Coverage Report

Created: 2025-07-18 06:46

/src/libjpeg-turbo/src/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
8.68k
{
81
8.68k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
8.68k
  int ci, blkn, dctbl, actbl;
83
8.68k
  d_derived_tbl **pdtbl;
84
8.68k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
8.68k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
8.68k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
1.30k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
17.8k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
9.12k
    compptr = cinfo->cur_comp_info[ci];
96
9.12k
    dctbl = compptr->dc_tbl_no;
97
9.12k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
9.12k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
9.12k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
9.12k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
9.12k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
9.12k
    entropy->saved.last_dc_val[ci] = 0;
106
9.12k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
18.0k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
9.33k
    ci = cinfo->MCU_membership[blkn];
111
9.33k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
9.33k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
9.33k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
9.33k
    if (compptr->component_needed) {
117
9.33k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
9.33k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
9.33k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
9.33k
  }
124
125
  /* Initialize bitread state variables */
126
8.68k
  entropy->bitstate.bits_left = 0;
127
8.68k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
8.68k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
8.68k
  entropy->restarts_to_go = cinfo->restart_interval;
132
8.68k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
35.3k
{
146
35.3k
  JHUFF_TBL *htbl;
147
35.3k
  d_derived_tbl *dtbl;
148
35.3k
  int p, i, l, si, numsymbols;
149
35.3k
  int lookbits, ctr;
150
35.3k
  char huffsize[257];
151
35.3k
  unsigned int huffcode[257];
152
35.3k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
35.3k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
37
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
35.3k
  htbl =
162
35.3k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
35.3k
  if (htbl == NULL)
164
23
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
35.3k
  if (*pdtbl == NULL)
168
25.8k
    *pdtbl = (d_derived_tbl *)
169
25.8k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
25.8k
                                  sizeof(d_derived_tbl));
171
35.3k
  dtbl = *pdtbl;
172
35.3k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
35.3k
  p = 0;
177
600k
  for (l = 1; l <= 16; l++) {
178
565k
    i = (int)htbl->bits[l];
179
565k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
2.41M
    while (i--)
182
1.84M
      huffsize[p++] = (char)l;
183
565k
  }
184
35.3k
  huffsize[p] = 0;
185
35.3k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
35.3k
  code = 0;
191
35.3k
  si = huffsize[0];
192
35.3k
  p = 0;
193
318k
  while (huffsize[p]) {
194
2.13M
    while (((int)huffsize[p]) == si) {
195
1.84M
      huffcode[p++] = code;
196
1.84M
      code++;
197
1.84M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
283k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
7
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
283k
    code <<= 1;
204
283k
    si++;
205
283k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
35.3k
  p = 0;
210
600k
  for (l = 1; l <= 16; l++) {
211
565k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
177k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
177k
      p += htbl->bits[l];
217
177k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
387k
    } else {
219
387k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
387k
    }
221
565k
  }
222
35.3k
  dtbl->valoffset[17] = 0;
223
35.3k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
9.08M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
9.04M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
35.3k
  p = 0;
236
318k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
655k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
372k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
4.16M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
3.79M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
3.79M
        lookbits++;
244
3.79M
      }
245
372k
    }
246
282k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
35.3k
  if (isDC) {
255
179k
    for (i = 0; i < numsymbols; i++) {
256
156k
      int sym = htbl->huffval[i];
257
156k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
187
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
156k
    }
260
23.4k
  }
261
35.3k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
3.15M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
720k
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
720k
  register const JOCTET *next_input_byte = state->next_input_byte;
294
720k
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
720k
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
720k
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
2.64M
    while (bits_left < MIN_GET_BITS) {
303
2.33M
