Coverage Report

Created: 2022-11-14 06:33

/src/zlib/deflate.c
Line
Count
Source (jump to first uncovered line)
1
/* deflate.c -- compress data using the deflation algorithm
2
 * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
6
/*
7
 *  ALGORITHM
8
 *
9
 *      The "deflation" process depends on being able to identify portions
10
 *      of the input text which are identical to earlier input (within a
11
 *      sliding window trailing behind the input currently being processed).
12
 *
13
 *      The most straightforward technique turns out to be the fastest for
14
 *      most input files: try all possible matches and select the longest.
15
 *      The key feature of this algorithm is that insertions into the string
16
 *      dictionary are very simple and thus fast, and deletions are avoided
17
 *      completely. Insertions are performed at each input character, whereas
18
 *      string matches are performed only when the previous match ends. So it
19
 *      is preferable to spend more time in matches to allow very fast string
20
 *      insertions and avoid deletions. The matching algorithm for small
21
 *      strings is inspired from that of Rabin & Karp. A brute force approach
22
 *      is used to find longer strings when a small match has been found.
23
 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24
 *      (by Leonid Broukhis).
25
 *         A previous version of this file used a more sophisticated algorithm
26
 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27
 *      time, but has a larger average cost, uses more memory and is patented.
28
 *      However the F&G algorithm may be faster for some highly redundant
29
 *      files if the parameter max_chain_length (described below) is too large.
30
 *
31
 *  ACKNOWLEDGEMENTS
32
 *
33
 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34
 *      I found it in 'freeze' written by Leonid Broukhis.
35
 *      Thanks to many people for bug reports and testing.
36
 *
37
 *  REFERENCES
38
 *
39
 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40
 *      Available in http://tools.ietf.org/html/rfc1951
41
 *
42
 *      A description of the Rabin and Karp algorithm is given in the book
43
 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44
 *
45
 *      Fiala,E.R., and Greene,D.H.
46
 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47
 *
48
 */
49
50
/* @(#) $Id$ */
51
52
#include "deflate.h"
53
54
const char deflate_copyright[] =
55
   " deflate 1.2.13 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
56
/*
57
  If you use the zlib library in a product, an acknowledgment is welcome
58
  in the documentation of your product. If for some reason you cannot
59
  include such an acknowledgment, I would appreciate that you keep this
60
  copyright string in the executable of your product.
61
 */
62
63
/* ===========================================================================
64
 *  Function prototypes.
65
 */
66
typedef enum {
67
    need_more,      /* block not completed, need more input or more output */
68
    block_done,     /* block flush performed */
69
    finish_started, /* finish started, need only more output at next deflate */
70
    finish_done     /* finish done, accept no more input or output */
71
} block_state;
72
73
typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74
/* Compression function. Returns the block state after the call. */
75
76
local int deflateStateCheck      OF((z_streamp strm));
77
local void slide_hash     OF((deflate_state *s));
78
local void fill_window    OF((deflate_state *s));
79
local block_state deflate_stored OF((deflate_state *s, int flush));
80
local block_state deflate_fast   OF((deflate_state *s, int flush));
81
#ifndef FASTEST
82
local block_state deflate_slow   OF((deflate_state *s, int flush));
83
#endif
84
local block_state deflate_rle    OF((deflate_state *s, int flush));
85
local block_state deflate_huff   OF((deflate_state *s, int flush));
86
local void lm_init        OF((deflate_state *s));
87
local void putShortMSB    OF((deflate_state *s, uInt b));
88
local void flush_pending  OF((z_streamp strm));
89
local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90
local uInt longest_match  OF((deflate_state *s, IPos cur_match));
91
92
#ifdef ZLIB_DEBUG
93
local  void check_match OF((deflate_state *s, IPos start, IPos match,
94
                            int length));
95
#endif
96
97
/* ===========================================================================
98
 * Local data
99
 */
100
101
0
#define NIL 0
102
/* Tail of hash chains */
103
104
#ifndef TOO_FAR
105
0
#  define TOO_FAR 4096
106
#endif
107
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
108
109
/* Values for max_lazy_match, good_match and max_chain_length, depending on
110
 * the desired pack level (0..9). The values given below have been tuned to
111
 * exclude worst case performance for pathological files. Better values may be
112
 * found for specific files.
113
 */
114
typedef struct config_s {
115
   ush good_length; /* reduce lazy search above this match length */
116
   ush max_lazy;    /* do not perform lazy search above this match length */
117
   ush nice_length; /* quit search above this match length */
118
   ush max_chain;
119
   compress_func func;
120
} config;
121
122
#ifdef FASTEST
123
local const config configuration_table[2] = {
124
/*      good lazy nice chain */
125
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
126
/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
127
#else
128
local const config configuration_table[10] = {
129
/*      good lazy nice chain */
130
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
131
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
132
/* 2 */ {4,    5, 16,    8, deflate_fast},
133
/* 3 */ {4,    6, 32,   32, deflate_fast},
134
135
/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
136
/* 5 */ {8,   16, 32,   32, deflate_slow},
137
/* 6 */ {8,   16, 128, 128, deflate_slow},
138
/* 7 */ {8,   32, 128, 256, deflate_slow},
139
/* 8 */ {32, 128, 258, 1024, deflate_slow},
140
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
141
#endif
142
143
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
144
 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
145
 * meaning.
146
 */
147
148
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
149
0
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
150
151
/* ===========================================================================
152
 * Update a hash value with the given input byte
153
 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
154
 *    characters, so that a running hash key can be computed from the previous
155
 *    key instead of complete recalculation each time.
156
 */
157
0
#define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
158
159
160
/* ===========================================================================
161
 * Insert string str in the dictionary and set match_head to the previous head
162
 * of the hash chain (the most recent string with same hash key). Return
163
 * the previous length of the hash chain.
164
 * If this file is compiled with -DFASTEST, the compression level is forced
165
 * to 1, and no hash chains are maintained.
166
 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
167
 *    characters and the first MIN_MATCH bytes of str are valid (except for
168
 *    the last MIN_MATCH-1 bytes of the input file).
169
 */
170
#ifdef FASTEST
171
#define INSERT_STRING(s, str, match_head) \
172
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
173
    match_head = s->head[s->ins_h], \
174
    s->head[s->ins_h] = (Pos)(str))
175
#else
176
#define INSERT_STRING(s, str, match_head) \
177
0
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
178
0
    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
179
0
    s->head[s->ins_h] = (Pos)(str))
180
#endif
181
182
/* ===========================================================================
183
 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
184
 * prev[] will be initialized on the fly.
