Coverage Report

Created: 2025-08-03 07:11

/src/libjpeg-turbo/src/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
18.6k
{
81
18.6k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
18.6k
  int ci, blkn, dctbl, actbl;
83
18.6k
  d_derived_tbl **pdtbl;
84
18.6k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
18.6k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
18.6k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
4.42k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
39.0k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
20.3k
    compptr = cinfo->cur_comp_info[ci];
96
20.3k
    dctbl = compptr->dc_tbl_no;
97
20.3k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
20.3k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
20.3k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
20.3k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
20.3k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
20.3k
    entropy->saved.last_dc_val[ci] = 0;
106
20.3k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
39.9k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
21.2k
    ci = cinfo->MCU_membership[blkn];
111
21.2k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
21.2k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
21.2k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
21.2k
    if (compptr->component_needed) {
117
21.2k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
21.2k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
21.2k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
21.2k
  }
124
125
  /* Initialize bitread state variables */
126
18.6k
  entropy->bitstate.bits_left = 0;
127
18.6k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
18.6k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
18.6k
  entropy->restarts_to_go = cinfo->restart_interval;
132
18.6k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
59.9k
{
146
59.9k
  JHUFF_TBL *htbl;
147
59.9k
  d_derived_tbl *dtbl;
148
59.9k
  int p, i, l, si, numsymbols;
149
59.9k
  int lookbits, ctr;
150
59.9k
  char huffsize[257];
151
59.9k
  unsigned int huffcode[257];
152
59.9k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
59.9k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
78
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
59.9k
  htbl =
162
59.9k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
59.9k
  if (htbl == NULL)
164
113
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
59.9k
  if (*pdtbl == NULL)
168
43.0k
    *pdtbl = (d_derived_tbl *)
169
43.0k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
43.0k
                                  sizeof(d_derived_tbl));
171
59.9k
  dtbl = *pdtbl;
172
59.9k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
59.9k
  p = 0;
177
1.01M
  for (l = 1; l <= 16; l++) {
178
956k
    i = (int)htbl->bits[l];
179
956k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
4.72M
    while (i--)
182
3.77M
      huffsize[p++] = (char)l;
183
956k
  }
184
59.9k
  huffsize[p] = 0;
185
59.9k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
59.9k
  code = 0;
191
59.9k
  si = huffsize[0];
192
59.9k
  p = 0;
193
561k
  while (huffsize[p]) {
194
4.27M
    while (((int)huffsize[p]) == si) {
195
3.76M
      huffcode[p++] = code;
196
3.76M
      code++;
197
3.76M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
501k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
10
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
501k
    code <<= 1;
204
501k
    si++;
205
501k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
59.9k
  p = 0;
210
1.01M
  for (l = 1; l <= 16; l++) {
211
956k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
325k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
325k
      p += htbl->bits[l];
217
325k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
631k
    } else {
219
631k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
631k
    }
221
956k
  }
222
59.9k
  dtbl->valoffset[17] = 0;
223
59.9k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
15.3M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
15.3M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
59.9k
  p = 0;
236
538k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
1.04M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
566k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
6.63M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
6.07M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
6.07M
        lookbits++;
244
6.07M
      }
245
566k
    }
246
478k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
59.9k
  if (isDC) {
255
315k
    for (i = 0; i < numsymbols; i++) {
256
277k
      int sym = htbl->huffval[i];
257
277k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
194
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
277k
    }
260
37.4k
  }
261
59.9k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
6.05M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
1.82M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
1.82M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
1.82M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
1.82M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
1.82M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
3.63M
    while (bits_left < MIN_GET_BITS) {
303
3.20M
