/src/libjpeg-turbo/jdcoefct.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jdcoefct.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1994-1997, Thomas G. Lane. |
6 | | * libjpeg-turbo Modifications: |
7 | | * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
8 | | * Copyright (C) 2010, 2015-2016, 2019-2020, 2022, D. R. Commander. |
9 | | * Copyright (C) 2015, 2020, Google, Inc. |
10 | | * For conditions of distribution and use, see the accompanying README.ijg |
11 | | * file. |
12 | | * |
13 | | * This file contains the coefficient buffer controller for decompression. |
14 | | * This controller is the top level of the JPEG decompressor proper. |
15 | | * The coefficient buffer lies between entropy decoding and inverse-DCT steps. |
16 | | * |
17 | | * In buffered-image mode, this controller is the interface between |
18 | | * input-oriented processing and output-oriented processing. |
19 | | * Also, the input side (only) is used when reading a file for transcoding. |
20 | | */ |
21 | | |
22 | | #include "jinclude.h" |
23 | | #include "jdcoefct.h" |
24 | | #include "jpegcomp.h" |
25 | | |
26 | | |
27 | | /* Forward declarations */ |
28 | | METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo, |
29 | | JSAMPIMAGE output_buf); |
30 | | #ifdef D_MULTISCAN_FILES_SUPPORTED |
31 | | METHODDEF(int) decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf); |
32 | | #endif |
33 | | #ifdef BLOCK_SMOOTHING_SUPPORTED |
34 | | LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo); |
35 | | METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo, |
36 | | JSAMPIMAGE output_buf); |
37 | | #endif |
38 | | |
39 | | |
40 | | /* |
41 | | * Initialize for an input processing pass. |
42 | | */ |
43 | | |
44 | | METHODDEF(void) |
45 | | start_input_pass(j_decompress_ptr cinfo) |
46 | 59.6k | { |
47 | 59.6k | cinfo->input_iMCU_row = 0; |
48 | 59.6k | start_iMCU_row(cinfo); |
49 | 59.6k | } |
50 | | |
51 | | |
52 | | /* |
53 | | * Initialize for an output processing pass. |
54 | | */ |
55 | | |
56 | | METHODDEF(void) |
57 | | start_output_pass(j_decompress_ptr cinfo) |
58 | 46.6k | { |
59 | 46.6k | #ifdef BLOCK_SMOOTHING_SUPPORTED |
60 | 46.6k | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
61 | | |
62 | | /* If multipass, check to see whether to use block smoothing on this pass */ |
63 | 46.6k | if (coef->pub.coef_arrays != NULL) { |
64 | 15.5k | if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) |
65 | 3.47k | coef->pub.decompress_data = decompress_smooth_data; |
66 | 12.0k | else |
67 | 12.0k | coef->pub.decompress_data = decompress_data; |
68 | 15.5k | } |
69 | 46.6k | #endif |
70 | 46.6k | cinfo->output_iMCU_row = 0; |
71 | 46.6k | } |
72 | | |
73 | | |
74 | | /* |
75 | | * Decompress and return some data in the single-pass case. |
76 | | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
77 | | * Input and output must run in lockstep since we have only a one-MCU buffer. |
78 | | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
79 | | * |
80 | | * NB: output_buf contains a plane for each component in image, |
81 | | * which we index according to the component's SOF position. |
82 | | */ |
83 | | |
84 | | METHODDEF(int) |
85 | | decompress_onepass(j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
86 | 2.60M | { |
87 | 2.60M | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
88 | 2.60M | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
89 | 2.60M | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
90 | 2.60M | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
91 | 2.60M | int blkn, ci, xindex, yindex, yoffset, useful_width; |
92 | 2.60M | JSAMPARRAY output_ptr; |
93 | 2.60M | JDIMENSION start_col, output_col; |
94 | 2.60M | jpeg_component_info *compptr; |
95 | 2.60M | inverse_DCT_method_ptr inverse_DCT; |
96 | | |
97 | | /* Loop to process as much as one whole iMCU row */ |
98 | 5.21M | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
99 | 2.60M | yoffset++) { |
100 | 67.6M | for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
101 | 65.0M | MCU_col_num++) { |
102 | | /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ |
103 | 65.0M | jzero_far((void *)coef->MCU_buffer[0], |
104 | 65.0M | (size_t)(cinfo->blocks_in_MCU * sizeof(JBLOCK))); |
105 | 65.0M | if (!cinfo->entropy->insufficient_data) |
106 | 9.80M | cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row; |
107 | 65.0M | if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
108 | | /* Suspension forced; update state counters and exit */ |
109 | 0 | coef->MCU_vert_offset = yoffset; |
110 | 0 | coef->MCU_ctr = MCU_col_num; |
111 | 0 | return JPEG_SUSPENDED; |
112 | 0 | } |
113 | | |
114 | | /* Only perform the IDCT on blocks that are contained within the desired |
115 | | * cropping region. |
116 | | */ |
117 | 65.0M | if (MCU_col_num >= cinfo->master->first_iMCU_col && |
118 | 65.0M | MCU_col_num <= cinfo->master->last_iMCU_col) { |
119 | | /* Determine where data should go in output_buf and do the IDCT thing. |
