/src/libjpeg-turbo/jquant2.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jquant2.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1991-1996, Thomas G. Lane. |
6 | | * libjpeg-turbo Modifications: |
7 | | * Copyright (C) 2009, 2014-2015, 2020, D. R. Commander. |
8 | | * For conditions of distribution and use, see the accompanying README.ijg |
9 | | * file. |
10 | | * |
11 | | * This file contains 2-pass color quantization (color mapping) routines. |
12 | | * These routines provide selection of a custom color map for an image, |
13 | | * followed by mapping of the image to that color map, with optional |
14 | | * Floyd-Steinberg dithering. |
15 | | * It is also possible to use just the second pass to map to an arbitrary |
16 | | * externally-given color map. |
17 | | * |
18 | | * Note: ordered dithering is not supported, since there isn't any fast |
19 | | * way to compute intercolor distances; it's unclear that ordered dither's |
20 | | * fundamental assumptions even hold with an irregularly spaced color map. |
21 | | */ |
22 | | |
23 | | #define JPEG_INTERNALS |
24 | | #include "jinclude.h" |
25 | | #include "jpeglib.h" |
26 | | |
27 | | #ifdef QUANT_2PASS_SUPPORTED |
28 | | |
29 | | |
30 | | /* |
31 | | * This module implements the well-known Heckbert paradigm for color |
32 | | * quantization. Most of the ideas used here can be traced back to |
33 | | * Heckbert's seminal paper |
34 | | * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", |
35 | | * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. |
36 | | * |
37 | | * In the first pass over the image, we accumulate a histogram showing the |
38 | | * usage count of each possible color. To keep the histogram to a reasonable |
39 | | * size, we reduce the precision of the input; typical practice is to retain |
40 | | * 5 or 6 bits per color, so that 8 or 4 different input values are counted |
41 | | * in the same histogram cell. |
42 | | * |
43 | | * Next, the color-selection step begins with a box representing the whole |
44 | | * color space, and repeatedly splits the "largest" remaining box until we |
45 | | * have as many boxes as desired colors. Then the mean color in each |
46 | | * remaining box becomes one of the possible output colors. |
47 | | * |
48 | | * The second pass over the image maps each input pixel to the closest output |
49 | | * color (optionally after applying a Floyd-Steinberg dithering correction). |
50 | | * This mapping is logically trivial, but making it go fast enough requires |
51 | | * considerable care. |
52 | | * |
53 | | * Heckbert-style quantizers vary a good deal in their policies for choosing |
54 | | * the "largest" box and deciding where to cut it. The particular policies |
55 | | * used here have proved out well in experimental comparisons, but better ones |
56 | | * may yet be found. |
57 | | * |
58 | | * In earlier versions of the IJG code, this module quantized in YCbCr color |
59 | | * space, processing the raw upsampled data without a color conversion step. |
60 | | * This allowed the color conversion math to be done only once per colormap |
61 | | * entry, not once per pixel. However, that optimization precluded other |
62 | | * useful optimizations (such as merging color conversion with upsampling) |
63 | | * and it also interfered with desired capabilities such as quantizing to an |
64 | | * externally-supplied colormap. We have therefore abandoned that approach. |
65 | | * The present code works in the post-conversion color space, typically RGB. |
66 | | * |
67 | | * To improve the visual quality of the results, we actually work in scaled |
68 | | * RGB space, giving G distances more weight than R, and R in turn more than |
69 | | * B. To do everything in integer math, we must use integer scale factors. |
70 | | * The 2/3/1 scale factors used here correspond loosely to the relative |
71 | | * weights of the colors in the NTSC grayscale equation. |
72 | | * If you want to use this code to quantize a non-RGB color space, you'll |
73 | | * probably need to change these scale factors. |
74 | | */ |
75 | | |
76 | | #define R_SCALE 2 /* scale R distances by this much */ |
77 | | #define G_SCALE 3 /* scale G distances by this much */ |
78 | | #define B_SCALE 1 /* and B by this much */ |
79 | | |
80 | | static const int c_scales[3] = { R_SCALE, G_SCALE, B_SCALE }; |
81 | 0 | #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]] |
82 | 0 | #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]] |
83 | 0 | #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]] |
84 | | |
85 | | /* |
86 | | * First we have the histogram data structure and routines for creating it. |
87 | | * |
88 | | * The number of bits of precision can be adjusted by changing these symbols. |
89 | | * We recommend keeping 6 bits for G and 5 each for R and B. |
90 | | * If you have plenty of memory and cycles, 6 bits all around gives marginally |
91 | | * better results; if you are short of memory, 5 bits all around will save |
92 | | * some space but degrade the results. |
93 | | * To maintain a fully accurate histogram, we'd need to allocate a "long" |
94 | | * (preferably unsigned long) for each cell. In practice this is overkill; |
95 | | * we can get by with 16 bits per cell. Few of the cell counts will overflow, |
96 | | * and clamping those that do overflow to the maximum value will give close- |
97 | | * enough results. This reduces the recommended histogram size from 256Kb |
98 | | * to 128Kb, which is a useful savings on PC-class machines. |
99 | | * (In the second pass the histogram space is re-used for pixel mapping data; |
100 | | * in that capacity, each cell must be able to store zero to the number of |
101 | | * desired colors. 16 bits/cell is plenty for that too.) |
102 | | * Since the JPEG code is intended to run in small memory model on 80x86 |
103 | | * machines, we can't just allocate the histogram in one chunk. Instead |
104 | | * of a true 3-D array, we use a row of pointers to 2-D arrays. Each |
105 | | * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and |
106 | | * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. |
107 | | */ |
108 | | |
109 | 0 | #define MAXNUMCOLORS (MAXJSAMPLE + 1) /* maximum size of colormap */ |
110 | | |
111 | | /* These will do the right thing for either R,G,B or B,G,R color order, |
112 | | * but you may not like the results for other color orders. |
113 | | */ |
114 | 0 | #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ |
115 | 0 | #define HIST_C1_BITS 6 /* bits of precision in G histogram */ |
116 | 0 | #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ |
117 | | |
118 | | /* Number of elements along histogram axes. */ |
119 | 0 | #define HIST_C0_ELEMS (1 << HIST_C0_BITS) |
120 | 0 | #define HIST_C1_ELEMS (1 << HIST_C1_BITS) |
121 | 0 | #define HIST_C2_ELEMS (1 << HIST_C2_BITS) |
122 | | |
123 | | /* These are the amounts to shift an input value to get a histogram index. */ |
124 | 0 | #define C0_SHIFT (BITS_IN_JSAMPLE - HIST_C0_BITS) |
125 | 0 | #define C1_SHIFT (BITS_IN_JSAMPLE - HIST_C1_BITS) |
126 | 0 | #define C2_SHIFT (BITS_IN_JSAMPLE - HIST_C2_BITS) |
127 | | |
128 | | |
129 | | typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ |
130 | | |
131 | | typedef histcell *histptr; /* for pointers to histogram cells */ |
