Coverage Report

Created: 2022-11-14 06:33

/src/libjpeg-turbo/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8
 * Copyright (C) 2018, Matthias Räncker.
9
 * For conditions of distribution and use, see the accompanying README.ijg
10
 * file.
11
 *
12
 * This file contains Huffman entropy decoding routines.
13
 *
14
 * Much of the complexity here has to do with supporting input suspension.
15
 * If the data source module demands suspension, we want to be able to back
16
 * up to the start of the current MCU.  To do this, we copy state variables
17
 * into local working storage, and update them back to the permanent
18
 * storage only upon successful completion of an MCU.
19
 *
20
 * NOTE: All referenced figures are from
21
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22
 */
23
24
#define JPEG_INTERNALS
25
#include "jinclude.h"
26
#include "jpeglib.h"
27
#include "jdhuff.h"             /* Declarations shared with jdphuff.c */
28
#include "jpegcomp.h"
29
#include "jstdhuff.c"
30
31
32
/*
33
 * Expanded entropy decoder object for Huffman decoding.
34
 *
35
 * The savable_state subrecord contains fields that change within an MCU,
36
 * but must not be updated permanently until we complete the MCU.
37
 */
38
39
typedef struct {
40
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
} savable_state;
42
43
typedef struct {
44
  struct jpeg_entropy_decoder pub; /* public fields */
45
46
  /* These fields are loaded into local variables at start of each MCU.
47
   * In case of suspension, we exit WITHOUT updating them.
48
   */
49
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
50
  savable_state saved;          /* Other state at start of MCU */
51
52
  /* These fields are NOT loaded into local working state. */
53
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
54
55
  /* Pointers to derived tables (these workspaces have image lifespan) */
56
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
57
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
58
59
  /* Precalculated info set up by start_pass for use in decode_mcu: */
60
61
  /* Pointers to derived tables to be used for each block within an MCU */
62
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
63
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
64
  /* Whether we care about the DC and AC coefficient values for each block */
65
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
66
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
67
} huff_entropy_decoder;
68
69
typedef huff_entropy_decoder *huff_entropy_ptr;
70
71
72
/*
73
 * Initialize for a Huffman-compressed scan.
74
 */
75
76
METHODDEF(void)
77
start_pass_huff_decoder(j_decompress_ptr cinfo)
78
27.6k
{
79
27.6k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
80
27.6k
  int ci, blkn, dctbl, actbl;
81
27.6k
  d_derived_tbl **pdtbl;
82
27.6k
  jpeg_component_info *compptr;
83
84
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
85
   * This ought to be an error condition, but we make it a warning because
86
   * there are some baseline files out there with all zeroes in these bytes.
87
   */
88
27.6k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
89
27.6k
      cinfo->Ah != 0 || cinfo->Al != 0)
90
13.4k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
91
92
56.1k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
93
28.5k
    compptr = cinfo->cur_comp_info[ci];
94
28.5k
    dctbl = compptr->dc_tbl_no;
95
28.5k
    actbl = compptr->ac_tbl_no;
96
    /* Compute derived values for Huffman tables */
97
    /* We may do this more than once for a table, but it's not expensive */
98
28.5k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
99
28.5k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
100
28.5k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
101
28.5k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
102
    /* Initialize DC predictions to 0 */
103
28.5k
    entropy->saved.last_dc_val[ci] = 0;
104
28.5k
  }
105
106
  /* Precalculate decoding info for each block in an MCU of this scan */
107
56.4k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
108
28.7k
    ci = cinfo->MCU_membership[blkn];
109
28.7k
    compptr = cinfo->cur_comp_info[ci];
110
    /* Precalculate which table to use for each block */
111
28.7k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
112
28.7k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
113
    /* Decide whether we really care about the coefficient values */
114
28.7k
    if (compptr->component_needed) {
115
28.7k
      entropy->dc_needed[blkn] = TRUE;
116
      /* we don't need the ACs if producing a 1/8th-size image */
117
28.7k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
118
28.7k
    } else {
119
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
120
0
    }
121
28.7k
  }
122
123
  /* Initialize bitread state variables */
124
27.6k
  entropy->bitstate.bits_left = 0;
125
27.6k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
126
27.6k
  entropy->pub.insufficient_data = FALSE;
127
128
  /* Initialize restart counter */
129
27.6k
  entropy->restarts_to_go = cinfo->restart_interval;
130
27.6k
}
131
132
133
/*
134
 * Compute the derived values for a Huffman table.