120 | | * We skip dummy blocks at the right and bottom edges (but blkn gets |
121 | | * incremented past them!). Note the inner loop relies on having |
122 | | * allocated the MCU_buffer[] blocks sequentially. |
123 | | */ |
124 | 65.0M | blkn = 0; /* index of current DCT block within MCU */ |
125 | 133M | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
126 | 68.9M | compptr = cinfo->cur_comp_info[ci]; |
127 | | /* Don't bother to IDCT an uninteresting component. */ |
128 | 68.9M | if (!compptr->component_needed) { |
129 | 0 | blkn += compptr->MCU_blocks; |
130 | 0 | continue; |
131 | 0 | } |
132 | 68.9M | inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; |
133 | 68.9M | useful_width = (MCU_col_num < last_MCU_col) ? |
134 | 65.2M | compptr->MCU_width : compptr->last_col_width; |
135 | 68.9M | output_ptr = output_buf[compptr->component_index] + |
136 | 68.9M | yoffset * compptr->_DCT_scaled_size; |
137 | 68.9M | start_col = (MCU_col_num - cinfo->master->first_iMCU_col) * |
138 | 68.9M | compptr->MCU_sample_width; |
139 | 139M | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
140 | 70.7M | if (cinfo->input_iMCU_row < last_iMCU_row || |
141 | 70.7M | yoffset + yindex < compptr->last_row_height) { |
142 | 70.6M | output_col = start_col; |
143 | 143M | for (xindex = 0; xindex < useful_width; xindex++) { |
144 | 73.2M | (*inverse_DCT) (cinfo, compptr, |
145 | 73.2M | (JCOEFPTR)coef->MCU_buffer[blkn + xindex], |
146 | 73.2M | output_ptr, output_col); |
147 | 73.2M | output_col += compptr->_DCT_scaled_size; |
148 | 73.2M | } |
149 | 70.6M | } |
150 | 70.7M | blkn += compptr->MCU_width; |
151 | 70.7M | output_ptr += compptr->_DCT_scaled_size; |
152 | 70.7M | } |
153 | 68.9M | } |
154 | 65.0M | } |
155 | 65.0M | } |
156 | | /* Completed an MCU row, but perhaps not an iMCU row */ |
157 | 2.60M | coef->MCU_ctr = 0; |
158 | 2.60M | } |
159 | | /* Completed the iMCU row, advance counters for next one */ |
160 | 2.60M | cinfo->output_iMCU_row++; |
161 | 2.60M | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
162 | 2.56M | start_iMCU_row(cinfo); |
163 | 2.56M | return JPEG_ROW_COMPLETED; |
164 | 2.56M | } |
165 | | /* Completed the scan */ |
166 | 41.2k | (*cinfo->inputctl->finish_input_pass) (cinfo); |
167 | 41.2k | return JPEG_SCAN_COMPLETED; |
168 | 2.60M | } |
169 | | |
170 | | |
171 | | /* |
172 | | * Dummy consume-input routine for single-pass operation. |
173 | | */ |
174 | | |
175 | | METHODDEF(int) |
176 | | dummy_consume_data(j_decompress_ptr cinfo) |
177 | 0 | { |
178 | 0 | return JPEG_SUSPENDED; /* Always indicate nothing was done */ |
179 | 0 | } |
180 | | |
181 | | |
182 | | #ifdef D_MULTISCAN_FILES_SUPPORTED |
183 | | |
184 | | /* |
185 | | * Consume input data and store it in the full-image coefficient buffer. |
186 | | * We read as much as one fully interleaved MCU row ("iMCU" row) per call, |
187 | | * ie, v_samp_factor block rows for each component in the scan. |
188 | | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
189 | | */ |
190 | | |
191 | | METHODDEF(int) |
192 | | consume_data(j_decompress_ptr cinfo) |
193 | 7.77M | { |
194 | 7.77M | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
195 | 7.77M | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
196 | 7.77M | int blkn, ci, xindex, yindex, yoffset; |
197 | 7.77M | JDIMENSION start_col; |
198 | 7.77M | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
199 | 7.77M | JBLOCKROW buffer_ptr; |
200 | 7.77M | jpeg_component_info *compptr; |
201 | | |
202 | | /* Align the virtual buffers for the components used in this scan. */ |
203 | 16.2M | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
204 | 8.50M | compptr = cinfo->cur_comp_info[ci]; |
205 | 8.50M | buffer[ci] = (*cinfo->mem->access_virt_barray) |
206 | 8.50M | ((j_common_ptr)cinfo, coef->whole_image[compptr->component_index], |
207 | 8.50M | cinfo->input_iMCU_row * compptr->v_samp_factor, |
208 | 8.50M | (JDIMENSION)compptr->v_samp_factor, TRUE); |
209 | | /* Note: entropy decoder expects buffer to be zeroed, |
210 | | * but this is handled automatically by the memory manager |
211 | | * because we requested a pre-zeroed array. |
212 | | */ |
213 | 8.50M | } |
214 | | |
215 | | /* Loop to process one whole iMCU row */ |
216 | 15.8M | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
217 | 8.05M | yoffset++) { |
218 | 367M | for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
219 | 359M | MCU_col_num++) { |
220 | | /* Construct list of pointers to DCT blocks belonging to this MCU */ |
221 | 359M | blkn = 0; /* index of current DCT block within MCU */ |
222 | 725M | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
223 | 366M | compptr = cinfo->cur_comp_info[ci]; |
224 | 366M | start_col = MCU_col_num * compptr->MCU_width; |
225 | 735M | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
226 | 369M | buffer_ptr = buffer[ci][yindex + yoffset] + start_col; |
227 | 745M | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
228 | 376M | coef->MCU_buffer[blkn++] = buffer_ptr++; |