132 | | |
133 | | typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ |
134 | | typedef hist1d *hist2d; /* type for the 2nd-level pointers */ |
135 | | typedef hist2d *hist3d; /* type for top-level pointer */ |
136 | | |
137 | | |
138 | | /* Declarations for Floyd-Steinberg dithering. |
139 | | * |
140 | | * Errors are accumulated into the array fserrors[], at a resolution of |
141 | | * 1/16th of a pixel count. The error at a given pixel is propagated |
142 | | * to its not-yet-processed neighbors using the standard F-S fractions, |
143 | | * ... (here) 7/16 |
144 | | * 3/16 5/16 1/16 |
145 | | * We work left-to-right on even rows, right-to-left on odd rows. |
146 | | * |
147 | | * We can get away with a single array (holding one row's worth of errors) |
148 | | * by using it to store the current row's errors at pixel columns not yet |
149 | | * processed, but the next row's errors at columns already processed. We |
150 | | * need only a few extra variables to hold the errors immediately around the |
151 | | * current column. (If we are lucky, those variables are in registers, but |
152 | | * even if not, they're probably cheaper to access than array elements are.) |
153 | | * |
154 | | * The fserrors[] array has (#columns + 2) entries; the extra entry at |
155 | | * each end saves us from special-casing the first and last pixels. |
156 | | * Each entry is three values long, one value for each color component. |
157 | | */ |
158 | | |
159 | | #if BITS_IN_JSAMPLE == 8 |
160 | | typedef INT16 FSERROR; /* 16 bits should be enough */ |
161 | | typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
162 | | #else |
163 | | typedef JLONG FSERROR; /* may need more than 16 bits */ |
164 | | typedef JLONG LOCFSERROR; /* be sure calculation temps are big enough */ |
165 | | #endif |
166 | | |
167 | | typedef FSERROR *FSERRPTR; /* pointer to error array */ |
168 | | |
169 | | |
170 | | /* Private subobject */ |
171 | | |
172 | | typedef struct { |
173 | | struct jpeg_color_quantizer pub; /* public fields */ |
174 | | |
175 | | /* Space for the eventually created colormap is stashed here */ |
176 | | JSAMPARRAY sv_colormap; /* colormap allocated at init time */ |
177 | | int desired; /* desired # of colors = size of colormap */ |
178 | | |
179 | | /* Variables for accumulating image statistics */ |
180 | | hist3d histogram; /* pointer to the histogram */ |
181 | | |
182 | | boolean needs_zeroed; /* TRUE if next pass must zero histogram */ |
183 | | |
184 | | /* Variables for Floyd-Steinberg dithering */ |
185 | | FSERRPTR fserrors; /* accumulated errors */ |
186 | | boolean on_odd_row; /* flag to remember which row we are on */ |
187 | | int *error_limiter; /* table for clamping the applied error */ |
188 | | } my_cquantizer; |
189 | | |
190 | | typedef my_cquantizer *my_cquantize_ptr; |
191 | | |
192 | | |
193 | | /* |
194 | | * Prescan some rows of pixels. |
195 | | * In this module the prescan simply updates the histogram, which has been |
196 | | * initialized to zeroes by start_pass. |
197 | | * An output_buf parameter is required by the method signature, but no data |
198 | | * is actually output (in fact the buffer controller is probably passing a |
199 | | * NULL pointer). |
200 | | */ |
201 | | |
202 | | METHODDEF(void) |
203 | | prescan_quantize(j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
204 | | JSAMPARRAY output_buf, int num_rows) |
205 | 0 | { |
206 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; |
207 | 0 | register JSAMPROW ptr; |
208 | 0 | register histptr histp; |
209 | 0 | register hist3d histogram = cquantize->histogram; |
210 | 0 | int row; |
211 | 0 | JDIMENSION col; |
212 | 0 | JDIMENSION width = cinfo->output_width; |
213 | |
|
214 | 0 | for (row = 0; row < num_rows; row++) { |
215 | 0 | ptr = input_buf[row]; |
216 | 0 | for (col = width; col > 0; col--) { |
217 | | /* get pixel value and index into the histogram */ |
218 | 0 | histp = &histogram[ptr[0] >> C0_SHIFT] |
219 | 0 | [ptr[1] >> C1_SHIFT] |
220 | 0 | [ptr[2] >> C2_SHIFT]; |
221 | | /* increment, check for overflow and undo increment if so. */ |
222 | 0 | if (++(*histp) <= 0) |
223 | 0 | (*histp)--; |
224 | 0 | ptr += 3; |
225 | 0 | } |
226 | 0 | } |
227 | 0 | } |
228 | | |
229 | | |
230 | | /* |
231 | | * Next we have the really interesting routines: selection of a colormap |
232 | | * given the completed histogram. |
233 | | * These routines work with a list of "boxes", each representing a rectangular |
234 | | * subset of the input color space (to histogram precision). |
235 | | */ |
236 | | |
237 | | typedef struct { |
238 | | /* The bounds of the box (inclusive); expressed as histogram indexes */ |
239 | | int c0min, c0max; |
240 | | int c1min, c1max; |
241 | | int c2min, c2max; |
242 | | /* The volume (actually 2-norm) of the box */ |
243 | | JLONG volume; |
244 | | /* The number of nonzero histogram cells within this box */ |
245 | | long colorcount; |
246 | | } box; |
247 | | |
248 | | typedef box *boxptr; |
249 | | |
250 | | |
251 | | LOCAL(boxptr) |
252 | | find_biggest_color_pop(boxptr boxlist, int numboxes) |
253 | | /* Find the splittable box with the largest color population */ |
254 | | /* Returns NULL if no splittable boxes remain */ |
255 | 0 | { |
256 | 0 | register boxptr boxp; |
257 | 0 | register int i; |
258 | 0 | register long maxc = 0; |
259 | 0 | boxptr which = NULL; |
260 | |
|
261 | 0 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
262 | 0 | if (boxp->colorcount > maxc && boxp->volume > 0) { |
263 | 0 | which = boxp; |
264 | 0 | maxc = boxp->colorcount; |
265 | 0 | } |
266 | 0 | } |
267 | 0 | return which; |
268 | 0 | } |
269 | | |
270 | | |
271 | | LOCAL(boxptr) |
272 | | find_biggest_volume(boxptr boxlist, int numboxes) |
273 | | /* Find the splittable box with the largest (scaled) volume */ |
274 | | /* Returns NULL if no splittable boxes remain */ |
275 | 0 | { |
276 | 0 | register boxptr boxp; |
277 | 0 | register int i; |
278 | 0 | register JLONG maxv = 0; |
279 | 0 | boxptr which = NULL; |
280 | |
|
281 | 0 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
282 | 0 | if (boxp->volume > maxv) { |
283 | 0 | which = boxp; |
284 | 0 | maxv = boxp->volume; |
285 | 0 | } |
286 | 0 | } |
287 | 0 | return which; |
288 | 0 | } |
289 | | |
290 | | |
291 | | LOCAL(void) |
292 | | update_box(j_decompress_ptr cinfo, boxptr boxp) |
293 | | /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ |
294 | | /* and recompute its volume and population */ |
295 | 0 | { |
296 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; |
297 | 0 | hist3d histogram = cquantize->histogram; |
298 | 0 | histptr histp; |
299 | 0 | int c0, c1, c2; |
300 | 0 | int c0min, c0max, c1min, c1max, c2min, c2max; |
301 | 0 | JLONG dist0, dist1, dist2; |
302 | 0 | long ccount; |
303 | |
|
304 | 0 | c0min = boxp->c0min; c0max = boxp->c0max; |
305 | 0 | c1min = boxp->c1min; c1max = boxp->c1max; |
306 | 0 | c2min = boxp->c2min; c2max = boxp->c2max; |
307 | |
|
308 | 0 | if (c0max > c0min) |
309 | 0 | for (c0 = c0min; c0 <= c0max; c0++) |
310 | 0 | for (c1 = c1min; c1 <= c1max; c1++) { |
311 | 0 | histp = &histogram[c0][c1][c2min]; |
312 | 0 | for (c2 = c2min; c2 <= c2max; c2++) |
313 | 0 | if (*histp++ != 0) { |