135
 * This routine also performs some validation checks on the table.
136
 *
137
 * Note this is also used by jdphuff.c.
138
 */
139
140
GLOBAL(void)
141
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
142
                        d_derived_tbl **pdtbl)
143
64.9k
{
144
64.9k
  JHUFF_TBL *htbl;
145
64.9k
  d_derived_tbl *dtbl;
146
64.9k
  int p, i, l, si, numsymbols;
147
64.9k
  int lookbits, ctr;
148
64.9k
  char huffsize[257];
149
64.9k
  unsigned int huffcode[257];
150
64.9k
  unsigned int code;
151
152
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
153
   * paralleling the order of the symbols themselves in htbl->huffval[].
154
   */
155
156
  /* Find the input Huffman table */
157
64.9k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
158
494
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
159
64.9k
  htbl =
160
64.9k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
161
64.9k
  if (htbl == NULL)
162
489
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
163
164
  /* Allocate a workspace if we haven't already done so. */
165
64.9k
  if (*pdtbl == NULL)
166
57.6k
    *pdtbl = (d_derived_tbl *)
167
57.6k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
168
57.6k
                                  sizeof(d_derived_tbl));
169
64.9k
  dtbl = *pdtbl;
170
64.9k
  dtbl->pub = htbl;             /* fill in back link */
171
172
  /* Figure C.1: make table of Huffman code length for each symbol */
173
174
64.9k
  p = 0;
175
1.08M
  for (l = 1; l <= 16; l++) {
176
1.02M
    i = (int)htbl->bits[l];
177
1.02M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
178
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
179
5.83M
    while (i--)
180
4.80M
      huffsize[p++] = (char)l;
181
1.02M
  }
182
64.9k
  huffsize[p] = 0;
183
64.9k
  numsymbols = p;
184
185
  /* Figure C.2: generate the codes themselves */
186
  /* We also validate that the counts represent a legal Huffman code tree. */
187
188
64.9k
  code = 0;
189
64.9k
  si = huffsize[0];
190
64.9k
  p = 0;
191
770k
  while (huffsize[p]) {
192
5.50M
    while (((int)huffsize[p]) == si) {
193
4.80M
      huffcode[p++] = code;
194
4.80M
      code++;
195
4.80M
    }
196
    /* code is now 1 more than the last code used for codelength si; but
197
     * it must still fit in si bits, since no code is allowed to be all ones.
198
     */
199
705k
    if (((JLONG)code) >= (((JLONG)1) << si))
200
294
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
201
705k
    code <<= 1;
202
705k
    si++;
203
705k
  }
204
205
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
206
207
64.9k
  p = 0;
208
1.08M
  for (l = 1; l <= 16; l++) {
209
1.01M
    if (htbl->bits[l]) {
210
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
211
       * minus the minimum code of length l
212
       */
213
538k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
214
538k
      p += htbl->bits[l];
215
538k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
216
538k
    } else {
217
480k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
218
480k
    }
219
1.01M
  }
220
64.9k
  dtbl->valoffset[17] = 0;
221
64.9k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
222
223
  /* Compute lookahead tables to speed up decoding.
224
   * First we set all the table entries to 0, indicating "too long";
225
   * then we iterate through the Huffman codes that are short enough and
226
   * fill in all the entries that correspond to bit sequences starting
227
   * with that code.
228
   */
229
230
16.3M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
231
16.3M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
232
233
64.9k
  p = 0;
234
574k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
235
1.49M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
236
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
237
      /* Generate left-justified code followed by all possible bit sequences */
238
983k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
239
12.6M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
240
11.6M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
241
11.6M
        lookbits++;
242
11.6M
      }
243
983k
    }
244
509k
  }
245
246
  /* Validate symbols as being reasonable.