229 | 376M | } |
230 | 369M | } |
231 | 366M | } |
232 | 359M | if (!cinfo->entropy->insufficient_data) |
233 | 316M | cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row; |
234 | | /* Try to fetch the MCU. */ |
235 | 359M | if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
236 | | /* Suspension forced; update state counters and exit */ |
237 | 0 | coef->MCU_vert_offset = yoffset; |
238 | 0 | coef->MCU_ctr = MCU_col_num; |
239 | 0 | return JPEG_SUSPENDED; |
240 | 0 | } |
241 | 359M | } |
242 | | /* Completed an MCU row, but perhaps not an iMCU row */ |
243 | 8.05M | coef->MCU_ctr = 0; |
244 | 8.05M | } |
245 | | /* Completed the iMCU row, advance counters for next one */ |
246 | 7.77M | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
247 | 7.74M | start_iMCU_row(cinfo); |
248 | 7.74M | return JPEG_ROW_COMPLETED; |
249 | 7.74M | } |
250 | | /* Completed the scan */ |
251 | 28.4k | (*cinfo->inputctl->finish_input_pass) (cinfo); |
252 | 28.4k | return JPEG_SCAN_COMPLETED; |
253 | 7.77M | } |
254 | | |
255 | | |
256 | | /* |
257 | | * Decompress and return some data in the multi-pass case. |
258 | | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
259 | | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
260 | | * |
261 | | * NB: output_buf contains a plane for each component in image. |
262 | | */ |
263 | | |
264 | | METHODDEF(int) |
265 | | decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
266 | 2.14M | { |
267 | 2.14M | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
268 | 2.14M | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
269 | 2.14M | JDIMENSION block_num; |
270 | 2.14M | int ci, block_row, block_rows; |
271 | 2.14M | JBLOCKARRAY buffer; |
272 | 2.14M | JBLOCKROW buffer_ptr; |
273 | 2.14M | JSAMPARRAY output_ptr; |
274 | 2.14M | JDIMENSION output_col; |
275 | 2.14M | jpeg_component_info *compptr; |
276 | 2.14M | inverse_DCT_method_ptr inverse_DCT; |
277 | | |
278 | | /* Force some input to be done if we are getting ahead of the input. */ |
279 | 2.14M | while (cinfo->input_scan_number < cinfo->output_scan_number || |
280 | 2.14M | (cinfo->input_scan_number == cinfo->output_scan_number && |
281 | 2.14M | cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { |
282 | 0 | if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) |
283 | 0 | return JPEG_SUSPENDED; |
284 | 0 | } |
285 | | |
286 | | /* OK, output from the virtual arrays. */ |
287 | 5.82M | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
288 | 3.68M | ci++, compptr++) { |
289 | | /* Don't bother to IDCT an uninteresting component. */ |
290 | 3.68M | if (!compptr->component_needed) |
291 | 0 | continue; |
292 | | /* Align the virtual buffer for this component. */ |
293 | 3.68M | buffer = (*cinfo->mem->access_virt_barray) |
294 | 3.68M | ((j_common_ptr)cinfo, coef->whole_image[ci], |
295 | 3.68M | cinfo->output_iMCU_row * compptr->v_samp_factor, |
296 | 3.68M | (JDIMENSION)compptr->v_samp_factor, FALSE); |
297 | | /* Count non-dummy DCT block rows in this iMCU row. */ |
298 | 3.68M | if (cinfo->output_iMCU_row < last_iMCU_row) |
299 | 3.65M | block_rows = compptr->v_samp_factor; |
300 | 21.9k | else { |
301 | | /* NB: can't use last_row_height here; it is input-side-dependent! */ |
302 | 21.9k | block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor); |
303 | 21.9k | if (block_rows == 0) block_rows = compptr->v_samp_factor; |
304 | 21.9k | } |
305 | 3.68M | inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
306 | 3.68M | output_ptr = output_buf[ci]; |
307 | | /* Loop over all DCT blocks to be processed. */ |
308 | 7.52M | for (block_row = 0; block_row < block_rows; block_row++) { |
309 | 3.84M | buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci]; |
310 | 3.84M | output_col = 0; |
311 | 3.84M | for (block_num = cinfo->master->first_MCU_col[ci]; |
312 | 67.3M | block_num <= cinfo->master->last_MCU_col[ci]; block_num++) { |
313 | 63.5M | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)buffer_ptr, output_ptr, |
314 | 63.5M | output_col); |
315 | 63.5M | buffer_ptr++; |
316 | 63.5M | output_col += compptr->_DCT_scaled_size; |
317 | 63.5M | } |
318 | 3.84M | output_ptr += compptr->_DCT_scaled_size; |
319 | 3.84M | } |
320 | 3.68M | } |
321 | | |
322 | 2.14M | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
323 | 2.13M | return JPEG_ROW_COMPLETED; |
324 | 11.9k | return JPEG_SCAN_COMPLETED; |
325 | 2.14M | } |
326 | | |
327 | | #endif /* D_MULTISCAN_FILES_SUPPORTED */ |
328 | | |
329 | | |
330 | | #ifdef BLOCK_SMOOTHING_SUPPORTED |
331 | | |
332 | | /* |
333 | | * This code applies interblock smoothing; the first 9 AC coefficients are |
334 | | * estimated from the DC values of a DCT block and its 24 neighboring blocks. |
335 | | * We apply smoothing only for progressive JPEG decoding, and only if |
336 | | * the coefficients it can estimate are not yet known to full precision. |
337 | | */ |
338 | | |
339 | | /* Natural-order array positions of the first 9 zigzag-order coefficients */ |