314 | 0 | boxp->c0min = c0min = c0; |
315 | 0 | goto have_c0min; |
316 | 0 | } |
317 | 0 | } |
318 | 0 | have_c0min: |
319 | 0 | if (c0max > c0min) |
320 | 0 | for (c0 = c0max; c0 >= c0min; c0--) |
321 | 0 | for (c1 = c1min; c1 <= c1max; c1++) { |
322 | 0 | histp = &histogram[c0][c1][c2min]; |
323 | 0 | for (c2 = c2min; c2 <= c2max; c2++) |
324 | 0 | if (*histp++ != 0) { |
325 | 0 | boxp->c0max = c0max = c0; |
326 | 0 | goto have_c0max; |
327 | 0 | } |
328 | 0 | } |
329 | 0 | have_c0max: |
330 | 0 | if (c1max > c1min) |
331 | 0 | for (c1 = c1min; c1 <= c1max; c1++) |
332 | 0 | for (c0 = c0min; c0 <= c0max; c0++) { |
333 | 0 | histp = &histogram[c0][c1][c2min]; |
334 | 0 | for (c2 = c2min; c2 <= c2max; c2++) |
335 | 0 | if (*histp++ != 0) { |
336 | 0 | boxp->c1min = c1min = c1; |
337 | 0 | goto have_c1min; |
338 | 0 | } |
339 | 0 | } |
340 | 0 | have_c1min: |
341 | 0 | if (c1max > c1min) |
342 | 0 | for (c1 = c1max; c1 >= c1min; c1--) |
343 | 0 | for (c0 = c0min; c0 <= c0max; c0++) { |
344 | 0 | histp = &histogram[c0][c1][c2min]; |
345 | 0 | for (c2 = c2min; c2 <= c2max; c2++) |
346 | 0 | if (*histp++ != 0) { |
347 | 0 | boxp->c1max = c1max = c1; |
348 | 0 | goto have_c1max; |
349 | 0 | } |
350 | 0 | } |
351 | 0 | have_c1max: |
352 | 0 | if (c2max > c2min) |
353 | 0 | for (c2 = c2min; c2 <= c2max; c2++) |
354 | 0 | for (c0 = c0min; c0 <= c0max; c0++) { |
355 | 0 | histp = &histogram[c0][c1min][c2]; |
356 | 0 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
357 | 0 | if (*histp != 0) { |
358 | 0 | boxp->c2min = c2min = c2; |
359 | 0 | goto have_c2min; |
360 | 0 | } |
361 | 0 | } |
362 | 0 | have_c2min: |
363 | 0 | if (c2max > c2min) |
364 | 0 | for (c2 = c2max; c2 >= c2min; c2--) |
365 | 0 | for (c0 = c0min; c0 <= c0max; c0++) { |
366 | 0 | histp = &histogram[c0][c1min][c2]; |
367 | 0 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
368 | 0 | if (*histp != 0) { |
369 | 0 | boxp->c2max = c2max = c2; |
370 | 0 | goto have_c2max; |
371 | 0 | } |
372 | 0 | } |
373 | 0 | have_c2max: |
374 | | |
375 | | /* Update box volume. |
376 | | * We use 2-norm rather than real volume here; this biases the method |
377 | | * against making long narrow boxes, and it has the side benefit that |
378 | | * a box is splittable iff norm > 0. |
379 | | * Since the differences are expressed in histogram-cell units, |
380 | | * we have to shift back to JSAMPLE units to get consistent distances; |
381 | | * after which, we scale according to the selected distance scale factors. |
382 | | */ |
383 | 0 | dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; |
384 | 0 | dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; |
385 | 0 | dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; |
386 | 0 | boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2; |
387 | | |
388 | | /* Now scan remaining volume of box and compute population */ |
389 | 0 | ccount = 0; |
390 | 0 | for (c0 = c0min; c0 <= c0max; c0++) |
391 | 0 | for (c1 = c1min; c1 <= c1max; c1++) { |
392 | 0 | histp = &histogram[c0][c1][c2min]; |
393 | 0 | for (c2 = c2min; c2 <= c2max; c2++, histp++) |
394 | 0 | if (*histp != 0) { |
395 | 0 | ccount++; |
396 | 0 | } |
397 | 0 | } |
398 | 0 | boxp->colorcount = ccount; |
399 | 0 | } |
400 | | |
401 | | |
402 | | LOCAL(int) |
403 | | median_cut(j_decompress_ptr cinfo, boxptr boxlist, int numboxes, |
404 | | int desired_colors) |
405 | | /* Repeatedly select and split the largest box until we have enough boxes */ |
406 | 0 | { |
407 | 0 | int n, lb; |
408 | 0 | int c0, c1, c2, cmax; |
409 | 0 | register boxptr b1, b2; |
410 | |
|
411 | 0 | while (numboxes < desired_colors) { |
412 | | /* Select box to split. |
413 | | * Current algorithm: by population for first half, then by volume. |
414 | | */ |
415 | 0 | if (numboxes * 2 <= desired_colors) { |
416 | 0 | b1 = find_biggest_color_pop(boxlist, numboxes); |
417 | 0 | } else { |
418 | 0 | b1 = find_biggest_volume(boxlist, numboxes); |
419 | 0 | } |
420 | 0 | if (b1 == NULL) /* no splittable boxes left! */ |
421 | 0 | break; |
422 | 0 | b2 = &boxlist[numboxes]; /* where new box will go */ |
423 | | /* Copy the color bounds to the new box. */ |
424 | 0 | b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; |
425 | 0 | b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; |
426 | | /* Choose which axis to split the box on. |
427 | | * Current algorithm: longest scaled axis. |
428 | | * See notes in update_box about scaling distances. |
429 | | */ |
430 | 0 | c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; |
431 | 0 | c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; |
432 | 0 | c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; |
433 | | /* We want to break any ties in favor of green, then red, blue last. |
434 | | * This code does the right thing for R,G,B or B,G,R color orders only. |
435 | | */ |
436 | 0 | if (rgb_red[cinfo->out_color_space] == 0) { |
437 | 0 | cmax = c1; n = 1; |
438 | 0 | if (c0 > cmax) { cmax = c0; n = 0; } |
439 | 0 | if (c2 > cmax) { n = 2; } |
440 | 0 | } else { |
441 | 0 | cmax = c1; n = 1; |
442 | 0 | if (c2 > cmax) { cmax = c2; n = 2; } |
443 | 0 | if (c0 > cmax) { n = 0; } |
444 | 0 | } |
445 | | /* Choose split point along selected axis, and update box bounds. |
446 | | * Current algorithm: split at halfway point. |
447 | | * (Since the box has been shrunk to minimum volume, |
448 | | * any split will produce two nonempty subboxes.) |
449 | | * Note that lb value is max for lower box, so must be < old max. |
450 | | */ |
451 | 0 | switch (n) { |
452 | 0 | case 0: |
453 | 0 | lb = (b1->c0max + b1->c0min) / 2; |
454 | 0 | b1->c0max = lb; |
455 | 0 | b2->c0min = lb + 1; |
456 | 0 | break; |
457 | 0 | case 1: |
458 | 0 | lb = (b1->c1max + b1->c1min) / 2; |
459 | 0 | b1->c1max = lb; |
460 | 0 | b2->c1min = lb + 1; |
461 | 0 | break; |
462 | 0 | case 2: |
463 | 0 | lb = (b1->c2max + b1->c2min) / 2; |
464 | 0 | b1->c2max = lb; |
465 | 0 | b2->c2min = lb + 1; |
466 | 0 | break; |
467 | 0 | } |
468 | | /* Update stats for boxes */ |
469 | 0 | update_box(cinfo, b1); |
470 | 0 | update_box(cinfo, b2); |
471 | 0 | numboxes++; |
472 | 0 | } |
473 | 0 | return numboxes; |
474 | 0 | } |
475 | | |
476 | | |
477 | | LOCAL(void) |
478 | | compute_color(j_decompress_ptr cinfo, boxptr boxp, int icolor) |
479 | | /* Compute representative color for a box, put it in colormap[icolor] */ |
480 | 0 | { |
481 | | /* Current algorithm: mean weighted by pixels (not colors) */ |
482 | | /* Note it is important to get the rounding correct! */ |
483 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; |
484 | 0 | hist3d histogram = cquantize->histogram; |
485 | 0 | histptr histp; |
486 | 0 | int c0, c1, c2; |
487 | 0 | int c0min, c0max, c1min, c1max, c2min, c2max; |
488 | 0 | long count; |
489 | 0 | long total = 0; |
490 | 0 | long c0total = 0; |
491 | 0 | long c1total = 0; |
492 | 0 | long c2total = 0; |
493 | |
|
494 | 0 | c0min = boxp->c0min; c0max = boxp->c0max; |
495 | 0 | c1min = boxp->c1min; c1max = boxp->c1max; |
496 | 0 | c2min = boxp->c2min; c2max = boxp->c2max; |
497 | |
|
498 | 0 | for (c0 = c0min; c0 <= c0max; c0++) |
499 | 0 | for (c1 = c1min; c1 <= c1max; c1++) { |
500 | 0 | histp = &histogram[c0][c1][c2min]; |
501 | 0 | for (c2 = c2min; c2 <= c2max; c2++) { |
502 | 0 | if ((count = *histp++) != 0) { |