247
   * For AC tables, we make no check, but accept all byte values 0..255.
248
   * For DC tables, we require the symbols to be in range 0..15.
249
   * (Tighter bounds could be applied depending on the data depth and mode,
250
   * but this is sufficient to ensure safe decoding.)
251
   */
252
64.9k
  if (isDC) {
253
368k
    for (i = 0; i < numsymbols; i++) {
254
339k
      int sym = htbl->huffval[i];
255
339k
      if (sym < 0 || sym > 15)
256
419
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
257
339k
    }
258
29.3k
  }
259
64.9k
}
260
261
262
/*
263
 * Out-of-line code for bit fetching (shared with jdphuff.c).
264
 * See jdhuff.h for info about usage.
265
 * Note: current values of get_buffer and bits_left are passed as parameters,
266
 * but are returned in the corresponding fields of the state struct.
267
 *
268
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
269
 * of get_buffer to be used.  (On machines with wider words, an even larger
270
 * buffer could be used.)  However, on some machines 32-bit shifts are
271
 * quite slow and take time proportional to the number of places shifted.
272
 * (This is true with most PC compilers, for instance.)  In this case it may
273
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
274
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
275
 */
276
277
#ifdef SLOW_SHIFT_32
278
#define MIN_GET_BITS  15        /* minimum allowable value */
279
#else
280
8.81M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
281
#endif
282
283
284
GLOBAL(boolean)
285
jpeg_fill_bit_buffer(bitread_working_state *state,
286
                     register bit_buf_type get_buffer, register int bits_left,
287
                     int nbits)
288
/* Load up the bit buffer to a depth of at least nbits */
289
1.80M
{
290
  /* Copy heavily used state fields into locals (hopefully registers) */
291
1.80M
  register const JOCTET *next_input_byte = state->next_input_byte;
292
1.80M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
293
1.80M
  j_decompress_ptr cinfo = state->cinfo;
294
295
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
296
  /* (It is assumed that no request will be for more than that many bits.) */
297
  /* We fail to do so only if we hit a marker or are forced to suspend. */
298
299
1.80M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
300
7.94M
    while (bits_left < MIN_GET_BITS) {
301
6.94M
      register int c;
302
303
      /* Attempt to read a byte */
304
6.94M
      if (bytes_in_buffer == 0) {
305
44.2k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
306
0
          return FALSE;
307
44.2k
        next_input_byte = cinfo->src->next_input_byte;
308
44.2k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
309
44.2k
      }
310
6.94M
      bytes_in_buffer--;
311
6.94M
      c = *next_input_byte++;
312
313
      /* If it's 0xFF, check and discard stuffed zero byte */
314
6.94M
      if (c == 0xFF) {
315
        /* Loop here to discard any padding FF's on terminating marker,
316
         * so that we can save a valid unread_marker value.  NOTE: we will
317
         * accept multiple FF's followed by a 0 as meaning a single FF data
318
         * byte.  This data pattern is not valid according to the standard.
319
         */
320
310k
        do {
321
310k
          if (bytes_in_buffer == 0) {
322
4.39k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
323
0
              return FALSE;
324
4.39k
            next_input_byte = cinfo->src->next_input_byte;
325
4.39k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
326
4.39k
          }
327
310k
          bytes_in_buffer--;
328
310k
          c = *next_input_byte++;
329
310k
        } while (c == 0xFF);
330
331
92.8k
        if (c == 0) {
332
          /* Found FF/00, which represents an FF data byte */
333
49.8k
          c = 0xFF;
334
49.8k
        } else {
335
          /* Oops, it's actually a marker indicating end of compressed data.
336
           * Save the marker code for later use.
337
           * Fine point: it might appear that we should save the marker into
338
           * bitread working state, not straight into permanent state.  But
339
           * once we have hit a marker, we cannot need to suspend within the
340
           * current MCU, because we will read no more bytes from the data
341
           * source.  So it is OK to update permanent state right away.