185
 */
186
#define CLEAR_HASH(s) \
187
0
    do { \
188
0
        s->head[s->hash_size - 1] = NIL; \
189
0
        zmemzero((Bytef *)s->head, \
190
0
                 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
191
0
    } while (0)
192
193
/* ===========================================================================
194
 * Slide the hash table when sliding the window down (could be avoided with 32
195
 * bit values at the expense of memory usage). We slide even when level == 0 to
196
 * keep the hash table consistent if we switch back to level > 0 later.
197
 */
198
local void slide_hash(s)
199
    deflate_state *s;
200
0
{
201
0
    unsigned n, m;
202
0
    Posf *p;
203
0
    uInt wsize = s->w_size;
204
205
0
    n = s->hash_size;
206
0
    p = &s->head[n];
207
0
    do {
208
0
        m = *--p;
209
0
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
210
0
    } while (--n);
211
0
    n = wsize;
212
0
#ifndef FASTEST
213
0
    p = &s->prev[n];
214
0
    do {
215
0
        m = *--p;
216
0
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
217
        /* If n is not on any hash chain, prev[n] is garbage but
218
         * its value will never be used.
219
         */
220
0
    } while (--n);
221
0
#endif
222
0
}
223
224
/* ========================================================================= */
225
int ZEXPORT deflateInit_(strm, level, version, stream_size)
226
    z_streamp strm;
227
    int level;
228
    const char *version;
229
    int stream_size;
230
0
{
231
0
    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
232
0
                         Z_DEFAULT_STRATEGY, version, stream_size);
233
    /* To do: ignore strm->next_in if we use it as window */
234
0
}
235
236
/* ========================================================================= */
237
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
238
                  version, stream_size)
239
    z_streamp strm;
240
    int  level;
241
    int  method;
242
    int  windowBits;
243
    int  memLevel;
244
    int  strategy;
245
    const char *version;
246
    int stream_size;
247
0
{
248
0
    deflate_state *s;
249
0
    int wrap = 1;
250
0
    static const char my_version[] = ZLIB_VERSION;
251
252
0
    if (version == Z_NULL || version[0] != my_version[0] ||
253
0
        stream_size != sizeof(z_stream)) {
254
0
        return Z_VERSION_ERROR;
255
0
    }
256
0
    if (strm == Z_NULL) return Z_STREAM_ERROR;
257
258
0
    strm->msg = Z_NULL;
259
0
    if (strm->zalloc == (alloc_func)0) {
260
#ifdef Z_SOLO
261
        return Z_STREAM_ERROR;
262
#else
263
0
        strm->zalloc = zcalloc;
264
0
        strm->opaque = (voidpf)0;
265
0
#endif
266
0
    }
267
0
    if (strm->zfree == (free_func)0)
268
#ifdef Z_SOLO
269
        return Z_STREAM_ERROR;
270
#else
271
0
        strm->zfree = zcfree;
272
0
#endif
273
274
#ifdef FASTEST
275
    if (level != 0) level = 1;
276
#else
277
0
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
278
0
#endif
279
280
0
    if (windowBits < 0) { /* suppress zlib wrapper */
281
0
        wrap = 0;
282
0
        if (windowBits < -15)
283
0
            return Z_STREAM_ERROR;
284
0
        windowBits = -windowBits;
285
0
    }
286
0
#ifdef GZIP
287
0
    else if (windowBits > 15) {
288
0
        wrap = 2;       /* write gzip wrapper instead */
289
0
        windowBits -= 16;
290
0
    }
291
0
#endif
292
0
    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
293
0
        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
294
0
        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
295
0
        return Z_STREAM_ERROR;
296
0
    }
297
0
    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
298
0
    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
299
0
    if (s == Z_NULL) return Z_MEM_ERROR;
300
0
    strm->state = (struct internal_state FAR *)s;
301
0
    s->strm = strm;
302
0
    s->status = INIT_STATE;     /* to pass state test in deflateReset() */
303
304
0
    s->wrap = wrap;
305
0
    s->gzhead = Z_NULL;
306
0
    s->w_bits = (uInt)windowBits;
307
0
    s->w_size = 1 << s->w_bits;
308
0
    s->w_mask = s->w_size - 1;
309
310
0
    s->hash_bits = (uInt)memLevel + 7;
311
0
    s->hash_size = 1 << s->hash_bits;
312
0
    s->hash_mask = s->hash_size - 1;
313
0
    s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
314
315
0
    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
316
0
    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
317
0
    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
318
319
0
    s->high_water = 0;      /* nothing written to s->window yet */
320
321
0
    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
322
323
    /* We overlay pending_buf and sym_buf. This works since the average size
324
     * for length/distance pairs over any compressed block is assured to be 31
325
     * bits or less.
326
     *
327
     * Analysis: The longest fixed codes are a length code of 8 bits plus 5
328
     * extra bits, for lengths 131 to 257. The longest fixed distance codes are
329
     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
330
     * possible fixed-codes length/distance pair is then 31 bits total.
331
     *
332
     * sym_buf starts one-fourth of the way into pending_buf. So there are
333
     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
334
     * in sym_buf is three bytes -- two for the distance and one for the
335
     * literal/length. As each symbol is consumed, the pointer to the next
336
     * sym_buf value to read moves forward three bytes. From that symbol, up to
337
     * 31 bits are written to pending_buf. The closest the written pending_buf
338
     * bits gets to the next sym_buf symbol to read is just before the last
339
     * code is written. At that time, 31*(n - 2) bits have been written, just
340
     * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
341
     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
342
     * symbols are written.) The closest the writing gets to what is unread is
343
     * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
344
     * can range from 128 to 32768.
345
     *
346
     * Therefore, at a minimum, there are 142 bits of space between what is
347
     * written and what is read in the overlain buffers, so the symbols cannot
348
     * be overwritten by the compressed data. That space is actually 139 bits,
349
     * due to the three-bit fixed-code block header.
350
     *
351
     * That covers the case where either Z_FIXED is specified, forcing fixed
352
     * codes, or when the use of fixed codes is chosen, because that choice
353
     * results in a smaller compressed block than dynamic codes. That latter
354
     * condition then assures that the above analysis also covers all dynamic
355
     * blocks. A dynamic-code block will only be chosen to be emitted if it has
356
     * fewer bits than a fixed-code block would for the same set of symbols.