503 | 0 | total += count; |
504 | 0 | c0total += ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count; |
505 | 0 | c1total += ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count; |
506 | 0 | c2total += ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count; |
507 | 0 | } |
508 | 0 | } |
509 | 0 | } |
510 | |
|
511 | 0 | cinfo->colormap[0][icolor] = (JSAMPLE)((c0total + (total >> 1)) / total); |
512 | 0 | cinfo->colormap[1][icolor] = (JSAMPLE)((c1total + (total >> 1)) / total); |
513 | 0 | cinfo->colormap[2][icolor] = (JSAMPLE)((c2total + (total >> 1)) / total); |
514 | 0 | } |
515 | | |
516 | | |
517 | | LOCAL(void) |
518 | | select_colors(j_decompress_ptr cinfo, int desired_colors) |
519 | | /* Master routine for color selection */ |
520 | 0 | { |
521 | 0 | boxptr boxlist; |
522 | 0 | int numboxes; |
523 | 0 | int i; |
524 | | |
525 | | /* Allocate workspace for box list */ |
526 | 0 | boxlist = (boxptr)(*cinfo->mem->alloc_small) |
527 | 0 | ((j_common_ptr)cinfo, JPOOL_IMAGE, desired_colors * sizeof(box)); |
528 | | /* Initialize one box containing whole space */ |
529 | 0 | numboxes = 1; |
530 | 0 | boxlist[0].c0min = 0; |
531 | 0 | boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; |
532 | 0 | boxlist[0].c1min = 0; |
533 | 0 | boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; |
534 | 0 | boxlist[0].c2min = 0; |
535 | 0 | boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; |
536 | | /* Shrink it to actually-used volume and set its statistics */ |
537 | 0 | update_box(cinfo, &boxlist[0]); |
538 | | /* Perform median-cut to produce final box list */ |
539 | 0 | numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); |
540 | | /* Compute the representative color for each box, fill colormap */ |
541 | 0 | for (i = 0; i < numboxes; i++) |
542 | 0 | compute_color(cinfo, &boxlist[i], i); |
543 | 0 | cinfo->actual_number_of_colors = numboxes; |
544 | 0 | TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); |
545 | 0 | } |
546 | | |
547 | | |
548 | | /* |
549 | | * These routines are concerned with the time-critical task of mapping input |
550 | | * colors to the nearest color in the selected colormap. |
551 | | * |
552 | | * We re-use the histogram space as an "inverse color map", essentially a |
553 | | * cache for the results of nearest-color searches. All colors within a |
554 | | * histogram cell will be mapped to the same colormap entry, namely the one |
555 | | * closest to the cell's center. This may not be quite the closest entry to |
556 | | * the actual input color, but it's almost as good. A zero in the cache |
557 | | * indicates we haven't found the nearest color for that cell yet; the array |
558 | | * is cleared to zeroes before starting the mapping pass. When we find the |
559 | | * nearest color for a cell, its colormap index plus one is recorded in the |
560 | | * cache for future use. The pass2 scanning routines call fill_inverse_cmap |
561 | | * when they need to use an unfilled entry in the cache. |
562 | | * |
563 | | * Our method of efficiently finding nearest colors is based on the "locally |
564 | | * sorted search" idea described by Heckbert and on the incremental distance |
565 | | * calculation described by Spencer W. Thomas in chapter III.1 of Graphics |
566 | | * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that |
567 | | * the distances from a given colormap entry to each cell of the histogram can |
568 | | * be computed quickly using an incremental method: the differences between |
569 | | * distances to adjacent cells themselves differ by a constant. This allows a |
570 | | * fairly fast implementation of the "brute force" approach of computing the |
571 | | * distance from every colormap entry to every histogram cell. Unfortunately, |
572 | | * it needs a work array to hold the best-distance-so-far for each histogram |
573 | | * cell (because the inner loop has to be over cells, not colormap entries). |
574 | | * The work array elements have to be JLONGs, so the work array would need |
575 | | * 256Kb at our recommended precision. This is not feasible in DOS machines. |
576 | | * |
577 | | * To get around these problems, we apply Thomas' method to compute the |
578 | | * nearest colors for only the cells within a small subbox of the histogram. |
579 | | * The work array need be only as big as the subbox, so the memory usage |
580 | | * problem is solved. Furthermore, we need not fill subboxes that are never |
581 | | * referenced in pass2; many images use only part of the color gamut, so a |
582 | | * fair amount of work is saved. An additional advantage of this |
583 | | * approach is that we can apply Heckbert's locality criterion to quickly |
584 | | * eliminate colormap entries that are far away from the subbox; typically |
585 | | * three-fourths of the colormap entries are rejected by Heckbert's criterion, |
586 | | * and we need not compute their distances to individual cells in the subbox. |
587 | | * The speed of this approach is heavily influenced by the subbox size: too |
588 | | * small means too much overhead, too big loses because Heckbert's criterion |
589 | | * can't eliminate as many colormap entries. Empirically the best subbox |
590 | | * size seems to be about 1/512th of the histogram (1/8th in each direction). |
591 | | * |
592 | | * Thomas' article also describes a refined method which is asymptotically |
593 | | * faster than the brute-force method, but it is also far more complex and |
594 | | * cannot efficiently be applied to small subboxes. It is therefore not |
595 | | * useful for programs intended to be portable to DOS machines. On machines |
596 | | * with plenty of memory, filling the whole histogram in one shot with Thomas' |
597 | | * refined method might be faster than the present code --- but then again, |
598 | | * it might not be any faster, and it's certainly more complicated. |
599 | | */ |
600 | | |
601 | | |
602 | | /* log2(histogram cells in update box) for each axis; this can be adjusted */ |
603 | 0 | #define BOX_C0_LOG (HIST_C0_BITS - 3) |
604 | 0 | #define BOX_C1_LOG (HIST_C1_BITS - 3) |
605 | 0 | #define BOX_C2_LOG (HIST_C2_BITS - 3) |
606 | | |
607 | 0 | #define BOX_C0_ELEMS (1 << BOX_C0_LOG) /* # of hist cells in update box */ |
608 | 0 | #define BOX_C1_ELEMS (1 << BOX_C1_LOG) |
609 | 0 | #define BOX_C2_ELEMS (1 << BOX_C2_LOG) |
610 | | |
611 | 0 | #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) |
612 | 0 | #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) |
613 | 0 | #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) |
614 | | |
615 | | |
616 | | /* |
617 | | * The next three routines implement inverse colormap filling. They could |
618 | | * all be folded into one big routine, but splitting them up this way saves |
619 | | * some stack space (the mindist[] and bestdist[] arrays need not coexist) |
620 | | * and may allow some compilers to produce better code by registerizing more |
621 | | * inner-loop variables. |
622 | | */ |
623 | | |
624 | | LOCAL(int) |
625 | | find_nearby_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
626 | | JSAMPLE colorlist[]) |
627 | | /* Locate the colormap entries close enough to an update box to be candidates |
628 | | * for the nearest entry to some cell(s) in the update box. The update box |
