Coverage Report

Created: 2022-11-14 06:33

/src/libjpeg-turbo/jidctred.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jidctred.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1994-1998, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2015, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains inverse-DCT routines that produce reduced-size output:
12
 * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
13
 *
14
 * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
15
 * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
16
 * with an 8-to-4 step that produces the four averages of two adjacent outputs
17
 * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
18
 * These steps were derived by computing the corresponding values at the end
19
 * of the normal LL&M code, then simplifying as much as possible.
20
 *
21
 * 1x1 is trivial: just take the DC coefficient divided by 8.
22
 *
23
 * See jidctint.c for additional comments.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdct.h"               /* Private declarations for DCT subsystem */
30
31
#ifdef IDCT_SCALING_SUPPORTED
32
33
34
/*
35
 * This module is specialized to the case DCTSIZE = 8.
36
 */
37
38
#if DCTSIZE != 8
39
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
40
#endif
41
42
43
/* Scaling is the same as in jidctint.c. */
44
45
#if BITS_IN_JSAMPLE == 8
46
#define CONST_BITS  13
47
#define PASS1_BITS  2
48
#else
49
#define CONST_BITS  13
50
#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
51
#endif
52
53
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
54
 * causing a lot of useless floating-point operations at run time.
55
 * To get around this we use the following pre-calculated constants.
56
 * If you change CONST_BITS you may want to add appropriate values.
57
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
58
 */
59
60
#if CONST_BITS == 13
61
#define FIX_0_211164243  ((JLONG)1730)          /* FIX(0.211164243) */
62
#define FIX_0_509795579  ((JLONG)4176)          /* FIX(0.509795579) */
63
#define FIX_0_601344887  ((JLONG)4926)          /* FIX(0.601344887) */
64
#define FIX_0_720959822  ((JLONG)5906)          /* FIX(0.720959822) */
65
#define FIX_0_765366865  ((JLONG)6270)          /* FIX(0.765366865) */
66
#define FIX_0_850430095  ((JLONG)6967)          /* FIX(0.850430095) */
67
#define FIX_0_899976223  ((JLONG)7373)          /* FIX(0.899976223) */
68
#define FIX_1_061594337  ((JLONG)8697)          /* FIX(1.061594337) */
69
#define FIX_1_272758580  ((JLONG)10426)         /* FIX(1.272758580) */
70
#define FIX_1_451774981  ((JLONG)11893)         /* FIX(1.451774981) */
71
#define FIX_1_847759065  ((JLONG)15137)         /* FIX(1.847759065) */
72
#define FIX_2_172734803  ((JLONG)17799)         /* FIX(2.172734803) */
73
#define FIX_2_562915447  ((JLONG)20995)         /* FIX(2.562915447) */
74
#define FIX_3_624509785  ((JLONG)29692)         /* FIX(3.624509785) */
75
#else
76
#define FIX_0_211164243  FIX(0.211164243)
77
#define FIX_0_509795579  FIX(0.509795579)
78
#define FIX_0_601344887  FIX(0.601344887)
79
#define FIX_0_720959822  FIX(0.720959822)
80
#define FIX_0_765366865  FIX(0.765366865)
81
#define FIX_0_850430095  FIX(0.850430095)
82
#define FIX_0_899976223  FIX(0.899976223)
83
#define FIX_1_061594337  FIX(1.061594337)
84
#define FIX_1_272758580  FIX(1.272758580)
85
#define FIX_1_451774981  FIX(1.451774981)
86
#define FIX_1_847759065  FIX(1.847759065)
87
#define FIX_2_172734803  FIX(2.172734803)
88
#define FIX_2_562915447  FIX(2.562915447)
89
#define FIX_3_624509785  FIX(3.624509785)
90
#endif
91
92
93
/* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
94
 * For 8-bit samples with the recommended scaling, all the variable
95
 * and constant values involved are no more than 16 bits wide, so a
96
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
97
 * For 12-bit samples, a full 32-bit multiplication will be needed.