      register int c;
304
305
      /* Attempt to read a byte */
306
3.20M
      if (bytes_in_buffer == 0) {
307
27.2k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
27.2k
        next_input_byte = cinfo->src->next_input_byte;
310
27.2k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
27.2k
      }
312
3.20M
      bytes_in_buffer--;
313
3.20M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
3.20M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
478k
        do {
323
478k
          if (bytes_in_buffer == 0) {
324
3.44k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
3.44k
            next_input_byte = cinfo->src->next_input_byte;
327
3.44k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
3.44k
          }
329
478k
          bytes_in_buffer--;
330
478k
          c = *next_input_byte++;
331
478k
        } while (c == 0xFF);
332
333
70.3k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
31.7k
          c = 0xFF;
336
38.5k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
38.5k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
38.5k
          goto no_more_bytes;
348
38.5k
        }
349
70.3k
      }
350
351
      /* OK, load c into get_buffer */
352
3.17M
      get_buffer = (get_buffer << 8) | c;
353
3.17M
      bits_left += 8;
354
3.17M
    } /* end while */
355
1.35M
  } else {
356
1.39M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
1.39M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
1.20M
      if (!cinfo->entropy->insufficient_data) {
368
38.8k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
38.8k
        cinfo->entropy->insufficient_data = TRUE;
370
38.8k
      }
371
      /* Fill the buffer with zero bits */
372
1.20M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
1.20M
      bits_left = MIN_GET_BITS;
374
1.20M
    }
375
1.39M
  }
376
377
  /* Unload the local registers */
378
1.82M
  state->next_input_byte = next_input_byte;
379
1.82M
  state->bytes_in_buffer = bytes_in_buffer;
380
1.82M
  state->get_buffer = get_buffer;
381
1.82M
  state->bits_left = bits_left;
382
383
1.82M
  return TRUE;
384
1.82M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
1.17M
#define GET_BYTE { \
392
1.17M
  register int c0, c1; \
393
1.17M
  c0 = *buffer++; \
394
1.17M
  c1 = *buffer; \
395
1.17M
  /* Pre-execute most common case */ \
396
1.17M
  get_buffer = (get_buffer << 8) | c0; \
397
1.17M
  bits_left += 8; \
398
1.17M
  if (c0 == 0xFF) { \
399
198k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
198k
    buffer++; \
401
198k
    if (c1 != 0) { \
402
183k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
183k
      cinfo->unread_marker = c1; \
404
183k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
183k
      buffer -= 2; \
406
183k
      get_buffer &= ~0xFF; \
407
183k
    } \
408
198k
  } \
409
1.17M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
1.50M
  if (bits_left <= 16) { \
416
195k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
195k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
530k
{
440
530k
  register int l = min_bits;
441
530k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
530k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
530k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
3.73M
  while (code > htbl->maxcode[l]) {
453
3.20M
    code <<= 1;
454
3.20M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
3.20M
    code |= GET_BITS(1);
456
3.20M
    l++;
457
3.20M
  }
458
459
  /* Unload the local registers */
460
530k
  state->get_buffer = get_buffer;
461
530k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
530k
  if (l > 16) {
466
337k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
337k
    return 0;                   /* fake a zero as the safest result */
468
337k
  }
469
470
193k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
530k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
2.38M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
2.38M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
47.5k
{
514
47.5k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
47.5k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
47.5k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
47.5k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
47.5k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
100k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
53.3k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
47.5k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
47.5k
  if (cinfo->unread_marker == 0)
539
7.22k
    entropy->pub.insufficient_data = FALSE;
540
541
47.5k
  return TRUE;
542
47.5k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
209k
{
554
209k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
209k
  BITREAD_STATE_VARS;
556
209k
  int blkn;
557
209k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
209k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
209k
  state = entropy->saved;
563
564
621k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
413k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
413k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
413k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
413k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
413k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
412k
    if (s) {
575