629 | | * is specified by the center coordinates of its first cell. The number of |
630 | | * candidate colormap entries is returned, and their colormap indexes are |
631 | | * placed in colorlist[]. |
632 | | * This routine uses Heckbert's "locally sorted search" criterion to select |
633 | | * the colors that need further consideration. |
634 | | */ |
635 | 0 | { |
636 | 0 | int numcolors = cinfo->actual_number_of_colors; |
637 | 0 | int maxc0, maxc1, maxc2; |
638 | 0 | int centerc0, centerc1, centerc2; |
639 | 0 | int i, x, ncolors; |
640 | 0 | JLONG minmaxdist, min_dist, max_dist, tdist; |
641 | 0 | JLONG mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ |
642 | | |
643 | | /* Compute true coordinates of update box's upper corner and center. |
644 | | * Actually we compute the coordinates of the center of the upper-corner |
645 | | * histogram cell, which are the upper bounds of the volume we care about. |
646 | | * Note that since ">>" rounds down, the "center" values may be closer to |
647 | | * min than to max; hence comparisons to them must be "<=", not "<". |
648 | | */ |
649 | 0 | maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); |
650 | 0 | centerc0 = (minc0 + maxc0) >> 1; |
651 | 0 | maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); |
652 | 0 | centerc1 = (minc1 + maxc1) >> 1; |
653 | 0 | maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); |
654 | 0 | centerc2 = (minc2 + maxc2) >> 1; |
655 | | |
656 | | /* For each color in colormap, find: |
657 | | * 1. its minimum squared-distance to any point in the update box |
658 | | * (zero if color is within update box); |
659 | | * 2. its maximum squared-distance to any point in the update box. |
660 | | * Both of these can be found by considering only the corners of the box. |
661 | | * We save the minimum distance for each color in mindist[]; |
662 | | * only the smallest maximum distance is of interest. |
663 | | */ |
664 | 0 | minmaxdist = 0x7FFFFFFFL; |
665 | |
|
666 | 0 | for (i = 0; i < numcolors; i++) { |
667 | | /* We compute the squared-c0-distance term, then add in the other two. */ |
668 | 0 | x = cinfo->colormap[0][i]; |
669 | 0 | if (x < minc0) { |
670 | 0 | tdist = (x - minc0) * C0_SCALE; |
671 | 0 | min_dist = tdist * tdist; |
672 | 0 | tdist = (x - maxc0) * C0_SCALE; |
673 | 0 | max_dist = tdist * tdist; |
674 | 0 | } else if (x > maxc0) { |
675 | 0 | tdist = (x - maxc0) * C0_SCALE; |
676 | 0 | min_dist = tdist * tdist; |
677 | 0 | tdist = (x - minc0) * C0_SCALE; |
678 | 0 | max_dist = tdist * tdist; |
679 | 0 | } else { |
680 | | /* within cell range so no contribution to min_dist */ |
681 | 0 | min_dist = 0; |
682 | 0 | if (x <= centerc0) { |
683 | 0 | tdist = (x - maxc0) * C0_SCALE; |
684 | 0 | max_dist = tdist * tdist; |
685 | 0 | } else { |
686 | 0 | tdist = (x - minc0) * C0_SCALE; |
687 | 0 | max_dist = tdist * tdist; |
688 | 0 | } |
689 | 0 | } |
690 | |
|
691 | 0 | x = cinfo->colormap[1][i]; |
692 | 0 | if (x < minc1) { |
693 | 0 | tdist = (x - minc1) * C1_SCALE; |
694 | 0 | min_dist += tdist * tdist; |
695 | 0 | tdist = (x - maxc1) * C1_SCALE; |
696 | 0 | max_dist += tdist * tdist; |
697 | 0 | } else if (x > maxc1) { |
698 | 0 | tdist = (x - maxc1) * C1_SCALE; |
699 | 0 | min_dist += tdist * tdist; |
700 | 0 | tdist = (x - minc1) * C1_SCALE; |
701 | 0 | max_dist += tdist * tdist; |
702 | 0 | } else { |
703 | | /* within cell range so no contribution to min_dist */ |
704 | 0 | if (x <= centerc1) { |
705 | 0 | tdist = (x - maxc1) * C1_SCALE; |
706 | 0 | max_dist += tdist * tdist; |
707 | 0 | } else { |
708 | 0 | tdist = (x - minc1) * C1_SCALE; |
709 | 0 | max_dist += tdist * tdist; |
710 | 0 | } |
711 | 0 | } |
712 | |
|
713 | 0 | x = cinfo->colormap[2][i]; |
714 | 0 | if (x < minc2) { |
715 | 0 | tdist = (x - minc2) * C2_SCALE; |
716 | 0 | min_dist += tdist * tdist; |
717 | 0 | tdist = (x - maxc2) * C2_SCALE; |
718 | 0 | max_dist += tdist * tdist; |
719 | 0 | } else if (x > maxc2) { |
720 | 0 | tdist = (x - maxc2) * C2_SCALE; |
721 | 0 | min_dist += tdist * tdist; |
722 | 0 | tdist = (x - minc2) * C2_SCALE; |
723 | 0 | max_dist += tdist * tdist; |
724 | 0 | } else { |
725 | | /* within cell range so no contribution to min_dist */ |
726 | 0 | if (x <= centerc2) { |
727 | 0 | tdist = (x - maxc2) * C2_SCALE; |
728 | 0 | max_dist += tdist * tdist; |
729 | 0 | } else { |
730 | 0 | tdist = (x - minc2) * C2_SCALE; |
731 | 0 | max_dist += tdist * tdist; |
732 | 0 | } |
733 | 0 | } |
734 | |
|
735 | 0 | mindist[i] = min_dist; /* save away the results */ |
736 | 0 | if (max_dist < minmaxdist) |
737 | 0 | minmaxdist = max_dist; |
738 | 0 | } |
739 | | |
740 | | /* Now we know that no cell in the update box is more than minmaxdist |
741 | | * away from some colormap entry. Therefore, only colors that are |
742 | | * within minmaxdist of some part of the box need be considered. |
743 | | */ |
744 | 0 | ncolors = 0; |
745 | 0 | for (i = 0; i < numcolors; i++) { |
746 | 0 | if (mindist[i] <= minmaxdist) |
747 | 0 | colorlist[ncolors++] = (JSAMPLE)i; |
748 | 0 | } |
749 | 0 | return ncolors; |
750 | 0 | } |
751 | | |
752 | | |
753 | | LOCAL(void) |
754 | | find_best_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
755 | | int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) |
756 | | /* Find the closest colormap entry for each cell in the update box, |
757 | | * given the list of candidate colors prepared by find_nearby_colors. |
758 | | * Return the indexes of the closest entries in the bestcolor[] array. |
759 | | * This routine uses Thomas' incremental distance calculation method to |
760 | | * find the distance from a colormap entry to successive cells in the box. |
761 | | */ |
762 | 0 | { |
763 | 0 | int ic0, ic1, ic2; |
764 | 0 | int i, icolor; |
765 | 0 | register JLONG *bptr; /* pointer into bestdist[] array */ |
766 | 0 | JSAMPLE *cptr; /* pointer into bestcolor[] array */ |
767 | 0 | JLONG dist0, dist1; /* initial distance values */ |
768 | 0 | register JLONG dist2; /* current distance in inner loop */ |
769 | 0 | JLONG xx0, xx1; /* distance increments */ |
770 | 0 | register JLONG xx2; |
771 | 0 | JLONG inc0, inc1, inc2; /* initial values for increments */ |
772 | | /* This array holds the distance to the nearest-so-far color for each cell */ |
773 | 0 | JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
774 | | |
775 | | /* Initialize best-distance for each cell of the update box */ |
776 | 0 | bptr = bestdist; |
777 | 0 | for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--) |
778 | 0 | *bptr++ = 0x7FFFFFFFL; |
779 | | |
780 | | /* For each color selected by find_nearby_colors, |
781 | | * compute its distance to the center of each cell in the box. |
782 | | * If that's less than best-so-far, update best distance and color number. |
783 | | */ |
784 | | |
785 | | /* Nominal steps between cell centers ("x" in Thomas article) */ |
786 | 0 | #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) |
787 | 0 | #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) |
788 | 0 | #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) |
789 | |
|
790 | 0 | for (i = 0; i < numcolors; i++) { |
791 | 0 | icolor = colorlist[i]; |
792 | | /* Compute (square of) distance from minc0/c1/c2 to this color */ |