98
 */
99
100
#if BITS_IN_JSAMPLE == 8
101
0
#define MULTIPLY(var, const)  MULTIPLY16C16(var, const)
102
#else
103
#define MULTIPLY(var, const)  ((var) * (const))
104
#endif
105
106
107
/* Dequantize a coefficient by multiplying it by the multiplier-table
108
 * entry; produce an int result.  In this module, both inputs and result
109
 * are 16 bits or less, so either int or short multiply will work.
110
 */
111
112
0
#define DEQUANTIZE(coef, quantval)  (((ISLOW_MULT_TYPE)(coef)) * (quantval))
113
114
115
/*
116
 * Perform dequantization and inverse DCT on one block of coefficients,
117
 * producing a reduced-size 4x4 output block.
118
 */
119
120
GLOBAL(void)
121
jpeg_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr,
122
              JCOEFPTR coef_block, JSAMPARRAY output_buf,
123
              JDIMENSION output_col)
124
0
{
125
0
  JLONG tmp0, tmp2, tmp10, tmp12;
126
0
  JLONG z1, z2, z3, z4;
127
0
  JCOEFPTR inptr;
128
0
  ISLOW_MULT_TYPE *quantptr;
129
0
  int *wsptr;
130
0
  JSAMPROW outptr;
131
0
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
132
0
  int ctr;
133
0
  int workspace[DCTSIZE * 4];   /* buffers data between passes */
134
  SHIFT_TEMPS
135
136
  /* Pass 1: process columns from input, store into work array. */
137
138
0
  inptr = coef_block;
139
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
140
0
  wsptr = workspace;
141
0
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
142
    /* Don't bother to process column 4, because second pass won't use it */
143
0
    if (ctr == DCTSIZE - 4)
144
0
      continue;
145
0
    if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
146
0
        inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 5] == 0 &&
147
0
        inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) {
148
      /* AC terms all zero; we need not examine term 4 for 4x4 output */
149
0
      int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
150
0
                                        quantptr[DCTSIZE * 0]), PASS1_BITS);
151
152
0
      wsptr[DCTSIZE * 0] = dcval;
153
0
      wsptr[DCTSIZE * 1] = dcval;
154
0
      wsptr[DCTSIZE * 2] = dcval;
155
0
      wsptr[DCTSIZE * 3] = dcval;
156
157
0
      continue;
158
0
    }
159
160
    /* Even part */
161
162
0
    tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
163
0
    tmp0 = LEFT_SHIFT(tmp0, CONST_BITS + 1);
164
165
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
166
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
167
168
0
    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, -FIX_0_765366865);
169
170
0
    tmp10 = tmp0 + tmp2;
171
0
    tmp12 = tmp0 - tmp2;
172
173
    /* Odd part */
174
175
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
176
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
177
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
178
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
179
180
0
    tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */
181
0
           MULTIPLY(z2,  FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */
182
0
           MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */
183
0
           MULTIPLY(z4,  FIX_1_061594337);  /* sqrt(2) * ( c5+c7) */
184
185
0
    tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */
186
0
           MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */
187
0
           MULTIPLY(z3,  FIX_0_899976223) + /* sqrt(2) * (c3-c7) */
188
0
           MULTIPLY(z4,  FIX_2_562915447);  /* sqrt(2) * (c1+c3) */
189
190
    /* Final output stage */
191
192
0
    wsptr[DCTSIZE * 0] =
193
0
      (int)DESCALE(tmp10 + tmp2, CONST_BITS - PASS1_BITS + 1);
194
0
    wsptr[DCTSIZE * 3] =
195
0
      (int)DESCALE(tmp10 - tmp2, CONST_BITS - PASS1_BITS + 1);
196
0
    wsptr[DCTSIZE * 1] =
197
0
      (int)DESCALE(tmp12 + tmp0, CONST_BITS - PASS1_BITS + 1);
198
0
    wsptr[DCTSIZE * 2] =
199
0
      (int)DESCALE(tmp12 - tmp0, CONST_BITS - PASS1_BITS + 1);
200
0
  }
201
202
  /* Pass 2: process 4 rows from work array, store into output array. */