342
           */
343
43.0k
          cinfo->unread_marker = c;
344
          /* See if we need to insert some fake zero bits. */
345
43.0k
          goto no_more_bytes;
346
43.0k
        }
347
92.8k
      }
348
349
      /* OK, load c into get_buffer */
350
6.89M
      get_buffer = (get_buffer << 8) | c;
351
6.89M
      bits_left += 8;
352
6.89M
    } /* end while */
353
1.04M
  } else {
354
801k
no_more_bytes:
355
    /* We get here if we've read the marker that terminates the compressed
356
     * data segment.  There should be enough bits in the buffer register
357
     * to satisfy the request; if so, no problem.
358
     */
359
801k
    if (nbits > bits_left) {
360
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
361
       * the data stream, so that we can produce some kind of image.
362
       * We use a nonvolatile flag to ensure that only one warning message
363
       * appears per data segment.
364
       */
365
435k
      if (!cinfo->entropy->insufficient_data) {
366
44.6k
        WARNMS(cinfo, JWRN_HIT_MARKER);
367
44.6k
        cinfo->entropy->insufficient_data = TRUE;
368
44.6k
      }
369
      /* Fill the buffer with zero bits */
370
435k
      get_buffer <<= MIN_GET_BITS - bits_left;
371
435k
      bits_left = MIN_GET_BITS;
372
435k
    }
373
801k
  }
374
375
  /* Unload the local registers */
376
1.80M
  state->next_input_byte = next_input_byte;
377
1.80M
  state->bytes_in_buffer = bytes_in_buffer;
378
1.80M
  state->get_buffer = get_buffer;
379
1.80M
  state->bits_left = bits_left;
380
381
1.80M
  return TRUE;
382
1.80M
}
383
384
385
/* Macro version of the above, which performs much better but does not
386
   handle markers.  We have to hand off any blocks with markers to the
387
   slower routines. */
388
389
790k
#define GET_BYTE { \
390
790k
  register int c0, c1; \
391
790k
  c0 = *buffer++; \
392
790k
  c1 = *buffer; \
393
790k
  /* Pre-execute most common case */ \
394
790k
  get_buffer = (get_buffer << 8) | c0; \
395
790k
  bits_left += 8; \
396
790k
  if (c0 == 0xFF) { \
397
83.0k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
398
83.0k
    buffer++; \
399
83.0k
    if (c1 != 0) { \
400
64.3k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
401
64.3k
      cinfo->unread_marker = c1; \
402
64.3k
      /* Back out pre-execution and fill the buffer with zero bits */ \
403
64.3k
      buffer -= 2; \
404
64.3k
      get_buffer &= ~0xFF; \
405
64.3k
    } \
406
83.0k
  } \
407
790k
}
408
409
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
410
411
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
412
#define FILL_BIT_BUFFER_FAST \
413
1.76M
  if (bits_left <= 16) { \
414
131k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
415
131k
  }
416
417
#else
418
419
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
420
#define FILL_BIT_BUFFER_FAST \
421
  if (bits_left <= 16) { \
422
    GET_BYTE GET_BYTE \
423
  }
424
425
#endif
426
427
428
/*
429
 * Out-of-line code for Huffman code decoding.
430
 * See jdhuff.h for info about usage.
431
 */
432
433
GLOBAL(int)
434
jpeg_huff_decode(bitread_working_state *state,
435
                 register bit_buf_type get_buffer, register int bits_left,
436
                 d_derived_tbl *htbl, int min_bits)
437
1.07M
{
438
1.07M
  register int l = min_bits;
439
1.07M
  register JLONG code;
440
441
  /* HUFF_DECODE has determined that the code is at least min_bits */
442
  /* bits long, so fetch that many bits in one swoop. */
443
444
1.07M
  CHECK_BIT_BUFFER(*state, l, return -1);
445
1.07M
  code = GET_BITS(l);
446
447
  /* Collect the rest of the Huffman code one bit at a time. */
448
  /* This is per Figure F.16. */
449
450
7.16M
  while (code > htbl->maxcode[l]) {
451
6.09M
    code <<= 1;
452
6.09M
    CHECK_BIT_BUFFER(*state, 1, return -1);
453
6.09M
    code |= GET_BITS(1);
454
6.09M
    l++;
455
6.09M
  }
456
457
  /* Unload the local registers */
458
1.07M
  state->get_buffer = get_buffer;
459
1.07M
  state->bits_left = bits_left;
460
461
  /* With garbage input we may reach the sentinel value l = 17. */
462
463
1.07M
  if (l > 16) {
464
655k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
465
655k
    return 0;                   /* fake a zero as the safest result */
466
655k
  }
467
468
417k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
469
1.07M
}
470
471
472
/*
473
 * Figure F.12: extend sign bit.