793 | 0 | inc0 = (minc0 - cinfo->colormap[0][icolor]) * C0_SCALE; |
794 | 0 | dist0 = inc0 * inc0; |
795 | 0 | inc1 = (minc1 - cinfo->colormap[1][icolor]) * C1_SCALE; |
796 | 0 | dist0 += inc1 * inc1; |
797 | 0 | inc2 = (minc2 - cinfo->colormap[2][icolor]) * C2_SCALE; |
798 | 0 | dist0 += inc2 * inc2; |
799 | | /* Form the initial difference increments */ |
800 | 0 | inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; |
801 | 0 | inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; |
802 | 0 | inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; |
803 | | /* Now loop over all cells in box, updating distance per Thomas method */ |
804 | 0 | bptr = bestdist; |
805 | 0 | cptr = bestcolor; |
806 | 0 | xx0 = inc0; |
807 | 0 | for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--) { |
808 | 0 | dist1 = dist0; |
809 | 0 | xx1 = inc1; |
810 | 0 | for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--) { |
811 | 0 | dist2 = dist1; |
812 | 0 | xx2 = inc2; |
813 | 0 | for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--) { |
814 | 0 | if (dist2 < *bptr) { |
815 | 0 | *bptr = dist2; |
816 | 0 | *cptr = (JSAMPLE)icolor; |
817 | 0 | } |
818 | 0 | dist2 += xx2; |
819 | 0 | xx2 += 2 * STEP_C2 * STEP_C2; |
820 | 0 | bptr++; |
821 | 0 | cptr++; |
822 | 0 | } |
823 | 0 | dist1 += xx1; |
824 | 0 | xx1 += 2 * STEP_C1 * STEP_C1; |
825 | 0 | } |
826 | 0 | dist0 += xx0; |
827 | 0 | xx0 += 2 * STEP_C0 * STEP_C0; |
828 | 0 | } |
829 | 0 | } |
830 | 0 | } |
831 | | |
832 | | |
833 | | LOCAL(void) |
834 | | fill_inverse_cmap(j_decompress_ptr cinfo, int c0, int c1, int c2) |
835 | | /* Fill the inverse-colormap entries in the update box that contains */ |
836 | | /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ |
837 | | /* we can fill as many others as we wish.) */ |
838 | 0 | { |
839 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; |
840 | 0 | hist3d histogram = cquantize->histogram; |
841 | 0 | int minc0, minc1, minc2; /* lower left corner of update box */ |
842 | 0 | int ic0, ic1, ic2; |
843 | 0 | register JSAMPLE *cptr; /* pointer into bestcolor[] array */ |
844 | 0 | register histptr cachep; /* pointer into main cache array */ |
845 | | /* This array lists the candidate colormap indexes. */ |
846 | 0 | JSAMPLE colorlist[MAXNUMCOLORS]; |
847 | 0 | int numcolors; /* number of candidate colors */ |
848 | | /* This array holds the actually closest colormap index for each cell. */ |
849 | 0 | JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
850 | | |
851 | | /* Convert cell coordinates to update box ID */ |
852 | 0 | c0 >>= BOX_C0_LOG; |
853 | 0 | c1 >>= BOX_C1_LOG; |
854 | 0 | c2 >>= BOX_C2_LOG; |
855 | | |
856 | | /* Compute true coordinates of update box's origin corner. |
857 | | * Actually we compute the coordinates of the center of the corner |
858 | | * histogram cell, which are the lower bounds of the volume we care about. |
859 | | */ |
860 | 0 | minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); |
861 | 0 | minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); |
862 | 0 | minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); |
863 | | |
864 | | /* Determine which colormap entries are close enough to be candidates |
865 | | * for the nearest entry to some cell in the update box. |
866 | | */ |
867 | 0 | numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); |
868 | | |
869 | | /* Determine the actually nearest colors. */ |
870 | 0 | find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, |
871 | 0 | bestcolor); |
872 | | |
873 | | /* Save the best color numbers (plus 1) in the main cache array */ |
874 | 0 | c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ |
875 | 0 | c1 <<= BOX_C1_LOG; |
876 | 0 | c2 <<= BOX_C2_LOG; |
877 | 0 | cptr = bestcolor; |
878 | 0 | for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { |
879 | 0 | for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { |
880 | 0 | cachep = &histogram[c0 + ic0][c1 + ic1][c2]; |
881 | 0 | for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { |
882 | 0 | *cachep++ = (histcell)((*cptr++) + 1); |
883 | 0 | } |
884 | 0 | } |
885 | 0 | } |
886 | 0 | } |
887 | | |
888 | | |
889 | | /* |
890 | | * Map some rows of pixels to the output colormapped representation. |
891 | | */ |
892 | | |
893 | | METHODDEF(void) |
894 | | pass2_no_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
895 | | JSAMPARRAY output_buf, int num_rows) |
896 | | /* This version performs no dithering */ |
897 | 0 | { |
898 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; |
899 | 0 | hist3d histogram = cquantize->histogram; |
900 | 0 | register JSAMPROW inptr, outptr; |
901 | 0 | register histptr cachep; |
902 | 0 | register int c0, c1, c2; |
903 | 0 | int row; |
904 | 0 | JDIMENSION col; |
905 | 0 | JDIMENSION width = cinfo->output_width; |
906 | |
|
907 | 0 | for (row = 0; row < num_rows; row++) { |
908 | 0 | inptr = input_buf[row]; |
909 | 0 | outptr = output_buf[row]; |
910 | 0 | for (col = width; col > 0; col--) { |
911 | | /* get pixel value and index into the cache */ |
912 | 0 | c0 = (*inptr++) >> C0_SHIFT; |
913 | 0 | c1 = (*inptr++) >> C1_SHIFT; |
914 | 0 | c2 = (*inptr++) >> C2_SHIFT; |
915 | 0 | cachep = &histogram[c0][c1][c2]; |
916 | | /* If we have not seen this color before, find nearest colormap entry */ |
917 | | /* and update the cache */ |
918 | 0 | if (*cachep == 0) |
919 | 0 | fill_inverse_cmap(cinfo, c0, c1, c2); |
920 | | /* Now emit the colormap index for this cell */ |
921 | 0 | *outptr++ = (JSAMPLE)(*cachep - 1); |
922 | 0 | } |
923 | 0 | } |
924 | 0 | } |
925 | | |
926 | | |
927 | | METHODDEF(void) |
928 | | pass2_fs_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
929 | | JSAMPARRAY output_buf, int num_rows) |
930 | | /* This version performs Floyd-Steinberg dithering */ |
931 | 0 | { |
932 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; |
933 | 0 | hist3d histogram = cquantize->histogram; |
934 | 0 | register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ |
935 | 0 | LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ |
936 | 0 | LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ |
937 | 0 | register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
938 | 0 | JSAMPROW inptr; /* => current input pixel */ |
939 | 0 | JSAMPROW outptr; /* => current output pixel */ |
940 | 0 | histptr cachep; |
941 | 0 | int dir; /* +1 or -1 depending on direction */ |
942 | 0 | int dir3; /* 3*dir, for advancing inptr & errorptr */ |
943 | 0 | int row; |
944 | 0 | JDIMENSION col; |
945 | 0 | JDIMENSION width = cinfo->output_width; |
946 | 0 | JSAMPLE *range_limit = cinfo->sample_range_limit; |
947 | 0 | int *error_limit = cquantize->error_limiter; |
948 | 0 | JSAMPROW colormap0 = cinfo->colormap[0]; |
949 | 0 | JSAMPROW colormap1 = cinfo->colormap[1]; |
950 | 0 | JSAMPROW colormap2 = cinfo->colormap[2]; |
951 | 0 | SHIFT_TEMPS |
952 | |
|
953 | 0 | for (row = 0; row < num_rows; row++) { |
954 | 0 | inptr = input_buf[row]; |
955 | 0 | outptr = output_buf[row]; |
956 | 0 | if (cquantize->on_odd_row) { |
957 | | /* work right to left in this row */ |
958 | 0 | inptr += (width - 1) * 3; /* so point to rightmost pixel */ |
959 | 0 | outptr += width - 1; |
960 | 0 | dir = -1; |
961 | 0 | dir3 = -3; |