203
204
0
  wsptr = workspace;
205
0
  for (ctr = 0; ctr < 4; ctr++) {
206
0
    outptr = output_buf[ctr] + output_col;
207
    /* It's not clear whether a zero row test is worthwhile here ... */
208
209
0
#ifndef NO_ZERO_ROW_TEST
210
0
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
211
0
        wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
212
      /* AC terms all zero */
213
0
      JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
214
0
                                               PASS1_BITS + 3) & RANGE_MASK];
215
216
0
      outptr[0] = dcval;
217
0
      outptr[1] = dcval;
218
0
      outptr[2] = dcval;
219
0
      outptr[3] = dcval;
220
221
0
      wsptr += DCTSIZE;         /* advance pointer to next row */
222
0
      continue;
223
0
    }
224
0
#endif
225
226
    /* Even part */
227
228
0
    tmp0 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 1);
229
230
0
    tmp2 = MULTIPLY((JLONG)wsptr[2],  FIX_1_847759065) +
231
0
           MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865);
232
233
0
    tmp10 = tmp0 + tmp2;
234
0
    tmp12 = tmp0 - tmp2;
235
236
    /* Odd part */
237
238
0
    z1 = (JLONG)wsptr[7];
239
0
    z2 = (JLONG)wsptr[5];
240
0
    z3 = (JLONG)wsptr[3];
241
0
    z4 = (JLONG)wsptr[1];
242
243
0
    tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */
244
0
           MULTIPLY(z2,  FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */
245
0
           MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */
246
0
           MULTIPLY(z4,  FIX_1_061594337);  /* sqrt(2) * ( c5+c7) */
247
248
0
    tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */
249
0
           MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */
250
0
           MULTIPLY(z3, FIX_0_899976223) +  /* sqrt(2) * (c3-c7) */
251
0
           MULTIPLY(z4, FIX_2_562915447);   /* sqrt(2) * (c1+c3) */
252
253
    /* Final output stage */
254
255
0
    outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp2,
256
0
                                         CONST_BITS + PASS1_BITS + 3 + 1) &
257
0
                            RANGE_MASK];
258
0
    outptr[3] = range_limit[(int)DESCALE(tmp10 - tmp2,
259
0
                                         CONST_BITS + PASS1_BITS + 3 + 1) &
260
0
                            RANGE_MASK];
261
0
    outptr[1] = range_limit[(int)DESCALE(tmp12 + tmp0,
262
0
                                         CONST_BITS + PASS1_BITS + 3 + 1) &
263
0
                            RANGE_MASK];
264
0
    outptr[2] = range_limit[(int)DESCALE(tmp12 - tmp0,
265
0
                                         CONST_BITS + PASS1_BITS + 3 + 1) &
266
0
                            RANGE_MASK];
267
268
0
    wsptr += DCTSIZE;           /* advance pointer to next row */
269
0
  }
270
0
}
271
272
273
/*
274
 * Perform dequantization and inverse DCT on one block of coefficients,
275
 * producing a reduced-size 2x2 output block.
276
 */
277
278
GLOBAL(void)
279
jpeg_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr,
280
              JCOEFPTR coef_block, JSAMPARRAY output_buf,
281
              JDIMENSION output_col)
282
0
{
283
0
  JLONG tmp0, tmp10, z1;
284
0
  JCOEFPTR inptr;
285
0
  ISLOW_MULT_TYPE *quantptr;
286
0
  int *wsptr;
287
0
  JSAMPROW outptr;
288
0
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
289
0
  int ctr;
290
0
  int workspace[DCTSIZE * 2];   /* buffers data between passes */
291
  SHIFT_TEMPS
292
293
  /* Pass 1: process columns from input, store into work array. */
294
295
0
  inptr = coef_block;
296
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
297
0
  wsptr = workspace;
298
0
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
299
    /* Don't bother to process columns 2,4,6 */
300
0
    if (ctr == DCTSIZE - 2 || ctr == DCTSIZE - 4 || ctr == DCTSIZE - 6)
301
0
      continue;
302
0
    if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 3] == 0 &&
303
0
        inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 7] == 0) {
304