474
 * On some machines, a shift and add will be faster than a table lookup.
475
 */
476
477
#define AVOID_TABLES
478
#ifdef AVOID_TABLES
479
480
3.92M
#define NEG_1  ((unsigned int)-1)
481
#define HUFF_EXTEND(x, s) \
482
3.92M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
483
484
#else
485
486
#define HUFF_EXTEND(x, s) \
487
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
488
489
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
490
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
491
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
492
};
493
494
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
495
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
496
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
497
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
498
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
499
};
500
501
#endif /* AVOID_TABLES */
502
503
504
/*
505
 * Check for a restart marker & resynchronize decoder.
506
 * Returns FALSE if must suspend.
507
 */
508
509
LOCAL(boolean)
510
process_restart(j_decompress_ptr cinfo)
511
95.2k
{
512
95.2k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
513
95.2k
  int ci;
514
515
  /* Throw away any unused bits remaining in bit buffer; */
516
  /* include any full bytes in next_marker's count of discarded bytes */
517
95.2k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
518
95.2k
  entropy->bitstate.bits_left = 0;
519
520
  /* Advance past the RSTn marker */
521
95.2k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
522
0
    return FALSE;
523
524
  /* Re-initialize DC predictions to 0 */
525
201k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
526
106k
    entropy->saved.last_dc_val[ci] = 0;
527
528
  /* Reset restart counter */
529
95.2k
  entropy->restarts_to_go = cinfo->restart_interval;
530
531
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
532
   * against a marker.  In that case we will end up treating the next data
533
   * segment as empty, and we can avoid producing bogus output pixels by
534
   * leaving the flag set.
535
   */
536
95.2k
  if (cinfo->unread_marker == 0)
537
11.9k
    entropy->pub.insufficient_data = FALSE;
538
539
95.2k
  return TRUE;
540
95.2k
}
541
542
543
#if defined(__has_feature)
544
#if __has_feature(undefined_behavior_sanitizer)
545
__attribute__((no_sanitize("signed-integer-overflow"),
546
               no_sanitize("unsigned-integer-overflow")))
547
#endif
548
#endif
549
LOCAL(boolean)
550
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
551
522k
{
552
522k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
553
522k
  BITREAD_STATE_VARS;
554
522k
  int blkn;
555
522k
  savable_state state;
556
  /* Outer loop handles each block in the MCU */
557
558
  /* Load up working state */
559
522k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
560
522k
  state = entropy->saved;
561
562
1.38M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
563
869k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
564
869k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
565
869k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
566
869k
    register int s, k, r;
567
568
    /* Decode a single block's worth of coefficients */
569
570
    /* Section F.2.2.1: decode the DC coefficient difference */
571
869k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
572
863k
    if (s) {
573
417k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
574
417k
      r = GET_BITS(s);
575
417k
      s = HUFF_EXTEND(r, s);
576
417k
    }
577
578
863k
    if (entropy->dc_needed[blkn]) {
579
      /* Convert DC difference to actual value, update last_dc_val */
580
863k
      int ci = cinfo->MCU_membership[blkn];
581
      /* Certain malformed JPEG images produce repeated DC coefficient
582
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
583
       * grow until it overflows or underflows a 32-bit signed integer.  This
584
       * behavior is, to the best of our understanding, innocuous, and it is
585
       * unclear how to work around it without potentially affecting
586
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
587
       * overflow errors for this function and decode_mcu_fast().