      register int c;
304
305
      /* Attempt to read a byte */
306
2.33M
      if (bytes_in_buffer == 0) {
307
20.9k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
20.9k
        next_input_byte = cinfo->src->next_input_byte;
310
20.9k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
20.9k
      }
312
2.33M
      bytes_in_buffer--;
313
2.33M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
2.33M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
251k
        do {
323
251k
          if (bytes_in_buffer == 0) {
324
1.12k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
1.12k
            next_input_byte = cinfo->src->next_input_byte;
327
1.12k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
1.12k
          }
329
251k
          bytes_in_buffer--;
330
251k
          c = *next_input_byte++;
331
251k
        } while (c == 0xFF);
332
333
47.8k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
21.2k
          c = 0xFF;
336
26.6k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
26.6k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
26.6k
          goto no_more_bytes;
348
26.6k
        }
349
47.8k
      }
350
351
      /* OK, load c into get_buffer */
352
2.30M
      get_buffer = (get_buffer << 8) | c;
353
2.30M
      bits_left += 8;
354
2.30M
    } /* end while */
355
383k
  } else {
356
409k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
409k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
256k
      if (!cinfo->entropy->insufficient_data) {
368
26.0k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
26.0k
        cinfo->entropy->insufficient_data = TRUE;
370
26.0k
      }
371
      /* Fill the buffer with zero bits */
372
256k
      get_buffer <<= MIN_GET_BITS - bits_left;
373
256k
      bits_left = MIN_GET_BITS;
374
256k
    }
375
409k
  }
376
377
  /* Unload the local registers */
378
720k
  state->next_input_byte = next_input_byte;
379
720k
  state->bytes_in_buffer = bytes_in_buffer;
380
720k
  state->get_buffer = get_buffer;
381
720k
  state->bits_left = bits_left;
382
383
720k
  return TRUE;
384
720k
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
294k
#define GET_BYTE { \
392
294k
  register int c0, c1; \
393
294k
  c0 = *buffer++; \
394
294k
  c1 = *buffer; \
395
294k
  /* Pre-execute most common case */ \
396
294k
  get_buffer = (get_buffer << 8) | c0; \
397
294k
  bits_left += 8; \
398
294k
  if (c0 == 0xFF) { \
399
40.1k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
40.1k
    buffer++; \
401
40.1k
    if (c1 != 0) { \
402
33.5k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
33.5k
      cinfo->unread_marker = c1; \
404
33.5k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
33.5k
      buffer -= 2; \
406
33.5k
      get_buffer &= ~0xFF; \
407
33.5k
    } \
408
40.1k
  } \
409
294k
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
383k
  if (bits_left <= 16) { \
416
49.0k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
49.0k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
448k
{
440
448k
  register int l = min_bits;
441
448k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
448k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
448k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
3.00M
  while (code > htbl->maxcode[l]) {
453
2.55M
    code <<= 1;
454
2.55M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
2.55M
    code |= GET_BITS(1);
456
2.55M
    l++;
457
2.55M
  }
458
459
  /* Unload the local registers */
460
448k
  state->get_buffer = get_buffer;
461
448k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
448k
  if (l > 16) {
466
250k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
250k
    return 0;                   /* fake a zero as the safest result */
468
250k
  }
469
470
197k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
448k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
1.28M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
1.28M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
27.1k
{
514
27.1k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
27.1k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
27.1k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
27.1k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
27.1k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
58.6k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
31.4k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
27.1k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
27.1k
  if (cinfo->unread_marker == 0)
539
5.98k
    entropy->pub.insufficient_data = FALSE;
540
541
27.1k
  return TRUE;
542
27.1k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
128k
{
554
128k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
128k
  BITREAD_STATE_VARS;
556
128k
  int blkn;
557
128k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
128k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
128k
  state = entropy->saved;
563
564
352k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
224k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
224k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
224k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
224k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
224k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
223k
    if (s) {
575
85.2k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