      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
305
0
      int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
306
0
                             quantptr[DCTSIZE * 0]), PASS1_BITS);
307
308
0
      wsptr[DCTSIZE * 0] = dcval;
309
0
      wsptr[DCTSIZE * 1] = dcval;
310
311
0
      continue;
312
0
    }
313
314
    /* Even part */
315
316
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
317
0
    tmp10 = LEFT_SHIFT(z1, CONST_BITS + 2);
318
319
    /* Odd part */
320
321
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
322
0
    tmp0 = MULTIPLY(z1, -FIX_0_720959822);  /* sqrt(2) * ( c7-c5+c3-c1) */
323
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
324
0
    tmp0 += MULTIPLY(z1, FIX_0_850430095);  /* sqrt(2) * (-c1+c3+c5+c7) */
325
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
326
0
    tmp0 += MULTIPLY(z1, -FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
327
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
328
0
    tmp0 += MULTIPLY(z1, FIX_3_624509785);  /* sqrt(2) * ( c1+c3+c5+c7) */
329
330
    /* Final output stage */
331
332
0
    wsptr[DCTSIZE * 0] =
333
0
      (int)DESCALE(tmp10 + tmp0, CONST_BITS - PASS1_BITS + 2);
334
0
    wsptr[DCTSIZE * 1] =
335
0
      (int)DESCALE(tmp10 - tmp0, CONST_BITS - PASS1_BITS + 2);
336
0
  }
337
338
  /* Pass 2: process 2 rows from work array, store into output array. */
339
340
0
  wsptr = workspace;
341
0
  for (ctr = 0; ctr < 2; ctr++) {
342
0
    outptr = output_buf[ctr] + output_col;
343
    /* It's not clear whether a zero row test is worthwhile here ... */
344
345
0
#ifndef NO_ZERO_ROW_TEST
346
0
    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
347
      /* AC terms all zero */
348
0
      JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
349
0
                                               PASS1_BITS + 3) & RANGE_MASK];
350
351
0
      outptr[0] = dcval;
352
0
      outptr[1] = dcval;
353
354
0
      wsptr += DCTSIZE;         /* advance pointer to next row */
355
0
      continue;
356
0
    }
357
0
#endif
358
359
    /* Even part */
360
361
0
    tmp10 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 2);
362
363
    /* Odd part */
364
365
0
    tmp0 = MULTIPLY((JLONG)wsptr[7], -FIX_0_720959822) + /* sqrt(2) * ( c7-c5+c3-c1) */
366
0
           MULTIPLY((JLONG)wsptr[5],  FIX_0_850430095) + /* sqrt(2) * (-c1+c3+c5+c7) */
367
0
           MULTIPLY((JLONG)wsptr[3], -FIX_1_272758580) + /* sqrt(2) * (-c1+c3-c5-c7) */
368
0
           MULTIPLY((JLONG)wsptr[1],  FIX_3_624509785);  /* sqrt(2) * ( c1+c3+c5+c7) */
369
370
    /* Final output stage */
371
372
0
    outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp0,
373
0
                                         CONST_BITS + PASS1_BITS + 3 + 2) &
374
0
                            RANGE_MASK];
375
0
    outptr[1] = range_limit[(int)DESCALE(tmp10 - tmp0,
376
0
                                         CONST_BITS + PASS1_BITS + 3 + 2) &
377
0
                            RANGE_MASK];
378
379
0
    wsptr += DCTSIZE;           /* advance pointer to next row */
380
0
  }
381
0
}
382
383
384
/*
385
 * Perform dequantization and inverse DCT on one block of coefficients,
386
 * producing a reduced-size 1x1 output block.
387
 */
388
389
GLOBAL(void)
390
jpeg_idct_1x1(j_decompress_ptr cinfo, jpeg_component_info *compptr,
391
              JCOEFPTR coef_block, JSAMPARRAY output_buf,
392
              JDIMENSION output_col)
393
0
{
394
0
  int dcval;
395
0
  ISLOW_MULT_TYPE *quantptr;
396
0
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
397
0
  SHIFT_TEMPS
398
399
  /* We hardly need an inverse DCT routine for this: just take the
400
   * average pixel value, which is one-eighth of the DC coefficient.
401
   */
402
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
403
0
  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
404
0
  dcval = (int)DESCALE((JLONG)dcval, 3);
405
406
0
  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
407
0
}
408
409
#endif /* IDCT_SCALING_SUPPORTED */