588
       */
589
863k
      s += state.last_dc_val[ci];
590
863k
      state.last_dc_val[ci] = s;
591
863k
      if (block) {
592
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
593
863k
        (*block)[0] = (JCOEF)s;
594
863k
      }
595
863k
    }
596
597
863k
    if (entropy->ac_needed[blkn] && block) {
598
599
      /* Section F.2.2.2: decode the AC coefficients */
600
      /* Since zeroes are skipped, output area must be cleared beforehand */
601
4.11M
      for (k = 1; k < DCTSIZE2; k++) {
602
4.07M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
603
604
4.07M
        r = s >> 4;
605
4.07M
        s &= 15;
606
607
4.07M
        if (s) {
608
3.24M
          k += r;
609
3.24M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
610
3.24M
          r = GET_BITS(s);
611
3.24M
          s = HUFF_EXTEND(r, s);
612
          /* Output coefficient in natural (dezigzagged) order.
613
           * Note: the extra entries in jpeg_natural_order[] will save us
614
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
615
           */
616
3.24M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
617
3.24M
        } else {
618
830k
          if (r != 15)
619
821k
            break;
620
8.83k
          k += 15;
621
8.83k
        }
622
4.07M
      }
623
624
863k
    } else {
625
626
      /* Section F.2.2.2: decode the AC coefficients */
627
      /* In this path we just discard the values */
628
0
      for (k = 1; k < DCTSIZE2; k++) {
629
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
630
631
0
        r = s >> 4;
632
0
        s &= 15;
633
634
0
        if (s) {
635
0
          k += r;
636
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
637
0
          DROP_BITS(s);
638
0
        } else {
639
0
          if (r != 15)
640
0
            break;
641
0
          k += 15;
642
0
        }
643
0
      }
644
0
    }
645
863k
  }
646
647
  /* Completed MCU, so update state */
648
516k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
649
516k
  entropy->saved = state;
650
516k
  return TRUE;
651
522k
}
652
653
654
#if defined(__has_feature)
655
#if __has_feature(undefined_behavior_sanitizer)
656
__attribute__((no_sanitize("signed-integer-overflow"),
657
               no_sanitize("unsigned-integer-overflow")))
658
#endif
659
#endif
660
LOCAL(boolean)
661
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
662
265k
{
663
265k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
664
265k
  BITREAD_STATE_VARS;
665
265k
  JOCTET *buffer;
666
265k
  int blkn;
667
265k
  savable_state state;
668
  /* Outer loop handles each block in the MCU */
669
670
  /* Load up working state */
671
265k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
672
265k
  buffer = (JOCTET *)br_state.next_input_byte;
673
265k
  state = entropy->saved;
674
675
926k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
676
661k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
677
661k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
678
661k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
679
661k
    register int s, k, r, l;
680
681
661k
    HUFF_DECODE_FAST(s, l, dctbl);
682
661k
    if (s) {
683
89.3k
      FILL_BIT_BUFFER_FAST
684
89.3k
      r = GET_BITS(s);
685
89.3k
      s = HUFF_EXTEND(r, s);
686
89.3k
    }
687
688
661k
    if (entropy->dc_needed[blkn]) {
689
661k
      int ci = cinfo->MCU_membership[blkn];
690
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
691
       * a UBSan integer overflow error in this line of code.