175k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
175k
      r = GET_BITS(s);
577
175k
      s = HUFF_EXTEND(r, s);
578
175k
    }
579
580
412k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
412k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
412k
      s += state.last_dc_val[ci];
592
412k
      state.last_dc_val[ci] = s;
593
412k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
412k
        (*block)[0] = (JCOEF)s;
596
412k
      }
597
412k
    }
598
599
412k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
2.12M
      for (k = 1; k < DCTSIZE2; k++) {
604
2.09M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
2.09M
        r = s >> 4;
607
2.09M
        s &= 15;
608
609
2.09M
        if (s) {
610
1.70M
          k += r;
611
1.70M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
1.70M
          r = GET_BITS(s);
613
1.70M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
1.70M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
1.70M
        } else {
620
396k
          if (r != 15)
621
381k
            break;
622
15.0k
          k += 15;
623
15.0k
        }
624
2.09M
      }
625
626
412k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
0
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
0
    }
647
412k
  }
648
649
  /* Completed MCU, so update state */
650
207k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
207k
  entropy->saved = state;
652
207k
  return TRUE;
653
209k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
209k
{
665
209k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
209k
  BITREAD_STATE_VARS;
667
209k
  JOCTET *buffer;
668
209k
  int blkn;
669
209k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
209k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
209k
  buffer = (JOCTET *)br_state.next_input_byte;
675
209k
  state = entropy->saved;
676
677
441k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
232k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
232k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
232k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
232k
    register int s, k, r, l;
682
683
232k
    HUFF_DECODE_FAST(s, l, dctbl);
684
232k
    if (s) {
685
66.9k
      FILL_BIT_BUFFER_FAST
686
66.9k
      r = GET_BITS(s);
687
66.9k
      s = HUFF_EXTEND(r, s);
688
66.9k
    }
689
690
232k
    if (entropy->dc_needed[blkn]) {
691
232k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
232k
      s += state.last_dc_val[ci];
696
232k
      state.last_dc_val[ci] = s;
697
232k
      if (block)
698
232k
        (*block)[0] = (JCOEF)s;
699
232k
    }
700
701
232k
    if (entropy->ac_needed[blkn] && block) {
702
703
817k
      for (k = 1; k < DCTSIZE2; k++) {
704
771k
        HUFF_DECODE_FAST(s, l, actbl);
705
771k
        r = s >> 4;
706
771k
        s &= 15;
707
708
771k
        if (s) {
709
436k
          k += r;
710
436k
          FILL_BIT_BUFFER_FAST
711
436k
          r = GET_BITS(s);
712
436k
          s = HUFF_EXTEND(r, s);
713
436k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
436k
        } else {
715
335k
          if (r != 15) break;
716
149k
          k += 15;
717
149k
        }
718
771k
      }
719
720
232k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
232k
  }
738
739
209k
  if (cinfo->unread_marker != 0) {
740
11.4k
    cinfo->unread_marker = 0;
741
11.4k
    return FALSE;
742
11.4k
  }
743
744
198k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
198k
  br_state.next_input_byte = buffer;
746
198k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
198k
  entropy->saved = state;
748
198k
  return TRUE;
749
209k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
9.09M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
9.09M
{
772
9.09M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
9.09M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
9.09M
  if (cinfo->restart_interval) {
777
865k
    if (entropy->restarts_to_go == 0)
778
47.5k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
865k
    usefast = 0;
781
865k
  }
782
783
9.09M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
9.09M
      cinfo->unread_marker != 0)
785
8.86M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
9.09M
  if (!entropy->pub.insufficient_data) {
791
792
407k
    if (usefast) {
793
209k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
209k
    } else {
795
209k
use_slow:
796
209k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
209k
    }
798
799
407k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
9.09M
  if (cinfo->restart_interval)
803
859k
    entropy->restarts_to_go--;
804
805
9.09M
  return TRUE;
806
9.09M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
16.8k
{
816
16.8k
  huff_entropy_ptr entropy;
817
16.8k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
16.8k
  std_huff_tables((j_common_ptr)cinfo);
824
825
16.8k
  entropy = (huff_entropy_ptr)
826
16.8k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
16.8k
                                sizeof(huff_entropy_decoder));
828
16.8k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
16.8k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
16.8k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
84.1k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
67.3k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
67.3k
  }
836
16.8k
}