357
     * Therefore its average symbol length is assured to be less than 31. So
358
     * the compressed data for a dynamic block also cannot overwrite the
359
     * symbols from which it is being constructed.
360
     */
361
362
0
    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
363
0
    s->pending_buf_size = (ulg)s->lit_bufsize * 4;
364
365
0
    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
366
0
        s->pending_buf == Z_NULL) {
367
0
        s->status = FINISH_STATE;
368
0
        strm->msg = ERR_MSG(Z_MEM_ERROR);
369
0
        deflateEnd (strm);
370
0
        return Z_MEM_ERROR;
371
0
    }
372
0
    s->sym_buf = s->pending_buf + s->lit_bufsize;
373
0
    s->sym_end = (s->lit_bufsize - 1) * 3;
374
    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
375
     * on 16 bit machines and because stored blocks are restricted to
376
     * 64K-1 bytes.
377
     */
378
379
0
    s->level = level;
380
0
    s->strategy = strategy;
381
0
    s->method = (Byte)method;
382
383
0
    return deflateReset(strm);
384
0
}
385
386
/* =========================================================================
387
 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
388
 */
389
local int deflateStateCheck(strm)
390
    z_streamp strm;
391
0
{
392
0
    deflate_state *s;
393
0
    if (strm == Z_NULL ||
394
0
        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
395
0
        return 1;
396
0
    s = strm->state;
397
0
    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
398
0
#ifdef GZIP
399
0
                                           s->status != GZIP_STATE &&
400
0
#endif
401
0
                                           s->status != EXTRA_STATE &&
402
0
                                           s->status != NAME_STATE &&
403
0
                                           s->status != COMMENT_STATE &&
404
0
                                           s->status != HCRC_STATE &&
405
0
                                           s->status != BUSY_STATE &&
406
0
                                           s->status != FINISH_STATE))
407
0
        return 1;
408
0
    return 0;
409
0
}
410
411
/* ========================================================================= */
412
int ZEXPORT deflateSetDictionary(strm, dictionary, dictLength)
413
    z_streamp strm;
414
    const Bytef *dictionary;
415
    uInt  dictLength;
416
0
{
417
0
    deflate_state *s;
418
0
    uInt str, n;
419
0
    int wrap;
420
0
    unsigned avail;
421
0
    z_const unsigned char *next;
422
423
0
    if (deflateStateCheck(strm) || dictionary == Z_NULL)
424
0
        return Z_STREAM_ERROR;
425
0
    s = strm->state;
426
0
    wrap = s->wrap;
427
0
    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
428
0
        return Z_STREAM_ERROR;
429
430
    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
431
0
    if (wrap == 1)
432
0
        strm->adler = adler32(strm->adler, dictionary, dictLength);
433
0
    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
434
435
    /* if dictionary would fill window, just replace the history */
436
0
    if (dictLength >= s->w_size) {
437
0
        if (wrap == 0) {            /* already empty otherwise */
438
0
            CLEAR_HASH(s);
439
0
            s->strstart = 0;
440
0
            s->block_start = 0L;
441
0
            s->insert = 0;
442
0
        }
443
0
        dictionary += dictLength - s->w_size;  /* use the tail */
444
0
        dictLength = s->w_size;
445
0
    }
446
447
    /* insert dictionary into window and hash */
448
0
    avail = strm->avail_in;
449
0
    next = strm->next_in;
450
0
    strm->avail_in = dictLength;
451
0
    strm->next_in = (z_const Bytef *)dictionary;
452
0
    fill_window(s);
453
0
    while (s->lookahead >= MIN_MATCH) {
454
0
        str = s->strstart;
455
0
        n = s->lookahead - (MIN_MATCH-1);
456
0
        do {
457
0
            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
458
0
#ifndef FASTEST
459
0
            s->prev[str & s->w_mask] = s->head[s->ins_h];
460
0
#endif
461
0
            s->head[s->ins_h] = (Pos)str;
462
0
            str++;
463
0
        } while (--n);
464
0
        s->strstart = str;
465
0
        s->lookahead = MIN_MATCH-1;
466
0
        fill_window(s);
467
0
    }
468
0
    s->strstart += s->lookahead;
469
0
    s->block_start = (long)s->strstart;
470
0
    s->insert = s->lookahead;
471
0
    s->lookahead = 0;
472
0
    s->match_length = s->prev_length = MIN_MATCH-1;
473
0
    s->match_available = 0;
474
0
    strm->next_in = next;
475
0
    strm->avail_in = avail;
476
0
    s->wrap = wrap;
477
0
    return Z_OK;
478
0
}
479
480
/* ========================================================================= */
481
int ZEXPORT deflateGetDictionary(strm, dictionary, dictLength)
482
    z_streamp strm;
483
    Bytef *dictionary;
484
    uInt  *dictLength;
485
0
{
486
0
    deflate_state *s;
487
0
    uInt len;
488
489
0
    if (deflateStateCheck(strm))
490
0
        return Z_STREAM_ERROR;
491
0
    s = strm->state;
492
0
    len = s->strstart + s->lookahead;
493
0
    if (len > s->w_size)
494
0
        len = s->w_size;
495
0
    if (dictionary != Z_NULL && len)
496
0
        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
497
0
    if (dictLength != Z_NULL)
498
0
        *dictLength = len;
499
0
    return Z_OK;
500
0
}
501
502
/* ========================================================================= */
503
int ZEXPORT deflateResetKeep(strm)
504
    z_streamp strm;
505
0
{
506
0
    deflate_state *s;
507
508
0
    if (deflateStateCheck(strm)) {
509
0
        return Z_STREAM_ERROR;
510
0
    }
511
512
0
    strm->total_in = strm->total_out = 0;
513
0
    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
514
0
    strm->data_type = Z_UNKNOWN;
515
516
0
    s = (deflate_state *)strm->state;
517
0
    s->pending = 0;
518
0
    s->pending_out = s->pending_buf;
519
520
0
    if (s->wrap < 0) {
521
0
        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
522
0
    }
523
0
    s->status =
524
0
#ifdef GZIP