85.2k
      r = GET_BITS(s);
577
85.2k
      s = HUFF_EXTEND(r, s);
578
85.2k
    }
579
580
223k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
223k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
223k
      s += state.last_dc_val[ci];
592
223k
      state.last_dc_val[ci] = s;
593
223k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
223k
        (*block)[0] = (JCOEF)s;
596
223k
      }
597
223k
    }
598
599
223k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
1.28M
      for (k = 1; k < DCTSIZE2; k++) {
604
1.26M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
1.26M
        r = s >> 4;
607
1.26M
        s &= 15;
608
609
1.26M
        if (s) {
610
1.05M
          k += r;
611
1.05M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
1.05M
          r = GET_BITS(s);
613
1.05M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
1.05M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
1.05M
        } else {
620
211k
          if (r != 15)
621
208k
            break;
622
3.47k
          k += 15;
623
3.47k
        }
624
1.26M
      }
625
626
223k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
0
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
0
    }
647
223k
  }
648
649
  /* Completed MCU, so update state */
650
127k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
127k
  entropy->saved = state;
652
127k
  return TRUE;
653
128k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
51.9k
{
665
51.9k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
51.9k
  BITREAD_STATE_VARS;
667
51.9k
  JOCTET *buffer;
668
51.9k
  int blkn;
669
51.9k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
51.9k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
51.9k
  buffer = (JOCTET *)br_state.next_input_byte;
675
51.9k
  state = entropy->saved;
676
677
108k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
56.2k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
56.2k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
56.2k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
56.2k
    register int s, k, r, l;
682
683
56.2k
    HUFF_DECODE_FAST(s, l, dctbl);
684
56.2k
    if (s) {
685
17.1k
      FILL_BIT_BUFFER_FAST
686
17.1k
      r = GET_BITS(s);
687
17.1k
      s = HUFF_EXTEND(r, s);
688
17.1k
    }
689
690
56.2k
    if (entropy->dc_needed[blkn]) {
691
56.2k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
56.2k
      s += state.last_dc_val[ci];
696
56.2k
      state.last_dc_val[ci] = s;
697
56.2k
      if (block)
698
56.2k
        (*block)[0] = (JCOEF)s;
699
56.2k
    }
700
701
56.2k
    if (entropy->ac_needed[blkn] && block) {
702
703
185k
      for (k = 1; k < DCTSIZE2; k++) {
704
184k
        HUFF_DECODE_FAST(s, l, actbl);
705
184k
        r = s >> 4;
706
184k
        s &= 15;
707
708
184k
        if (s) {
709
126k
          k += r;
710
126k
          FILL_BIT_BUFFER_FAST
711
126k
          r = GET_BITS(s);
712
126k
          s = HUFF_EXTEND(r, s);
713
126k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
126k
        } else {
715
57.7k
          if (r != 15) break;
716
3.22k
          k += 15;
717
3.22k
        }
718
184k
      }
719
720
56.2k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
56.2k
  }
738
739
51.9k
  if (cinfo->unread_marker != 0) {
740
2.25k
    cinfo->unread_marker = 0;
741
2.25k
    return FALSE;
742
2.25k
  }
743
744
49.7k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
49.7k
  br_state.next_input_byte = buffer;
746
49.7k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
49.7k
  entropy->saved = state;
748
49.7k
  return TRUE;
749
51.9k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
10.6M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
10.6M
{
772
10.6M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
10.6M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
10.6M
  if (cinfo->restart_interval) {
777
264k
    if (entropy->restarts_to_go == 0)
778
27.1k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
264k
    usefast = 0;
781
264k
  }
782
783
10.6M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
10.6M
      cinfo->unread_marker != 0)
785
10.5M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
10.6M
  if (!entropy->pub.insufficient_data) {
791
792
178k
    if (usefast) {
793
51.9k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
126k
    } else {
795
128k
use_slow:
796
128k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
128k
    }
798
799
178k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
10.6M
  if (cinfo->restart_interval)
803
261k
    entropy->restarts_to_go--;
804
805
10.6M
  return TRUE;
806
10.6M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
8.62k
{
816
8.62k
  huff_entropy_ptr entropy;
817
8.62k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
8.62k
  std_huff_tables((j_common_ptr)cinfo);
824
825
8.62k
  entropy = (huff_entropy_ptr)
826
8.62k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
8.62k
                                sizeof(huff_entropy_decoder));
828
8.62k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
8.62k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
8.62k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
43.1k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
34.4k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
34.4k
  }
836
8.62k
}