962 | 0 | errorptr = cquantize->fserrors + (width + 1) * 3; /* => entry after last column */ |
963 | 0 | cquantize->on_odd_row = FALSE; /* flip for next time */ |
964 | 0 | } else { |
965 | | /* work left to right in this row */ |
966 | 0 | dir = 1; |
967 | 0 | dir3 = 3; |
968 | 0 | errorptr = cquantize->fserrors; /* => entry before first real column */ |
969 | 0 | cquantize->on_odd_row = TRUE; /* flip for next time */ |
970 | 0 | } |
971 | | /* Preset error values: no error propagated to first pixel from left */ |
972 | 0 | cur0 = cur1 = cur2 = 0; |
973 | | /* and no error propagated to row below yet */ |
974 | 0 | belowerr0 = belowerr1 = belowerr2 = 0; |
975 | 0 | bpreverr0 = bpreverr1 = bpreverr2 = 0; |
976 | |
|
977 | 0 | for (col = width; col > 0; col--) { |
978 | | /* curN holds the error propagated from the previous pixel on the |
979 | | * current line. Add the error propagated from the previous line |
980 | | * to form the complete error correction term for this pixel, and |
981 | | * round the error term (which is expressed * 16) to an integer. |
982 | | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
983 | | * for either sign of the error value. |
984 | | * Note: errorptr points to *previous* column's array entry. |
985 | | */ |
986 | 0 | cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3 + 0] + 8, 4); |
987 | 0 | cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3 + 1] + 8, 4); |
988 | 0 | cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3 + 2] + 8, 4); |
989 | | /* Limit the error using transfer function set by init_error_limit. |
990 | | * See comments with init_error_limit for rationale. |
991 | | */ |
992 | 0 | cur0 = error_limit[cur0]; |
993 | 0 | cur1 = error_limit[cur1]; |
994 | 0 | cur2 = error_limit[cur2]; |
995 | | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. |
996 | | * The maximum error is +- MAXJSAMPLE (or less with error limiting); |
997 | | * this sets the required size of the range_limit array. |
998 | | */ |
999 | 0 | cur0 += inptr[0]; |
1000 | 0 | cur1 += inptr[1]; |
1001 | 0 | cur2 += inptr[2]; |
1002 | 0 | cur0 = range_limit[cur0]; |
1003 | 0 | cur1 = range_limit[cur1]; |
1004 | 0 | cur2 = range_limit[cur2]; |
1005 | | /* Index into the cache with adjusted pixel value */ |
1006 | 0 | cachep = |
1007 | 0 | &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT]; |
1008 | | /* If we have not seen this color before, find nearest colormap */ |
1009 | | /* entry and update the cache */ |
1010 | 0 | if (*cachep == 0) |
1011 | 0 | fill_inverse_cmap(cinfo, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT, |
1012 | 0 | cur2 >> C2_SHIFT); |
1013 | | /* Now emit the colormap index for this cell */ |
1014 | 0 | { |
1015 | 0 | register int pixcode = *cachep - 1; |
1016 | 0 | *outptr = (JSAMPLE)pixcode; |
1017 | | /* Compute representation error for this pixel */ |
1018 | 0 | cur0 -= colormap0[pixcode]; |
1019 | 0 | cur1 -= colormap1[pixcode]; |
1020 | 0 | cur2 -= colormap2[pixcode]; |
1021 | 0 | } |
1022 | | /* Compute error fractions to be propagated to adjacent pixels. |
1023 | | * Add these into the running sums, and simultaneously shift the |
1024 | | * next-line error sums left by 1 column. |
1025 | | */ |
1026 | 0 | { |
1027 | 0 | register LOCFSERROR bnexterr; |
1028 | |
|
1029 | 0 | bnexterr = cur0; /* Process component 0 */ |
1030 | 0 | errorptr[0] = (FSERROR)(bpreverr0 + cur0 * 3); |
1031 | 0 | bpreverr0 = belowerr0 + cur0 * 5; |
1032 | 0 | belowerr0 = bnexterr; |
1033 | 0 | cur0 *= 7; |
1034 | 0 | bnexterr = cur1; /* Process component 1 */ |
1035 | 0 | errorptr[1] = (FSERROR)(bpreverr1 + cur1 * 3); |
1036 | 0 | bpreverr1 = belowerr1 + cur1 * 5; |
1037 | 0 | belowerr1 = bnexterr; |
1038 | 0 | cur1 *= 7; |
1039 | 0 | bnexterr = cur2; /* Process component 2 */ |
1040 | 0 | errorptr[2] = (FSERROR)(bpreverr2 + cur2 * 3); |
1041 | 0 | bpreverr2 = belowerr2 + cur2 * 5; |
1042 | 0 | belowerr2 = bnexterr; |
1043 | 0 | cur2 *= 7; |
1044 | 0 | } |
1045 | | /* At this point curN contains the 7/16 error value to be propagated |
1046 | | * to the next pixel on the current line, and all the errors for the |
1047 | | * next line have been shifted over. We are therefore ready to move on. |
1048 | | */ |
1049 | 0 | inptr += dir3; /* Advance pixel pointers to next column */ |
1050 | 0 | outptr += dir; |
1051 | 0 | errorptr += dir3; /* advance errorptr to current column */ |
1052 | 0 | } |
1053 | | /* Post-loop cleanup: we must unload the final error values into the |
1054 | | * final fserrors[] entry. Note we need not unload belowerrN because |
1055 | | * it is for the dummy column before or after the actual array. |
1056 | | */ |
1057 | 0 | errorptr[0] = (FSERROR)bpreverr0; /* unload prev errs into array */ |
1058 | 0 | errorptr[1] = (FSERROR)bpreverr1; |
1059 | 0 | errorptr[2] = (FSERROR)bpreverr2; |
1060 | 0 | } |
1061 | 0 | } |
1062 | | |
1063 | | |
1064 | | /* |
1065 | | * Initialize the error-limiting transfer function (lookup table). |
1066 | | * The raw F-S error computation can potentially compute error values of up to |
1067 | | * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be |
1068 | | * much less, otherwise obviously wrong pixels will be created. (Typical |
1069 | | * effects include weird fringes at color-area boundaries, isolated bright |
1070 | | * pixels in a dark area, etc.) The standard advice for avoiding this problem |
1071 | | * is to ensure that the "corners" of the color cube are allocated as output |
1072 | | * colors; then repeated errors in the same direction cannot cause cascading |
1073 | | * error buildup. However, that only prevents the error from getting |
1074 | | * completely out of hand; Aaron Giles reports that error limiting improves |
1075 | | * the results even with corner colors allocated. |
1076 | | * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty |
1077 | | * well, but the smoother transfer function used below is even better. Thanks |
1078 | | * to Aaron Giles for this idea. |
1079 | | */ |
1080 | | |
1081 | | LOCAL(void) |
1082 | | init_error_limit(j_decompress_ptr cinfo) |
1083 | | /* Allocate and fill in the error_limiter table */ |
1084 | 0 | { |
1085 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; |
1086 | 0 | int *table; |
1087 | 0 | int in, out; |
1088 | |
|
1089 | 0 | table = (int *)(*cinfo->mem->alloc_small) |
1090 | 0 | ((j_common_ptr)cinfo, JPOOL_IMAGE, (MAXJSAMPLE * 2 + 1) * sizeof(int)); |
1091 | 0 | table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ |
1092 | 0 | cquantize->error_limiter = table; |
1093 | |
|
1094 | 0 | #define STEPSIZE ((MAXJSAMPLE + 1) / 16) |
1095 | | /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ |
1096 | 0 | out = 0; |
1097 | 0 | for (in = 0; in < STEPSIZE; in++, out++) { |
1098 | 0 | table[in] = out; table[-in] = -out; |
1099 | 0 | } |
1100 | | /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ |
1101 | 0 | for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1) { |
1102 | 0 | table[in] = out; table[-in] = -out; |
1103 | 0 | } |
1104 | | /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ |
1105 | 0 | for (; in <= MAXJSAMPLE; in++) { |
1106 | 0 | table[in] = out; table[-in] = -out; |
1107 | 0 | } |
1108 | 0 | #undef STEPSIZE |
1109 | 0 | } |
1110 | | |
1111 | | |
1112 | | /* |
1113 | | * Finish up at the end of each pass. |