525
0
        s->wrap == 2 ? GZIP_STATE :
526
0
#endif
527
0
        INIT_STATE;
528
0
    strm->adler =
529
0
#ifdef GZIP
530
0
        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
531
0
#endif
532
0
        adler32(0L, Z_NULL, 0);
533
0
    s->last_flush = -2;
534
535
0
    _tr_init(s);
536
537
0
    return Z_OK;
538
0
}
539
540
/* ========================================================================= */
541
int ZEXPORT deflateReset(strm)
542
    z_streamp strm;
543
0
{
544
0
    int ret;
545
546
0
    ret = deflateResetKeep(strm);
547
0
    if (ret == Z_OK)
548
0
        lm_init(strm->state);
549
0
    return ret;
550
0
}
551
552
/* ========================================================================= */
553
int ZEXPORT deflateSetHeader(strm, head)
554
    z_streamp strm;
555
    gz_headerp head;
556
0
{
557
0
    if (deflateStateCheck(strm) || strm->state->wrap != 2)
558
0
        return Z_STREAM_ERROR;
559
0
    strm->state->gzhead = head;
560
0
    return Z_OK;
561
0
}
562
563
/* ========================================================================= */
564
int ZEXPORT deflatePending(strm, pending, bits)
565
    unsigned *pending;
566
    int *bits;
567
    z_streamp strm;
568
0
{
569
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
570
0
    if (pending != Z_NULL)
571
0
        *pending = strm->state->pending;
572
0
    if (bits != Z_NULL)
573
0
        *bits = strm->state->bi_valid;
574
0
    return Z_OK;
575
0
}
576
577
/* ========================================================================= */
578
int ZEXPORT deflatePrime(strm, bits, value)
579
    z_streamp strm;
580
    int bits;
581
    int value;
582
0
{
583
0
    deflate_state *s;
584
0
    int put;
585
586
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
587
0
    s = strm->state;
588
0
    if (bits < 0 || bits > 16 ||
589
0
        s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
590
0
        return Z_BUF_ERROR;
591
0
    do {
592
0
        put = Buf_size - s->bi_valid;
593
0
        if (put > bits)
594
0
            put = bits;
595
0
        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
596
0
        s->bi_valid += put;
597
0
        _tr_flush_bits(s);
598
0
        value >>= put;
599
0
        bits -= put;
600
0
    } while (bits);
601
0
    return Z_OK;
602
0
}
603
604
/* ========================================================================= */
605
int ZEXPORT deflateParams(strm, level, strategy)
606
    z_streamp strm;
607
    int level;
608
    int strategy;
609
0
{
610
0
    deflate_state *s;
611
0
    compress_func func;
612
613
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
614
0
    s = strm->state;
615
616
#ifdef FASTEST
617
    if (level != 0) level = 1;
618
#else
619
0
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
620
0
#endif
621
0
    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
622
0
        return Z_STREAM_ERROR;
623
0
    }
624
0
    func = configuration_table[s->level].func;
625
626
0
    if ((strategy != s->strategy || func != configuration_table[level].func) &&
627
0
        s->last_flush != -2) {
628
        /* Flush the last buffer: */
629
0
        int err = deflate(strm, Z_BLOCK);
630
0
        if (err == Z_STREAM_ERROR)
631
0
            return err;
632
0
        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
633
0
            return Z_BUF_ERROR;
634
0
    }
635
0
    if (s->level != level) {
636
0
        if (s->level == 0 && s->matches != 0) {
637
0
            if (s->matches == 1)
638
0
                slide_hash(s);
639
0
            else
640
0
                CLEAR_HASH(s);
641
0
            s->matches = 0;
642
0
        }
643
0
        s->level = level;
644
0
        s->max_lazy_match   = configuration_table[level].max_lazy;
645
0
        s->good_match       = configuration_table[level].good_length;
646
0
        s->nice_match       = configuration_table[level].nice_length;
647
0
        s->max_chain_length = configuration_table[level].max_chain;
648
0
    }
649
0
    s->strategy = strategy;
650
0
    return Z_OK;
651
0
}
652
653
/* ========================================================================= */
654
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
655
    z_streamp strm;
656
    int good_length;
657
    int max_lazy;
658
    int nice_length;
659
    int max_chain;
660
0
{
661
0
    deflate_state *s;
662
663
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
664
0
    s = strm->state;
665
0
    s->good_match = (uInt)good_length;
666
0
    s->max_lazy_match = (uInt)max_lazy;
667
0
    s->nice_match = nice_length;
668
0
    s->max_chain_length = (uInt)max_chain;
669
0
    return Z_OK;
670
0
}
671
672
/* =========================================================================
673
 * For the default windowBits of 15 and memLevel of 8, this function returns a
674
 * close to exact, as well as small, upper bound on the compressed size. This
675
 * is an expansion of ~0.03%, plus a small constant.
676
 *
677
 * For any setting other than those defaults for windowBits and memLevel, one
678
 * of two worst case bounds is returned. This is at most an expansion of ~4% or
679
 * ~13%, plus a small constant.
680
 *
681
 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
682
 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
683
 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
684
 * expansion results from five bytes of header for each stored block.
685
 *
686
 * The larger expansion of 13% results from a window size less than or equal to
687
 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
688
 * the data being compressed may have slid out of the sliding window, impeding
689
 * a stored block from being emitted. Then the only choice is a fixed or
690
 * dynamic block, where a fixed block limits the maximum expansion to 9 bits
691
 * per 8-bit byte, plus 10 bits for every block. The smallest block size for
692
 * which this can occur is 255 (memLevel == 2).
693
 *
694
 * Shifts are used to approximate divisions, for speed.
