's no need to fill in
496
         the last partial byte here.*/
497
22.1k
      available=OC_PB_WINDOW_SIZE-shift;
498
22.1k
    }
499
90.9M
    bits=window>>OC_PB_WINDOW_SIZE-n;
500
90.9M
    node=_tree[node+1+bits];
501
90.9M
    if(node<=0)break;
502
28.7k
    window<<=n;
503
28.7k
    available-=n;
504
28.7k
  }
505
90.9M
  node=-node;
506
90.9M
  n=node>>8;
507
90.9M
  window<<=n;
508
90.9M
  available-=n;
509
90.9M
  _opb->ptr=ptr;
510
90.9M
  _opb->window=window;
511
90.9M
  _opb->bits=available;
512
90.9M
  return node&255;
513
90.9M
}