340 | 654k | #define Q01_POS 1 |
341 | 653k | #define Q10_POS 8 |
342 | 652k | #define Q20_POS 16 |
343 | 652k | #define Q11_POS 9 |
344 | 651k | #define Q02_POS 2 |
345 | 424k | #define Q03_POS 3 |
346 | 423k | #define Q12_POS 10 |
347 | 423k | #define Q21_POS 17 |
348 | 422k | #define Q30_POS 24 |
349 | | |
350 | | /* |
351 | | * Determine whether block smoothing is applicable and safe. |
352 | | * We also latch the current states of the coef_bits[] entries for the |
353 | | * AC coefficients; otherwise, if the input side of the decompressor |
354 | | * advances into a new scan, we might think the coefficients are known |
355 | | * more accurately than they really are. |
356 | | */ |
357 | | |
358 | | LOCAL(boolean) |
359 | | smoothing_ok(j_decompress_ptr cinfo) |
360 | 15.5k | { |
361 | 15.5k | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
362 | 15.5k | boolean smoothing_useful = FALSE; |
363 | 15.5k | int ci, coefi; |
364 | 15.5k | jpeg_component_info *compptr; |
365 | 15.5k | JQUANT_TBL *qtable; |
366 | 15.5k | int *coef_bits, *prev_coef_bits; |
367 | 15.5k | int *coef_bits_latch, *prev_coef_bits_latch; |
368 | | |
369 | 15.5k | if (!cinfo->progressive_mode || cinfo->coef_bits == NULL) |
370 | 3.77k | return FALSE; |
371 | | |
372 | | /* Allocate latch area if not already done */ |
373 | 11.7k | if (coef->coef_bits_latch == NULL) |
374 | 11.7k | coef->coef_bits_latch = (int *) |
375 | 11.7k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
376 | 11.7k | cinfo->num_components * 2 * |
377 | 11.7k | (SAVED_COEFS * sizeof(int))); |
378 | 11.7k | coef_bits_latch = coef->coef_bits_latch; |
379 | 11.7k | prev_coef_bits_latch = |
380 | 11.7k | &coef->coef_bits_latch[cinfo->num_components * SAVED_COEFS]; |
381 | | |
382 | 16.7k | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
383 | 13.1k | ci++, compptr++) { |
384 | | /* All components' quantization values must already be latched. */ |
385 | 13.1k | if ((qtable = compptr->quant_table) == NULL) |
386 | 582 | return FALSE; |
387 | | /* Verify DC & first 9 AC quantizers are nonzero to avoid zero-divide. */ |
388 | 12.5k | if (qtable->quantval[0] == 0 || |
389 | 12.5k | qtable->quantval[Q01_POS] == 0 || |
390 | 12.5k | qtable->quantval[Q10_POS] == 0 || |
391 | 12.5k | qtable->quantval[Q20_POS] == 0 || |
392 | 12.5k | qtable->quantval[Q11_POS] == 0 || |
393 | 12.5k | qtable->quantval[Q02_POS] == 0 || |
394 | 12.5k | qtable->quantval[Q03_POS] == 0 || |
395 | 12.5k | qtable->quantval[Q12_POS] == 0 || |
396 | 12.5k | qtable->quantval[Q21_POS] == 0 || |
397 | 12.5k | qtable->quantval[Q30_POS] == 0) |
398 | 6.71k | return FALSE; |
399 | | /* DC values must be at least partly known for all components. */ |
400 | 5.83k | coef_bits = cinfo->coef_bits[ci]; |
401 | 5.83k | prev_coef_bits = cinfo->coef_bits[ci + cinfo->num_components]; |
402 | 5.83k | if (coef_bits[0] < 0) |
403 | 819 | return FALSE; |
404 | 5.01k | coef_bits_latch[0] = coef_bits[0]; |
405 | | /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ |
406 | 50.1k | for (coefi = 1; coefi < SAVED_COEFS; coefi++) { |
407 | 45.1k | if (cinfo->input_scan_number > 1) |
408 | 17.8k | prev_coef_bits_latch[coefi] = prev_coef_bits[coefi]; |
409 | 27.2k | else |
410 | 27.2k | prev_coef_bits_latch[coefi] = -1; |
411 | 45.1k | coef_bits_latch[coefi] = coef_bits[coefi]; |
412 | 45.1k | if (coef_bits[coefi] != 0) |
413 | 38.4k | smoothing_useful = TRUE; |
414 | 45.1k | } |
415 | 5.01k | coef_bits_latch += SAVED_COEFS; |
416 | 5.01k | prev_coef_bits_latch += SAVED_COEFS; |
417 | 5.01k | } |
418 | | |
419 | 3.63k | return smoothing_useful; |
420 | 11.7k | } |
421 | | |
422 | | |
423 | | /* |
424 | | * Variant of decompress_data for use when doing block smoothing. |
425 | | */ |
426 | | |
427 | | METHODDEF(int) |
428 | | decompress_smooth_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
429 | 583k | { |
430 | 583k | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
431 | 583k | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
432 | 583k | JDIMENSION block_num, last_block_column; |
433 | 583k | int ci, block_row, block_rows, access_rows; |
434 | 583k | JBLOCKARRAY buffer; |
435 | 583k | JBLOCKROW buffer_ptr, prev_prev_block_row, prev_block_row; |
436 | 583k | JBLOCKROW next_block_row, next_next_block_row; |
437 | 583k | JSAMPARRAY output_ptr; |
438 | 583k | JDIMENSION output_col; |
439 | 583k | jpeg_component_info *compptr; |
440 | 583k | inverse_DCT_method_ptr inverse_DCT; |
441 | 583k | boolean change_dc; |
442 | 583k | JCOEF *workspace; |
443 | 583k | int *coef_bits; |
444 | 583k | JQUANT_TBL *quanttbl; |
445 | 583k | JLONG Q00, Q01, Q02, Q03 = 0, Q10, Q11, Q12 = 0, Q20, Q21 = 0, Q30 = 0, num; |
446 | 583k | int DC01, DC02, DC03, DC04, DC05, DC06, DC07, DC08, DC09, DC10, DC11, DC12, |
447 | 583k | DC13, DC14, DC15, DC16, DC17, DC18, DC19, DC20, DC21, DC22, DC23, DC24, |
448 | 583k | DC25; |
449 | 583k | int Al, pred; |
450 | | |
451 | | /* Keep a local variable to avoid looking it up more than once */ |
452 | 583k | workspace = coef->workspace; |