695
 */
696
uLong ZEXPORT deflateBound(strm, sourceLen)
697
    z_streamp strm;
698
    uLong sourceLen;
699
0
{
700
0
    deflate_state *s;
701
0
    uLong fixedlen, storelen, wraplen;
702
703
    /* upper bound for fixed blocks with 9-bit literals and length 255
704
       (memLevel == 2, which is the lowest that may not use stored blocks) --
705
       ~13% overhead plus a small constant */
706
0
    fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
707
0
               (sourceLen >> 9) + 4;
708
709
    /* upper bound for stored blocks with length 127 (memLevel == 1) --
710
       ~4% overhead plus a small constant */
711
0
    storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
712
0
               (sourceLen >> 11) + 7;
713
714
    /* if can't get parameters, return larger bound plus a zlib wrapper */
715
0
    if (deflateStateCheck(strm))
716
0
        return (fixedlen > storelen ? fixedlen : storelen) + 6;
717
718
    /* compute wrapper length */
719
0
    s = strm->state;
720
0
    switch (s->wrap) {
721
0
    case 0:                                 /* raw deflate */
722
0
        wraplen = 0;
723
0
        break;
724
0
    case 1:                                 /* zlib wrapper */
725
0
        wraplen = 6 + (s->strstart ? 4 : 0);
726
0
        break;
727
0
#ifdef GZIP
728
0
    case 2:                                 /* gzip wrapper */
729
0
        wraplen = 18;
730
0
        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
731
0
            Bytef *str;
732
0
            if (s->gzhead->extra != Z_NULL)
733
0
                wraplen += 2 + s->gzhead->extra_len;
734
0
            str = s->gzhead->name;
735
0
            if (str != Z_NULL)
736
0
                do {
737
0
                    wraplen++;
738
0
                } while (*str++);
739
0
            str = s->gzhead->comment;
740
0
            if (str != Z_NULL)
741
0
                do {
742
0
                    wraplen++;
743
0
                } while (*str++);
744
0
            if (s->gzhead->hcrc)
745
0
                wraplen += 2;
746
0
        }
747
0
        break;
748
0
#endif
749
0
    default:                                /* for compiler happiness */
750
0
        wraplen = 6;
751
0
    }
752
753
    /* if not default parameters, return one of the conservative bounds */
754
0
    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
755
0
        return (s->w_bits <= s->hash_bits ? fixedlen : storelen) + wraplen;
756
757
    /* default settings: return tight bound for that case -- ~0.03% overhead
758
       plus a small constant */
759
0
    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
760
0
           (sourceLen >> 25) + 13 - 6 + wraplen;
761
0
}
762
763
/* =========================================================================
764
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
765
 * IN assertion: the stream state is correct and there is enough room in
766
 * pending_buf.
767
 */
768
local void putShortMSB(s, b)
769
    deflate_state *s;
770
    uInt b;
771
0
{
772
0
    put_byte(s, (Byte)(b >> 8));
773
0
    put_byte(s, (Byte)(b & 0xff));
774
0
}
775
776
/* =========================================================================
777
 * Flush as much pending output as possible. All deflate() output, except for
778
 * some deflate_stored() output, goes through this function so some
779
 * applications may wish to modify it to avoid allocating a large
780
 * strm->next_out buffer and copying into it. (See also read_buf()).
781
 */
782
local void flush_pending(strm)
783
    z_streamp strm;
784
0
{
785
0
    unsigned len;
786
0
    deflate_state *s = strm->state;
787
788
0
    _tr_flush_bits(s);
789
0
    len = s->pending;
790
0
    if (len > strm->avail_out) len = strm->avail_out;
791
0
    if (len == 0) return;
792
793
0
    zmemcpy(strm->next_out, s->pending_out, len);
794
0
    strm->next_out  += len;
795
0
    s->pending_out  += len;
796
0
    strm->total_out += len;
797
0
    strm->avail_out -= len;
798
0
    s->pending      -= len;
799
0
    if (s->pending == 0) {
800
0
        s->pending_out = s->pending_buf;
801
0
    }
802
0
}
803
804
/* ===========================================================================
805
 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
806
 */
807
#define HCRC_UPDATE(beg) \
808
0
    do { \
809
0
        if (s->gzhead->hcrc && s->pending > (beg)) \
810
0
            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
811
0
                                s->pending - (beg)); \
812
0
    } while (0)
813
814
/* ========================================================================= */
815
int ZEXPORT deflate(strm, flush)
816
    z_streamp strm;
817
    int flush;
818
0
{
819
0
    int old_flush; /* value of flush param for previous deflate call */
820
0
    deflate_state *s;
821
822
0
    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
823
0
        return Z_STREAM_ERROR;
824
0
    }
825
0
    s = strm->state;
826
827
0
    if (strm->next_out == Z_NULL ||
828
0
        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
829
0
        (s->status == FINISH_STATE && flush != Z_FINISH)) {
830
0
        ERR_RETURN(strm, Z_STREAM_ERROR);
831
0
    }
832
0
    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
833
834
0
    old_flush = s->last_flush;
835
0
    s->last_flush = flush;
836
837
    /* Flush as much pending output as possible */
838
0
    if (s->pending != 0) {
839
0
        flush_pending(strm);
840
0
        if (strm->avail_out == 0) {
841
            /* Since avail_out is 0, deflate will be called again with
842
             * more output space, but possibly with both pending and
843
             * avail_in equal to zero. There won't be anything to do,
844
             * but this is not an error situation so make sure we
845
             * return OK instead of BUF_ERROR at next call of deflate:
846
             */
847
0
            s->last_flush = -1;
848
0
            return Z_OK;
849
0
        }
850
851
    /* Make sure there is something to do and avoid duplicate consecutive
852
     * flushes. For repeated and useless calls with Z_FINISH, we keep
853
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
854
     */
855
0
    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
856
0
               flush != Z_FINISH) {
857
0
        ERR_RETURN(strm, Z_BUF_ERROR);
858
0
    }
859
860
    /* User must not provide more input after the first FINISH: */
861
0
    if (s->status == FINISH_STATE && strm->avail_in != 0) {
862
0
        ERR_RETURN(strm, Z_BUF_ERROR);
863
0
    }
864
865
    /* Write the header */
866
0
    if (s->status == INIT_STATE && s->wrap == 0)
867
0
        s->status = BUSY_STATE;
868
0
    if (s->status == INIT_STATE) {
869
        /* zlib header */
870
0
        uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
871
0
        uInt level_flags;
872
873
0
        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
874
0
            level_flags = 0;
875
0
        else if (s->level < 6)
876
0
            level_flags = 1;
877
0