692
       */
693
661k
      s += state.last_dc_val[ci];
694
661k
      state.last_dc_val[ci] = s;
695
661k
      if (block)
696
661k
        (*block)[0] = (JCOEF)s;
697
661k
    }
698
699
661k
    if (entropy->ac_needed[blkn] && block) {
700
701
840k
      for (k = 1; k < DCTSIZE2; k++) {
702
837k
        HUFF_DECODE_FAST(s, l, actbl);
703
837k
        r = s >> 4;
704
837k
        s &= 15;
705
706
837k
        if (s) {
707
175k
          k += r;
708
175k
          FILL_BIT_BUFFER_FAST
709
175k
          r = GET_BITS(s);
710
175k
          s = HUFF_EXTEND(r, s);
711
175k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
712
661k
        } else {
713
661k
          if (r != 15) break;
714
3.35k
          k += 15;
715
3.35k
        }
716
837k
      }
717
718
661k
    } else {
719
720
0
      for (k = 1; k < DCTSIZE2; k++) {
721
0
        HUFF_DECODE_FAST(s, l, actbl);
722
0
        r = s >> 4;
723
0
        s &= 15;
724
725
0
        if (s) {
726
0
          k += r;
727
0
          FILL_BIT_BUFFER_FAST
728
0
          DROP_BITS(s);
729
0
        } else {
730
0
          if (r != 15) break;
731
0
          k += 15;
732
0
        }
733
0
      }
734
0
    }
735
661k
  }
736
737
265k
  if (cinfo->unread_marker != 0) {
738
10.3k
    cinfo->unread_marker = 0;
739
10.3k
    return FALSE;
740
10.3k
  }
741
742
254k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
743
254k
  br_state.next_input_byte = buffer;
744
254k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
745
254k
  entropy->saved = state;
746
254k
  return TRUE;
747
265k
}
748
749
750
/*
751
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
752
 * The coefficients are reordered from zigzag order into natural array order,
753
 * but are not dequantized.
754
 *
755
 * The i'th block of the MCU is stored into the block pointed to by
756
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
757
 * (Wholesale zeroing is usually a little faster than retail...)
758
 *
759
 * Returns FALSE if data source requested suspension.  In that case no
760
 * changes have been made to permanent state.  (Exception: some output
761
 * coefficients may already have been assigned.  This is harmless for
762
 * this module, since we'll just re-assign them on the next call.)
763
 */
764
765
59.7M
#define BUFSIZE  (DCTSIZE2 * 8)
766
767
METHODDEF(boolean)
768
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
769
59.7M
{
770
59.7M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
771
59.7M
  int usefast = 1;
772
773
  /* Process restart marker if needed; may have to suspend */
774
59.7M
  if (cinfo->restart_interval) {
775
20.6M
    if (entropy->restarts_to_go == 0)
776
95.2k
      if (!process_restart(cinfo))
777
0
        return FALSE;
778
20.6M
    usefast = 0;
779
20.6M
  }
780
781
59.7M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
782
59.7M
      cinfo->unread_marker != 0)
783
59.4M
    usefast = 0;
784
785
  /* If we've run out of data, just leave the MCU set to zeroes.
786
   * This way, we return uniform gray for the remainder of the segment.
787
   */
788
59.7M
  if (!entropy->pub.insufficient_data) {
789
790
777k
    if (usefast) {
791
265k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
792
512k
    } else {
793
522k
use_slow:
794
522k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
795
522k
    }
796
797
777k
  }
798
799
  /* Account for restart interval (no-op if not using restarts) */
800
59.7M
  if (cinfo->restart_interval)
801
20.6M
    entropy->restarts_to_go--;
802
803
59.7M
  return TRUE;
804
59.7M
}
805
806
807
/*
808
 * Module initialization routine for Huffman entropy decoding.
809
 */
810
811
GLOBAL(void)
812
jinit_huff_decoder(j_decompress_ptr cinfo)
813
26.6k
{
814
26.6k
  huff_entropy_ptr entropy;
815
26.6k
  int i;
816
817
  /* Motion JPEG frames typically do not include the Huffman tables if they
818
     are the default tables.  Thus, if the tables are not set by the time
819
     the Huffman decoder is initialized (usually within the body of
820
     jpeg_start_decompress()), we set them to default values. */
821
26.6k
  std_huff_tables((j_common_ptr)cinfo);
822
823
26.6k
  entropy = (huff_entropy_ptr)
824
26.6k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
825
26.6k
                                sizeof(huff_entropy_decoder));
826
26.6k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
827
26.6k
  entropy->pub.start_pass = start_pass_huff_decoder;
828
26.6k
  entropy->pub.decode_mcu = decode_mcu;
829
830
  /* Mark tables unallocated */
831
133k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
832
106k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
833
106k
  }
834
26.6k
}