453 | | |
454 | | /* Force some input to be done if we are getting ahead of the input. */ |
455 | 583k | while (cinfo->input_scan_number <= cinfo->output_scan_number && |
456 | 583k | !cinfo->inputctl->eoi_reached) { |
457 | 0 | if (cinfo->input_scan_number == cinfo->output_scan_number) { |
458 | | /* If input is working on current scan, we ordinarily want it to |
459 | | * have completed the current row. But if input scan is DC, |
460 | | * we want it to keep two rows ahead so that next two block rows' DC |
461 | | * values are up to date. |
462 | | */ |
463 | 0 | JDIMENSION delta = (cinfo->Ss == 0) ? 2 : 0; |
464 | 0 | if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta) |
465 | 0 | break; |
466 | 0 | } |
467 | 0 | if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) |
468 | 0 | return JPEG_SUSPENDED; |
469 | 0 | } |
470 | | |
471 | | /* OK, output from the virtual arrays. */ |
472 | 1.22M | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
473 | 642k | ci++, compptr++) { |
474 | | /* Don't bother to IDCT an uninteresting component. */ |
475 | 642k | if (!compptr->component_needed) |
476 | 0 | continue; |
477 | | /* Count non-dummy DCT block rows in this iMCU row. */ |
478 | 642k | if (cinfo->output_iMCU_row + 1 < last_iMCU_row) { |
479 | 633k | block_rows = compptr->v_samp_factor; |
480 | 633k | access_rows = block_rows * 3; /* this and next two iMCU rows */ |
481 | 633k | } else if (cinfo->output_iMCU_row < last_iMCU_row) { |
482 | 4.34k | block_rows = compptr->v_samp_factor; |
483 | 4.34k | access_rows = block_rows * 2; /* this and next iMCU row */ |
484 | 4.44k | } else { |
485 | | /* NB: can't use last_row_height here; it is input-side-dependent! */ |
486 | 4.44k | block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor); |
487 | 4.44k | if (block_rows == 0) block_rows = compptr->v_samp_factor; |
488 | 4.44k | access_rows = block_rows; /* this iMCU row only */ |
489 | 4.44k | } |
490 | | /* Align the virtual buffer for this component. */ |
491 | 642k | if (cinfo->output_iMCU_row > 1) { |
492 | 633k | access_rows += 2 * compptr->v_samp_factor; /* prior two iMCU rows too */ |
493 | 633k | buffer = (*cinfo->mem->access_virt_barray) |
494 | 633k | ((j_common_ptr)cinfo, coef->whole_image[ci], |
495 | 633k | (cinfo->output_iMCU_row - 2) * compptr->v_samp_factor, |
496 | 633k | (JDIMENSION)access_rows, FALSE); |
497 | 633k | buffer += 2 * compptr->v_samp_factor; /* point to current iMCU row */ |
498 | 633k | } else if (cinfo->output_iMCU_row > 0) { |
499 | 4.34k | buffer = (*cinfo->mem->access_virt_barray) |
500 | 4.34k | ((j_common_ptr)cinfo, coef->whole_image[ci], |
501 | 4.34k | (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, |
502 | 4.34k | (JDIMENSION)access_rows, FALSE); |
503 | 4.34k | buffer += compptr->v_samp_factor; /* point to current iMCU row */ |
504 | 4.44k | } else { |
505 | 4.44k | buffer = (*cinfo->mem->access_virt_barray) |
506 | 4.44k | ((j_common_ptr)cinfo, coef->whole_image[ci], |
507 | 4.44k | (JDIMENSION)0, (JDIMENSION)access_rows, FALSE); |
508 | 4.44k | } |
509 | | /* Fetch component-dependent info. |
510 | | * If the current scan is incomplete, then we use the component-dependent |
511 | | * info from the previous scan. |
512 | | */ |
513 | 642k | if (cinfo->output_iMCU_row > cinfo->master->last_good_iMCU_row) |
514 | 308k | coef_bits = |
515 | 308k | coef->coef_bits_latch + ((ci + cinfo->num_components) * SAVED_COEFS); |
516 | 334k | else |
517 | 334k | coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); |
518 | | |
519 | | /* We only do DC interpolation if no AC coefficient data is available. */ |
520 | 642k | change_dc = |
521 | 642k | coef_bits[1] == -1 && coef_bits[2] == -1 && coef_bits[3] == -1 && |
522 | 642k | coef_bits[4] == -1 && coef_bits[5] == -1 && coef_bits[6] == -1 && |
523 | 642k | coef_bits[7] == -1 && coef_bits[8] == -1 && coef_bits[9] == -1; |
524 | | |
525 | 642k | quanttbl = compptr->quant_table; |
526 | 642k | Q00 = quanttbl->quantval[0]; |
527 | 642k | Q01 = quanttbl->quantval[Q01_POS]; |
528 | 642k | Q10 = quanttbl->quantval[Q10_POS]; |
529 | 642k | Q20 = quanttbl->quantval[Q20_POS]; |
530 | 642k | Q11 = quanttbl->quantval[Q11_POS]; |
531 | 642k | Q02 = quanttbl->quantval[Q02_POS]; |
532 | 642k | if (change_dc) { |
533 | 415k | Q03 = quanttbl->quantval[Q03_POS]; |
534 | 415k | Q12 = quanttbl->quantval[Q12_POS]; |
535 | 415k | Q21 = quanttbl->quantval[Q21_POS]; |
536 | 415k | Q30 = quanttbl->quantval[Q30_POS]; |
537 | 415k | } |
538 | 642k | inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
539 | 642k | output_ptr = output_buf[ci]; |
540 | | /* Loop over all DCT blocks to be processed. */ |
541 | 1.32M | for (block_row = 0; block_row < block_rows; block_row++) { |
542 | 684k | buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci]; |
543 | | |
544 | 684k | if (block_row > 0 || cinfo->output_iMCU_row > 0) |
545 | 680k | prev_block_row = |
546 | 680k | buffer[block_row - 1] + cinfo->master->first_MCU_col[ci]; |
547 | 4.44k | else |