        else if (s->level == 6)
878
0
            level_flags = 2;
879
0
        else
880
0
            level_flags = 3;
881
0
        header |= (level_flags << 6);
882
0
        if (s->strstart != 0) header |= PRESET_DICT;
883
0
        header += 31 - (header % 31);
884
885
0
        putShortMSB(s, header);
886
887
        /* Save the adler32 of the preset dictionary: */
888
0
        if (s->strstart != 0) {
889
0
            putShortMSB(s, (uInt)(strm->adler >> 16));
890
0
            putShortMSB(s, (uInt)(strm->adler & 0xffff));
891
0
        }
892
0
        strm->adler = adler32(0L, Z_NULL, 0);
893
0
        s->status = BUSY_STATE;
894
895
        /* Compression must start with an empty pending buffer */
896
0
        flush_pending(strm);
897
0
        if (s->pending != 0) {
898
0
            s->last_flush = -1;
899
0
            return Z_OK;
900
0
        }
901
0
    }
902
0
#ifdef GZIP
903
0
    if (s->status == GZIP_STATE) {
904
        /* gzip header */
905
0
        strm->adler = crc32(0L, Z_NULL, 0);
906
0
        put_byte(s, 31);
907
0
        put_byte(s, 139);
908
0
        put_byte(s, 8);
909
0
        if (s->gzhead == Z_NULL) {
910
0
            put_byte(s, 0);
911
0
            put_byte(s, 0);
912
0
            put_byte(s, 0);
913
0
            put_byte(s, 0);
914
0
            put_byte(s, 0);
915
0
            put_byte(s, s->level == 9 ? 2 :
916
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
917
0
                      4 : 0));
918
0
            put_byte(s, OS_CODE);
919
0
            s->status = BUSY_STATE;
920
921
            /* Compression must start with an empty pending buffer */
922
0
            flush_pending(strm);
923
0
            if (s->pending != 0) {
924
0
                s->last_flush = -1;
925
0
                return Z_OK;
926
0
            }
927
0
        }
928
0
        else {
929
0
            put_byte(s, (s->gzhead->text ? 1 : 0) +
930
0
                     (s->gzhead->hcrc ? 2 : 0) +
931
0
                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
932
0
                     (s->gzhead->name == Z_NULL ? 0 : 8) +
933
0
                     (s->gzhead->comment == Z_NULL ? 0 : 16)
934
0
                     );
935
0
            put_byte(s, (Byte)(s->gzhead->time & 0xff));
936
0
            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
937
0
            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
938
0
            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
939
0
            put_byte(s, s->level == 9 ? 2 :
940
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
941
0
                      4 : 0));
942
0
            put_byte(s, s->gzhead->os & 0xff);
943
0
            if (s->gzhead->extra != Z_NULL) {
944
0
                put_byte(s, s->gzhead->extra_len & 0xff);
945
0
                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
946
0
            }
947
0
            if (s->gzhead->hcrc)
948
0
                strm->adler = crc32(strm->adler, s->pending_buf,
949
0
                                    s->pending);
950
0
            s->gzindex = 0;
951
0
            s->status = EXTRA_STATE;
952
0
        }
953
0
    }
954
0
    if (s->status == EXTRA_STATE) {
955
0
        if (s->gzhead->extra != Z_NULL) {
956
0
            ulg beg = s->pending;   /* start of bytes to update crc */
957
0
            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
958
0
            while (s->pending + left > s->pending_buf_size) {
959
0
                uInt copy = s->pending_buf_size - s->pending;
960
0
                zmemcpy(s->pending_buf + s->pending,
961
0
                        s->gzhead->extra + s->gzindex, copy);
962
0
                s->pending = s->pending_buf_size;
963
0
                HCRC_UPDATE(beg);
964
0
                s->gzindex += copy;
965
0
                flush_pending(strm);
966
0
                if (s->pending != 0) {
967
0
                    s->last_flush = -1;
968
0
                    return Z_OK;
969
0
                }
970
0
                beg = 0;
971
0
                left -= copy;
972
0
            }
973
0
            zmemcpy(s->pending_buf + s->pending,
974
0
                    s->gzhead->extra + s->gzindex, left);
975
0
            s->pending += left;
976
0
            HCRC_UPDATE(beg);
977
0
            s->gzindex = 0;
978
0
        }
979
0
        s->status = NAME_STATE;
980
0
    }
981
0
    if (s->status == NAME_STATE) {
982
0
        if (s->gzhead->name != Z_NULL) {
983
0
            ulg beg = s->pending;   /* start of bytes to update crc */
984
0
            int val;
985
0
            do {
986
0
                if (s->pending == s->pending_buf_size) {
987
0
                    HCRC_UPDATE(beg);
988
0
                    flush_pending(strm);
989
0
                    if (s->pending != 0) {
990
0
                        s->last_flush = -1;
991
0
                        return Z_OK;
992
0
                    }
993
0
                    beg = 0;
994
0
                }
995
0
                val = s->gzhead->name[s->gzindex++];
996
0
                put_byte(s, val);
997
0
            } while (val != 0);
998
0
            HCRC_UPDATE(beg);
999
0
            s->gzindex = 0;
1000
0
        }
1001
0
        s->status = COMMENT_STATE;
1002
0
    }
1003
0
    if (s->status == COMMENT_STATE) {
1004
0
        if (s->gzhead->comment != Z_NULL) {
1005
0
            ulg beg = s->pending;   /* start of bytes to update crc */
1006
0
            int val;
1007
0
            do {
1008
0
                if (s->pending == s->pending_buf_size) {
1009
0
                    HCRC_UPDATE(beg);
1010
0
                    flush_pending(strm);
1011
0
                    if (s->pending != 0) {
1012
0
                        s->last_flush = -1;
1013
0
                        return Z_OK;
1014
0
                    }
1015
0
                    beg = 0;
1016
0
                }
1017
0
                val = s->gzhead->comment[s->gzindex++];
1018
0
                put_byte(s, val);
1019
0
            } while (val != 0);
1020
0
            HCRC_UPDATE(beg);
1021
0
        }
1022
0
        s->status = HCRC_STATE;
1023
0
    }
1024
0
    if (s->status == HCRC_STATE) {
1025
0
        if (s->gzhead->hcrc) {
1026
0
            if (s->pending + 2 > s->pending_buf_size) {
1027
0
                flush_pending(strm);
1028
0
                if (s->pending != 0) {
1029
0
                    s->last_flush = -1;
1030
0
                    return Z_OK;
1031
0
                }
1032
0
            }
1033
0
            put_byte(s, (Byte)(strm->adler & 0xff));
1034
0
            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1035
0
            strm->adler = crc32(0L, Z_NULL, 0);
1036
0
        }
1037
0
        s->status = BUSY_STATE;
1038
1039
        /* Compression must start with an empty pending buffer */
1040
0
        flush_pending(strm);
1041
0
        if (s->pending != 0) {
1042
0
            s->last_flush = -1;
1043
0
            return Z_OK;
1044
0
        }
1045
0
    }
1046
0
#endif
1047
1048
    /* Start a new block or continue the current one.