1114 | | */ |
1115 | | |
1116 | | METHODDEF(void) |
1117 | | finish_pass1(j_decompress_ptr cinfo) |
1118 | 0 | { |
1119 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; |
1120 | | |
1121 | | /* Select the representative colors and fill in cinfo->colormap */ |
1122 | 0 | cinfo->colormap = cquantize->sv_colormap; |
1123 | 0 | select_colors(cinfo, cquantize->desired); |
1124 | | /* Force next pass to zero the color index table */ |
1125 | 0 | cquantize->needs_zeroed = TRUE; |
1126 | 0 | } |
1127 | | |
1128 | | |
1129 | | METHODDEF(void) |
1130 | | finish_pass2(j_decompress_ptr cinfo) |
1131 | 0 | { |
1132 | | /* no work */ |
1133 | 0 | } |
1134 | | |
1135 | | |
1136 | | /* |
1137 | | * Initialize for each processing pass. |
1138 | | */ |
1139 | | |
1140 | | METHODDEF(void) |
1141 | | start_pass_2_quant(j_decompress_ptr cinfo, boolean is_pre_scan) |
1142 | 0 | { |
1143 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; |
1144 | 0 | hist3d histogram = cquantize->histogram; |
1145 | 0 | int i; |
1146 | | |
1147 | | /* Only F-S dithering or no dithering is supported. */ |
1148 | | /* If user asks for ordered dither, give them F-S. */ |
1149 | 0 | if (cinfo->dither_mode != JDITHER_NONE) |
1150 | 0 | cinfo->dither_mode = JDITHER_FS; |
1151 | |
|
1152 | 0 | if (is_pre_scan) { |
1153 | | /* Set up method pointers */ |
1154 | 0 | cquantize->pub.color_quantize = prescan_quantize; |
1155 | 0 | cquantize->pub.finish_pass = finish_pass1; |
1156 | 0 | cquantize->needs_zeroed = TRUE; /* Always zero histogram */ |
1157 | 0 | } else { |
1158 | | /* Set up method pointers */ |
1159 | 0 | if (cinfo->dither_mode == JDITHER_FS) |
1160 | 0 | cquantize->pub.color_quantize = pass2_fs_dither; |
1161 | 0 | else |
1162 | 0 | cquantize->pub.color_quantize = pass2_no_dither; |
1163 | 0 | cquantize->pub.finish_pass = finish_pass2; |
1164 | | |
1165 | | /* Make sure color count is acceptable */ |
1166 | 0 | i = cinfo->actual_number_of_colors; |
1167 | 0 | if (i < 1) |
1168 | 0 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); |
1169 | 0 | if (i > MAXNUMCOLORS) |
1170 | 0 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); |
1171 | |
|
1172 | 0 | if (cinfo->dither_mode == JDITHER_FS) { |
1173 | 0 | size_t arraysize = |
1174 | 0 | (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR))); |
1175 | | /* Allocate Floyd-Steinberg workspace if we didn't already. */ |
1176 | 0 | if (cquantize->fserrors == NULL) |
1177 | 0 | cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large) |
1178 | 0 | ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize); |
1179 | | /* Initialize the propagated errors to zero. */ |
1180 | 0 | jzero_far((void *)cquantize->fserrors, arraysize); |
1181 | | /* Make the error-limit table if we didn't already. */ |
1182 | 0 | if (cquantize->error_limiter == NULL) |
1183 | 0 | init_error_limit(cinfo); |
1184 | 0 | cquantize->on_odd_row = FALSE; |
1185 | 0 | } |
1186 | |
|
1187 | 0 | } |
1188 | | /* Zero the histogram or inverse color map, if necessary */ |
1189 | 0 | if (cquantize->needs_zeroed) { |
1190 | 0 | for (i = 0; i < HIST_C0_ELEMS; i++) { |
1191 | 0 | jzero_far((void *)histogram[i], |
1192 | 0 | HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell)); |
1193 | 0 | } |
1194 | 0 | cquantize->needs_zeroed = FALSE; |
1195 | 0 | } |
1196 | 0 | } |
1197 | | |
1198 | | |
1199 | | /* |
1200 | | * Switch to a new external colormap between output passes. |
1201 | | */ |
1202 | | |
1203 | | METHODDEF(void) |
1204 | | new_color_map_2_quant(j_decompress_ptr cinfo) |
1205 | 0 | { |
1206 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; |
1207 | | |
1208 | | /* Reset the inverse color map */ |
1209 | 0 | cquantize->needs_zeroed = TRUE; |
1210 | 0 | } |
1211 | | |
1212 | | |
1213 | | /* |
1214 | | * Module initialization routine for 2-pass color quantization. |
1215 | | */ |
1216 | | |
1217 | | GLOBAL(void) |
1218 | | jinit_2pass_quantizer(j_decompress_ptr cinfo) |
1219 | 0 | { |
1220 | 0 | my_cquantize_ptr cquantize; |
1221 | 0 | int i; |
1222 | |
|
1223 | 0 | cquantize = (my_cquantize_ptr) |
1224 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
1225 | 0 | sizeof(my_cquantizer)); |
1226 | 0 | cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize; |
1227 | 0 | cquantize->pub.start_pass = start_pass_2_quant; |
1228 | 0 | cquantize->pub.new_color_map = new_color_map_2_quant; |
1229 | 0 | cquantize->fserrors = NULL; /* flag optional arrays not allocated */ |
1230 | 0 | cquantize->error_limiter = NULL; |
1231 | | |
1232 | | /* Make sure jdmaster didn't give me a case I can't handle */ |
1233 | 0 | if (cinfo->out_color_components != 3) |
1234 | 0 | ERREXIT(cinfo, JERR_NOTIMPL); |
1235 | | |
1236 | | /* Allocate the histogram/inverse colormap storage */ |
1237 | 0 | cquantize->histogram = (hist3d)(*cinfo->mem->alloc_small) |
1238 | 0 | ((j_common_ptr)cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d)); |
1239 | 0 | for (i = 0; i < HIST_C0_ELEMS; i++) { |
1240 | 0 | cquantize->histogram[i] = (hist2d)(*cinfo->mem->alloc_large) |
1241 | 0 | ((j_common_ptr)cinfo, JPOOL_IMAGE, |
1242 | 0 | HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell)); |
1243 | 0 | } |
1244 | 0 | cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ |
1245 | | |
1246 | | /* Allocate storage for the completed colormap, if required. |
1247 | | * We do this now since it may affect the memory manager's space |
1248 | | * calculations. |
1249 | | */ |
1250 | 0 | if (cinfo->enable_2pass_quant) { |
1251 | | /* Make sure color count is acceptable */ |
1252 | 0 | int desired = cinfo->desired_number_of_colors; |
1253 | | /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ |
1254 | 0 | if (desired < 8) |
1255 | 0 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); |
1256 | | /* Make sure colormap indexes can be represented by JSAMPLEs */ |
1257 | 0 | if (desired > MAXNUMCOLORS) |
1258 | 0 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); |
1259 | 0 | cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) |
1260 | 0 | ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)desired, (JDIMENSION)3); |
1261 | 0 | cquantize->desired = desired; |
1262 | 0 | } else |
1263 | 0 | cquantize->sv_colormap = NULL; |
1264 | | |
1265 | | /* Only F-S dithering or no dithering is supported. */ |
1266 | | /* If user asks for ordered dither, give them F-S. */ |
1267 | 0 | if (cinfo->dither_mode != JDITHER_NONE) |
1268 | 0 | cinfo->dither_mode = JDITHER_FS; |
1269 | | |
1270 | | /* Allocate Floyd-Steinberg workspace if necessary. |
1271 | | * This isn't really needed until pass 2, but again it may affect the memory |
1272 | | * manager's space calculations. Although we will cope with a later change |
1273 | | * in dither_mode, we do not promise to honor max_memory_to_use if |
1274 | | * dither_mode changes. |
1275 | | */ |
1276 | 0 | if (cinfo->dither_mode == JDITHER_FS) { |
1277 | 0 | cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large) |
1278 | 0 | ((j_common_ptr)cinfo, JPOOL_IMAGE, |
1279 | 0 | (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR)))); |
1280 | | /* Might as well create the error-limiting table too. */ |
1281 | 0 | init_error_limit(cinfo); |
1282 | 0 | } |
1283 | 0 | } |
1284 | | |
1285 | | #endif /* QUANT_2PASS_SUPPORTED */ |