548 | 4.44k | prev_block_row = buffer_ptr; |
549 | | |
550 | 684k | if (block_row > 1 || cinfo->output_iMCU_row > 1) |
551 | 674k | prev_prev_block_row = |
552 | 674k | buffer[block_row - 2] + cinfo->master->first_MCU_col[ci]; |
553 | 9.75k | else |
554 | 9.75k | prev_prev_block_row = prev_block_row; |
555 | | |
556 | 684k | if (block_row < block_rows - 1 || cinfo->output_iMCU_row < last_iMCU_row) |
557 | 680k | next_block_row = |
558 | 680k | buffer[block_row + 1] + cinfo->master->first_MCU_col[ci]; |
559 | 4.44k | else |
560 | 4.44k | next_block_row = buffer_ptr; |
561 | | |
562 | 684k | if (block_row < block_rows - 2 || |
563 | 684k | cinfo->output_iMCU_row + 1 < last_iMCU_row) |
564 | 674k | next_next_block_row = |
565 | 674k | buffer[block_row + 2] + cinfo->master->first_MCU_col[ci]; |
566 | 9.46k | else |
567 | 9.46k | next_next_block_row = next_block_row; |
568 | | |
569 | | /* We fetch the surrounding DC values using a sliding-register approach. |
570 | | * Initialize all 25 here so as to do the right thing on narrow pics. |
571 | | */ |
572 | 684k | DC01 = DC02 = DC03 = DC04 = DC05 = (int)prev_prev_block_row[0][0]; |
573 | 684k | DC06 = DC07 = DC08 = DC09 = DC10 = (int)prev_block_row[0][0]; |
574 | 684k | DC11 = DC12 = DC13 = DC14 = DC15 = (int)buffer_ptr[0][0]; |
575 | 684k | DC16 = DC17 = DC18 = DC19 = DC20 = (int)next_block_row[0][0]; |
576 | 684k | DC21 = DC22 = DC23 = DC24 = DC25 = (int)next_next_block_row[0][0]; |
577 | 684k | output_col = 0; |
578 | 684k | last_block_column = compptr->width_in_blocks - 1; |
579 | 684k | for (block_num = cinfo->master->first_MCU_col[ci]; |
580 | 51.2M | block_num <= cinfo->master->last_MCU_col[ci]; block_num++) { |
581 | | /* Fetch current DCT block into workspace so we can modify it. */ |
582 | 50.6M | jcopy_block_row(buffer_ptr, (JBLOCKROW)workspace, (JDIMENSION)1); |
583 | | /* Update DC values */ |
584 | 50.6M | if (block_num == cinfo->master->first_MCU_col[ci] && |
585 | 50.6M | block_num < last_block_column) { |
586 | 615k | DC04 = (int)prev_prev_block_row[1][0]; |
587 | 615k | DC09 = (int)prev_block_row[1][0]; |
588 | 615k | DC14 = (int)buffer_ptr[1][0]; |
589 | 615k | DC19 = (int)next_block_row[1][0]; |
590 | 615k | DC24 = (int)next_next_block_row[1][0]; |
591 | 615k | } |
592 | 50.6M | if (block_num + 1 < last_block_column) { |
593 | 49.3M | DC05 = (int)prev_prev_block_row[2][0]; |
594 | 49.3M | DC10 = (int)prev_block_row[2][0]; |
595 | 49.3M | DC15 = (int)buffer_ptr[2][0]; |
596 | 49.3M | DC20 = (int)next_block_row[2][0]; |
597 | 49.3M | DC25 = (int)next_next_block_row[2][0]; |
598 | 49.3M | } |
599 | | /* If DC interpolation is enabled, compute coefficient estimates using |
600 | | * a Gaussian-like kernel, keeping the averages of the DC values. |
601 | | * |
602 | | * If DC interpolation is disabled, compute coefficient estimates using |
603 | | * an algorithm similar to the one described in Section K.8 of the JPEG |
604 | | * standard, except applied to a 5x5 window rather than a 3x3 window. |
605 | | * |
606 | | * An estimate is applied only if the coefficient is still zero and is |
607 | | * not known to be fully accurate. |
608 | | */ |
609 | | /* AC01 */ |
610 | 50.6M | if ((Al = coef_bits[1]) != 0 && workspace[1] == 0) { |
611 | 42.0M | num = Q00 * (change_dc ? |
612 | 16.3M | (-DC01 - DC02 + DC04 + DC05 - 3 * DC06 + 13 * DC07 - |
613 | 16.3M | 13 * DC09 + 3 * DC10 - 3 * DC11 + 38 * DC12 - 38 * DC14 + |
614 | 16.3M | 3 * DC15 - 3 * DC16 + 13 * DC17 - 13 * DC19 + 3 * DC20 - |
615 | 16.3M | DC21 - DC22 + DC24 + DC25) : |
616 | 42.0M | (-7 * DC11 + 50 * DC12 - 50 * DC14 + 7 * DC15)); |
617 | 42.0M | if (num >= 0) { |
618 | 36.8M | pred = (int)(((Q01 << 7) + num) / (Q01 << 8)); |
619 | 36.8M | if (Al > 0 && pred >= (1 << Al)) |
620 | 3.21M | pred = (1 << Al) - 1; |
621 | 36.8M | } else { |
622 | 5.16M | pred = (int)(((Q01 << 7) - num) / (Q01 << 8)); |
623 | 5.16M | if (Al > 0 && pred >= (1 << Al)) |
624 | 650k | pred = (1 << Al) - 1; |
625 | 5.16M | pred = -pred; |
626 | 5.16M | } |
627 | 42.0M | workspace[1] = (JCOEF)pred; |
628 | 42.0M | } |
629 | | /* AC10 */ |
630 | 50.6M | if ((Al = coef_bits[2]) != 0 && workspace[8] == 0) { |
631 | 41.7M | num = Q00 * (change_dc ? |
632 | 16.3M | (-DC01 - 3 * DC02 - 3 * DC03 - 3 * DC04 - DC05 - DC06 + |
633 | 16.3M | 13 * DC07 + 38 * DC08 + 13 * DC09 - DC10 + DC16 - |
634 | 16.3M | 13 * DC17 - 38 * DC18 - 13 * DC19 + DC20 + DC21 + |
635 | 16.3M | 3 * DC22 + 3 * DC23 + 3 * DC24 + DC25) : |
636 | 41.7M | (-7 * DC03 + 50 * DC08 - 50 * DC18 + 7 * DC23)); |
637 | 41.7M | if (num >= 0) { |
638 | 32.5M | pred = (int)(((Q10 << 7) + num) / (Q10 << 8)); |
639 | 32.5M | if (Al > 0 && pred >= (1 << Al)) |
640 | 9.00M | pred = (1 << Al) - 1; |
641 | 32.5M | } else { |
642 | 9.15M | pred = (int)(((Q10 << 7) - num) / (Q10 << 8)); |
643 | 9.15M | if (Al > 0 && pred >= (1 << Al)) |
644 | 3.49M | pred = (1 << Al) - 1; |
645 | 9.15M | pred = -pred; |
646 | 9.15M | } |
647 | 41.7M | workspace[8] = (JCOEF)pred; |
648 | 41.7M | } |
649 | | /* AC20 */ |