1049
     */
1050
0
    if (strm->avail_in != 0 || s->lookahead != 0 ||
1051
0
        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1052
0
        block_state bstate;
1053
1054
0
        bstate = s->level == 0 ? deflate_stored(s, flush) :
1055
0
                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1056
0
                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1057
0
                 (*(configuration_table[s->level].func))(s, flush);
1058
1059
0
        if (bstate == finish_started || bstate == finish_done) {
1060
0
            s->status = FINISH_STATE;
1061
0
        }
1062
0
        if (bstate == need_more || bstate == finish_started) {
1063
0
            if (strm->avail_out == 0) {
1064
0
                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1065
0
            }
1066
0
            return Z_OK;
1067
            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1068
             * of deflate should use the same flush parameter to make sure
1069
             * that the flush is complete. So we don't have to output an
1070
             * empty block here, this will be done at next call. This also
1071
             * ensures that for a very small output buffer, we emit at most
1072
             * one empty block.
1073
             */
1074
0
        }
1075
0
        if (bstate == block_done) {
1076
0
            if (flush == Z_PARTIAL_FLUSH) {
1077
0
                _tr_align(s);
1078
0
            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1079
0
                _tr_stored_block(s, (char*)0, 0L, 0);
1080
                /* For a full flush, this empty block will be recognized
1081
                 * as a special marker by inflate_sync().
1082
                 */
1083
0
                if (flush == Z_FULL_FLUSH) {
1084
0
                    CLEAR_HASH(s);             /* forget history */
1085
0
                    if (s->lookahead == 0) {
1086
0
                        s->strstart = 0;
1087
0
                        s->block_start = 0L;
1088
0
                        s->insert = 0;
1089
0
                    }
1090
0
                }
1091
0
            }
1092
0
            flush_pending(strm);
1093
0
            if (strm->avail_out == 0) {
1094
0
              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1095
0
              return Z_OK;
1096
0
            }
1097
0
        }
1098
0
    }
1099
1100
0
    if (flush != Z_FINISH) return Z_OK;
1101
0
    if (s->wrap <= 0) return Z_STREAM_END;
1102
1103
    /* Write the trailer */
1104
0
#ifdef GZIP
1105
0
    if (s->wrap == 2) {
1106
0
        put_byte(s, (Byte)(strm->adler & 0xff));
1107
0
        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1108
0
        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1109
0
        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1110
0
        put_byte(s, (Byte)(strm->total_in & 0xff));
1111
0
        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1112
0
        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1113
0
        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1114
0
    }
1115
0
    else
1116
0
#endif
1117
0
    {
1118
0
        putShortMSB(s, (uInt)(strm->adler >> 16));
1119
0
        putShortMSB(s, (uInt)(strm->adler & 0xffff));
1120
0
    }
1121
0
    flush_pending(strm);
1122
    /* If avail_out is zero, the application will call deflate again
1123
     * to flush the rest.
1124
     */
1125
0
    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1126
0
    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1127
0
}
1128
1129
/* ========================================================================= */
1130
int ZEXPORT deflateEnd(strm)
1131
    z_streamp strm;
1132
0
{
1133
0
    int status;
1134
1135
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1136
1137
0
    status = strm->state->status;
1138
1139
    /* Deallocate in reverse order of allocations: */
1140
0
    TRY_FREE(strm, strm->state->pending_buf);
1141
0
    TRY_FREE(strm, strm->state->head);
1142
0
    TRY_FREE(strm, strm->state->prev);
1143
0
    TRY_FREE(strm, strm->state->window);
1144
1145
0
    ZFREE(strm, strm->state);
1146
0
    strm->state = Z_NULL;
1147
1148
0
    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1149
0
}
1150
1151
/* =========================================================================
1152
 * Copy the source state to the destination state.
1153
 * To simplify the source, this is not supported for 16-bit MSDOS (which
1154
 * doesn't have enough memory anyway to duplicate compression states).
1155
 */
1156
int ZEXPORT deflateCopy(dest, source)
1157
    z_streamp dest;
1158
    z_streamp source;
1159
0
{
1160
#ifdef MAXSEG_64K
1161
    return Z_STREAM_ERROR;
1162
#else
1163
0
    deflate_state *ds;
1164
0
    deflate_state *ss;
1165
1166
1167
0
    if (deflateStateCheck(source) || dest == Z_NULL) {
1168
0
        return Z_STREAM_ERROR;
1169
0
    }
1170
1171
0
    ss = source->state;
1172
1173
0
    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1174
1175
0
    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1176
0
    if (ds == Z_NULL) return Z_MEM_ERROR;
1177
0
    dest->state = (struct internal_state FAR *) ds;
1178
0
    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1179
0
    ds->strm = dest;
1180
1181
0
    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1182
0
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1183
0
    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1184
0
    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1185
1186
0
    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1187
0
        ds->pending_buf == Z_NULL) {
1188
0
        deflateEnd (dest);
1189
0
        return Z_MEM_ERROR;
1190
0
    }
1191
    /* following zmemcpy do not work for 16-bit MSDOS */
1192
0
    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1193
0
    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1194
0
    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1195
0
    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1196
1197
0
    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1198
0
    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1199
1200
0
    ds->l_desc.dyn_tree = ds->dyn_ltree;
1201
0
    ds->d_desc.dyn_tree = ds->dyn_dtree;
1202
0
    ds->bl_desc.dyn_tree = ds->bl_tree;
1203
1204
0
    return Z_OK;
1205
0
#endif /* MAXSEG_64K */
1206
0
}
1207
1208
/* ===========================================================================
1209
 * Read a new buffer from the current input stream, update the adler32
1210
 * and total number of bytes read.  All deflate() input goes through
1211
 * this function so some applications may wish to modify it to avoid
1212
 * allocating a large strm->next_in buffer and copying from it.
1213
 * (See also flush_pending()).