650 | 50.6M | if ((Al = coef_bits[3]) != 0 && workspace[16] == 0) { |
651 | 47.3M | num = Q00 * (change_dc ? |
652 | 16.3M | (DC03 + 2 * DC07 + 7 * DC08 + 2 * DC09 - 5 * DC12 - 14 * DC13 - |
653 | 16.3M | 5 * DC14 + 2 * DC17 + 7 * DC18 + 2 * DC19 + DC23) : |
654 | 47.3M | (-DC03 + 13 * DC08 - 24 * DC13 + 13 * DC18 - DC23)); |
655 | 47.3M | if (num >= 0) { |
656 | 30.9M | pred = (int)(((Q20 << 7) + num) / (Q20 << 8)); |
657 | 30.9M | if (Al > 0 && pred >= (1 << Al)) |
658 | 4.30M | pred = (1 << Al) - 1; |
659 | 30.9M | } else { |
660 | 16.4M | pred = (int)(((Q20 << 7) - num) / (Q20 << 8)); |
661 | 16.4M | if (Al > 0 && pred >= (1 << Al)) |
662 | 4.26M | pred = (1 << Al) - 1; |
663 | 16.4M | pred = -pred; |
664 | 16.4M | } |
665 | 47.3M | workspace[16] = (JCOEF)pred; |
666 | 47.3M | } |
667 | | /* AC11 */ |
668 | 50.6M | if ((Al = coef_bits[4]) != 0 && workspace[9] == 0) { |
669 | 46.5M | num = Q00 * (change_dc ? |
670 | 16.3M | (-DC01 + DC05 + 9 * DC07 - 9 * DC09 - 9 * DC17 + |
671 | 16.3M | 9 * DC19 + DC21 - DC25) : |
672 | 46.5M | (DC10 + DC16 - 10 * DC17 + 10 * DC19 - DC02 - DC20 + DC22 - |
673 | 30.2M | DC24 + DC04 - DC06 + 10 * DC07 - 10 * DC09)); |
674 | 46.5M | if (num >= 0) { |
675 | 42.5M | pred = (int)(((Q11 << 7) + num) / (Q11 << 8)); |
676 | 42.5M | if (Al > 0 && pred >= (1 << Al)) |
677 | 637k | pred = (1 << Al) - 1; |
678 | 42.5M | } else { |
679 | 3.97M | pred = (int)(((Q11 << 7) - num) / (Q11 << 8)); |
680 | 3.97M | if (Al > 0 && pred >= (1 << Al)) |
681 | 637k | pred = (1 << Al) - 1; |
682 | 3.97M | pred = -pred; |
683 | 3.97M | } |
684 | 46.5M | workspace[9] = (JCOEF)pred; |
685 | 46.5M | } |
686 | | /* AC02 */ |
687 | 50.6M | if ((Al = coef_bits[5]) != 0 && workspace[2] == 0) { |
688 | 46.8M | num = Q00 * (change_dc ? |
689 | 16.3M | (2 * DC07 - 5 * DC08 + 2 * DC09 + DC11 + 7 * DC12 - 14 * DC13 + |
690 | 16.3M | 7 * DC14 + DC15 + 2 * DC17 - 5 * DC18 + 2 * DC19) : |
691 | 46.8M | (-DC11 + 13 * DC12 - 24 * DC13 + 13 * DC14 - DC15)); |
692 | 46.8M | if (num >= 0) { |
693 | 28.3M | pred = (int)(((Q02 << 7) + num) / (Q02 << 8)); |
694 | 28.3M | if (Al > 0 && pred >= (1 << Al)) |
695 | 2.00M | pred = (1 << Al) - 1; |
696 | 28.3M | } else { |
697 | 18.4M | pred = (int)(((Q02 << 7) - num) / (Q02 << 8)); |
698 | 18.4M | if (Al > 0 && pred >= (1 << Al)) |
699 | 1.85M | pred = (1 << Al) - 1; |
700 | 18.4M | pred = -pred; |
701 | 18.4M | } |
702 | 46.8M | workspace[2] = (JCOEF)pred; |
703 | 46.8M | } |
704 | 50.6M | if (change_dc) { |
705 | | /* AC03 */ |
706 | 16.3M | if ((Al = coef_bits[6]) != 0 && workspace[3] == 0) { |
707 | 16.3M | num = Q00 * (DC07 - DC09 + 2 * DC12 - 2 * DC14 + DC17 - DC19); |
708 | 16.3M | if (num >= 0) { |
709 | 14.4M | pred = (int)(((Q03 << 7) + num) / (Q03 << 8)); |
710 | 14.4M | if (Al > 0 && pred >= (1 << Al)) |
711 | 0 | pred = (1 << Al) - 1; |
712 | 14.4M | } else { |
713 | 1.89M | pred = (int)(((Q03 << 7) - num) / (Q03 << 8)); |
714 | 1.89M | if (Al > 0 && pred >= (1 << Al)) |
715 | 0 | pred = (1 << Al) - 1; |
716 | 1.89M | pred = -pred; |
717 | 1.89M | } |
718 | 16.3M | workspace[3] = (JCOEF)pred; |
719 | 16.3M | } |
720 | | /* AC12 */ |
721 | 16.3M | if ((Al = coef_bits[7]) != 0 && workspace[10] == 0) { |
722 | 16.3M | num = Q00 * (DC07 - 3 * DC08 + DC09 - DC17 + 3 * DC18 - DC19); |
723 | 16.3M | if (num >= 0) { |
724 | 12.1M | pred = (int)(((Q12 << 7) + num) / (Q12 << 8)); |
725 | 12.1M | if (Al > 0 && pred >= (1 << Al)) |
726 | 0 | pred = (1 << Al) - 1; |
727 | 12.1M | } else { |
728 | 4.20M | pred = (int)(((Q12 << 7) - num) / (Q12 << 8)); |
729 | 4.20M | if (Al > 0 && pred >= (1 << Al)) |
730 | 0 | pred = (1 << Al) - 1; |
731 | 4.20M | pred = -pred; |
732 | 4.20M | } |
733 | 16.3M | workspace[10] = (JCOEF)pred; |
734 | 16.3M | } |
735 | | /* AC21 */ |
736 | 16.3M | if ((Al = coef_bits[8]) != 0 && workspace[17] == 0) { |
737 | 16.3M | num = Q00 * (DC07 - DC09 - 3 * DC12 + 3 * DC14 + DC17 - DC19); |
738 | 16.3M | if (num >= 0) { |
739 | 11.6M | pred = (int)(((Q21 << 7) + num) / (Q21 << 8)); |
740 | 11.6M | if (Al > 0 && pred >= (1 << Al)) |
741 | 0 | pred = (1 << Al) - 1; |
742 | 11.6M | } else { |
743 | 4.73M | pred = (int)(((Q21 << 7) - num) / (Q21 << 8)); |
744 | 4.73M | if (Al > 0 && pred >= (1 << Al)) |
745 | 0 | pred = (1 << Al) - 1; |
746 | 4.73M | pred = -pred; |
747 | 4.73M | } |
748 | 16.3M | workspace[17] = (JCOEF)pred; |
749 | 16.3M | } |
750 | | /* AC30 */ |
751 | 16.3M | if ((Al = coef_bits[9]) != 0 && workspace[24] == 0) { |
752 | 16.3M | num = Q00 * (DC07 + 2 * DC08 + DC09 - DC17 - 2 * DC18 - DC19); |
753 | 16.3M | if (num >= 0) { |
754 | 13.6M | pred = (int)(((Q30 << 7) + num) / (Q30 << 8)); |
755 | 13.6M | if (Al > 0 && pred >= (1 << Al)) |
756 | 0 | pred = (1 << Al) - 1; |
757 | 13.6M | } else { |
758 | 2.68M | pred = (int)(((Q30 << 7) - num) / (Q30 << 8)); |
759 | 2.68M | if (Al > 0 && pred >= (1 << Al)) |
760 | 0 | pred = (1 << Al) - 1; |
761 | 2.68M | pred = -pred; |
762 | 2.68M | } |
763 | 16.3M | workspace[24] = (JCOEF)pred; |
764 | 16.3M | } |
765 | | /* coef_bits[0] is non-negative. Otherwise this function would not |
766 | | * be called. |
767 | | */ |
768 | 16.3M | num = Q00 * |
769 | 16.3M | (-2 * DC01 - 6 * DC02 - 8 * DC03 - 6 * DC04 - 2 * DC05 - |
770 | 16.3M | 6 * DC06 + 6 * DC07 + 42 * DC08 + 6 * DC09 - 6 * DC10 - |
771 | 16.3M | 8 * DC11 + 42 * DC12 + 152 * DC13 + 42 * DC14 - 8 * DC15 - |
772 | 16.3M | 6 * DC16 + 6 * DC17 + 42 * DC18 + 6 * DC19 - 6 * DC20 - |
773 | 16.3M | 2 * DC21 - 6 * DC22 - 8 * DC23 - 6 * DC24 - 2 * DC25); |
774 | 16.3M | if (num >= 0) { |
775 | 12.9M | pred = (int)(((Q00 << 7) + num) / (Q00 << 8)); |
776 | 12.9M | } else { |
777 | 3.35M | pred = (int)(((Q00 << 7) - num) / (Q00 << 8)); |
778 | 3.35M | pred = -pred; |
779 | 3.35M | } |
780 | 16.3M | workspace[0] = (JCOEF)pred; |
781 | 16.3M | } /* change_dc */ |
782 | | |
783 | | /* OK, do the IDCT */ |
784 | 50.6M | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)workspace, output_ptr, |
785 | 50.6M | output_col); |
786 | | /* Advance for next column */ |
787 | 50.6M | DC01 = DC02; DC02 = DC03; DC03 = DC04; DC04 = DC05; |
788 | 50.6M | DC06 = DC07; DC07 = DC08; DC08 = DC09; DC09 = DC10; |
789 | 50.6M | DC11 = DC12; DC12 = DC13; DC13 = DC14; DC14 = DC15; |
790 | 50.6M | DC16 = DC17; DC17 = DC18; DC18 = DC19; DC19 = DC20; |
791 | 50.6M | DC21 = DC22; DC22 = DC23; DC23 = DC24; DC24 = DC25; |
792 | 50.6M | buffer_ptr++, prev_block_row++, next_block_row++, |
793 | 50.6M | prev_prev_block_row++, next_next_block_row++; |
794 | 50.6M | output_col += compptr->_DCT_scaled_size; |
795 | 50.6M | } |
796 | 684k | output_ptr += compptr->_DCT_scaled_size; |
797 | 684k | } |
798 | 642k | } |
799 | | |
800 | 583k | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
801 | 579k | return JPEG_ROW_COMPLETED; |
802 | 3.40k | return JPEG_SCAN_COMPLETED; |
803 | 583k | } |
804 | | |
805 | | #endif /* BLOCK_SMOOTHING_SUPPORTED */ |
806 | | |
807 | | |
808 | | /* |
809 | | * Initialize coefficient buffer controller. |
810 | | */ |
811 | | |
812 | | GLOBAL(void) |
813 | | jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer) |
814 | 54.4k | { |
815 | 54.4k | my_coef_ptr coef; |
816 | | |
817 | 54.4k | coef = (my_coef_ptr) |
818 | 54.4k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
819 | 54.4k | sizeof(my_coef_controller)); |
820 | 54.4k | cinfo->coef = (struct jpeg_d_coef_controller *)coef; |
821 | 54.4k | coef->pub.start_input_pass = start_input_pass; |
822 | 54.4k | coef->pub.start_output_pass = start_output_pass; |
823 | 54.4k | #ifdef BLOCK_SMOOTHING_SUPPORTED |
824 | 54.4k | coef->coef_bits_latch = NULL; |
825 | 54.4k | #endif |
826 | | |
827 | | /* Create the coefficient buffer. */ |
828 | 54.4k | if (need_full_buffer) { |
829 | 22.1k | #ifdef D_MULTISCAN_FILES_SUPPORTED |
830 | | /* Allocate a full-image virtual array for each component, */ |
831 | | /* padded to a multiple of samp_factor DCT blocks in each direction. */ |
832 | | /* Note we ask for a pre-zeroed array. */ |
833 | 22.1k | int ci, access_rows; |
834 | 22.1k | jpeg_component_info *compptr; |
835 | | |
836 | 58.8k | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
837 | 36.6k | ci++, compptr++) { |
838 | 36.6k | access_rows = compptr->v_samp_factor; |
839 | 36.6k | #ifdef BLOCK_SMOOTHING_SUPPORTED |
840 | | /* If block smoothing could be used, need a bigger window */ |
841 | 36.6k | if (cinfo->progressive_mode) |
842 | 22.8k | access_rows *= 5; |
843 | 36.6k | #endif |
844 | 36.6k | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
845 | 36.6k | ((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE, |
846 | 36.6k | (JDIMENSION)jround_up((long)compptr->width_in_blocks, |
847 | 36.6k | (long)compptr->h_samp_factor), |
848 | 36.6k | (JDIMENSION)jround_up((long)compptr->height_in_blocks, |
849 | 36.6k | (long)compptr->v_samp_factor), |
850 | 36.6k | (JDIMENSION)access_rows); |
851 | 36.6k | } |
852 | 22.1k | coef->pub.consume_data = consume_data; |
853 | 22.1k | coef->pub.decompress_data = decompress_data; |
854 | 22.1k | coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |
855 | | #else |
856 | | ERREXIT(cinfo, JERR_NOT_COMPILED); |
857 | | #endif |
858 | 32.3k | } else { |
859 | | /* We only need a single-MCU buffer. */ |
860 | 32.3k | JBLOCKROW buffer; |
861 | 32.3k | int i; |
862 | | |
863 | 32.3k | buffer = (JBLOCKROW) |
864 | 32.3k | (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
865 | 32.3k | D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); |
866 | 355k | for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |
867 | 323k | coef->MCU_buffer[i] = buffer + i; |
868 | 323k | } |
869 | 32.3k | coef->pub.consume_data = dummy_consume_data; |
870 | 32.3k | coef->pub.decompress_data = decompress_onepass; |
871 | 32.3k | coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |
872 | 32.3k | } |
873 | | |
874 | | /* Allocate the workspace buffer */ |
875 | 54.4k | coef->workspace = (JCOEF *) |
876 | 54.4k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
877 | 54.4k | sizeof(JCOEF) * DCTSIZE2); |
878 | 54.4k | } |