1214
 */
1215
local unsigned read_buf(strm, buf, size)
1216
    z_streamp strm;
1217
    Bytef *buf;
1218
    unsigned size;
1219
0
{
1220
0
    unsigned len = strm->avail_in;
1221
1222
0
    if (len > size) len = size;
1223
0
    if (len == 0) return 0;
1224
1225
0
    strm->avail_in  -= len;
1226
1227
0
    zmemcpy(buf, strm->next_in, len);
1228
0
    if (strm->state->wrap == 1) {
1229
0
        strm->adler = adler32(strm->adler, buf, len);
1230
0
    }
1231
0
#ifdef GZIP
1232
0
    else if (strm->state->wrap == 2) {
1233
0
        strm->adler = crc32(strm->adler, buf, len);
1234
0
    }
1235
0
#endif
1236
0
    strm->next_in  += len;
1237
0
    strm->total_in += len;
1238
1239
0
    return len;
1240
0
}
1241
1242
/* ===========================================================================
1243
 * Initialize the "longest match" routines for a new zlib stream
1244
 */
1245
local void lm_init(s)
1246
    deflate_state *s;
1247
0
{
1248
0
    s->window_size = (ulg)2L*s->w_size;
1249
1250
0
    CLEAR_HASH(s);
1251
1252
    /* Set the default configuration parameters:
1253
     */
1254
0
    s->max_lazy_match   = configuration_table[s->level].max_lazy;
1255
0
    s->good_match       = configuration_table[s->level].good_length;
1256
0
    s->nice_match       = configuration_table[s->level].nice_length;
1257
0
    s->max_chain_length = configuration_table[s->level].max_chain;
1258
1259
0
    s->strstart = 0;
1260
0
    s->block_start = 0L;
1261
0
    s->lookahead = 0;
1262
0
    s->insert = 0;
1263
0
    s->match_length = s->prev_length = MIN_MATCH-1;
1264
0
    s->match_available = 0;
1265
0
    s->ins_h = 0;
1266
0
}
1267
1268
#ifndef FASTEST
1269
/* ===========================================================================
1270
 * Set match_start to the longest match starting at the given string and
1271
 * return its length. Matches shorter or equal to prev_length are discarded,
1272
 * in which case the result is equal to prev_length and match_start is
1273
 * garbage.
1274
 * IN assertions: cur_match is the head of the hash chain for the current
1275
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1276
 * OUT assertion: the match length is not greater than s->lookahead.
1277
 */
1278
local uInt longest_match(s, cur_match)
1279
    deflate_state *s;
1280
    IPos cur_match;                             /* current match */
1281
0
{
1282
0
    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1283
0
    register Bytef *scan = s->window + s->strstart; /* current string */
1284
0
    register Bytef *match;                      /* matched string */
1285
0
    register int len;                           /* length of current match */
1286
0
    int best_len = (int)s->prev_length;         /* best match length so far */
1287
0
    int nice_match = s->nice_match;             /* stop if match long enough */
1288
0
    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1289
0
        s->strstart - (IPos)MAX_DIST(s) : NIL;
1290
    /* Stop when cur_match becomes <= limit. To simplify the code,
1291
     * we prevent matches with the string of window index 0.
1292
     */
1293
0
    Posf *prev = s->prev;
1294
0
    uInt wmask = s->w_mask;
1295
1296
#ifdef UNALIGNED_OK
1297
    /* Compare two bytes at a time. Note: this is not always beneficial.
1298
     * Try with and without -DUNALIGNED_OK to check.
1299
     */
1300
    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1301
    register ush scan_start = *(ushf*)scan;
1302
    register ush scan_end   = *(ushf*)(scan + best_len - 1);
1303
#else
1304
0
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1305
0
    register Byte scan_end1  = scan[best_len - 1];
1306
0
    register Byte scan_end   = scan[best_len];
1307
0
#endif
1308
1309
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1310
     * It is easy to get rid of this optimization if necessary.
1311
     */
1312
0
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1313
1314
    /* Do not waste too much time if we already have a good match: */
1315
0
    if (s->prev_length >= s->good_match) {
1316
0
        chain_length >>= 2;
1317
0
    }
1318
    /* Do not look for matches beyond the end of the input. This is necessary
1319
     * to make deflate deterministic.
1320
     */
1321
0
    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1322
1323
0
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1324
0
           "need lookahead");
1325
1326
0
    do {
1327
0
        Assert(cur_match < s->strstart, "no future");
1328
0
        match = s->window + cur_match;
1329
1330
        /* Skip to next match if the match length cannot increase
1331
         * or if the match length is less than 2.  Note that the checks below
1332
         * for insufficient lookahead only occur occasionally for performance
1333
         * reasons.  Therefore uninitialized memory will be accessed, and
1334
         * conditional jumps will be made that depend on those values.
1335
         * However the length of the match is limited to the lookahead, so
1336
         * the output of deflate is not affected by the uninitialized values.
1337
         */
1338
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1339
        /* This code assumes sizeof(unsigned short) == 2. Do not use
1340
         * UNALIGNED_OK if your compiler uses a different size.
1341
         */
1342
        if (*(ushf*)(match + best_len - 1) != scan_end ||
1343
            *(ushf*)match != scan_start) continue;
1344
1345
        /* It is not necessary to compare scan[2] and match[2] since they are
1346
         * always equal when the other bytes match, given that the hash keys
1347
         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1348
         * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1349
         * lookahead only every 4th comparison; the 128th check will be made
1350
         * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1351
         * necessary to put more guard bytes at the end of the window, or
1352
         * to check more often for insufficient lookahead.
1353
         */
1354
        Assert(scan[2] == match[2], "scan[2]?");
1355
        scan++, match++;
1356
        do {
1357
        } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1358
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1359
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1360
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1361
                 scan < strend);
1362
        /* The funny "do {}" generates better code on most compilers */
1363
1364
        /* Here, scan <= window + strstart + 257 */
1365
        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1366
               "wild scan");
1367
        if (*scan == *match) scan++;
1368
1369
        len = (MAX_MATCH - 1) - (int)(strend - scan);
1370
        scan = strend - (MAX_MATCH-1);
1371
1372
#else /* UNALIGNED_OK */
1373
1374
0
        if (match[best_len]     != scan_end  ||
1375
0
            match[best_len - 1] != scan_end1 ||
1376
0
            *match              != *scan     ||
1377
0
            *++match            != scan[1])      continue;
1378
1379
        /* The check at best_len - 1 can be removed because it will be made
1380
         * again later. (This heuristic is not always a win.)
1381
         * It is not necessary to compare scan[2] and match[2] since they
1382
         * are always equal when the other bytes match, given that
1383
         * the hash keys are equal and that HASH_BITS >= 8.
1384
         */
1385
0
        scan += 2, match++;
1386
0
        Assert(*scan == *match, "match[2]?");
1387
1388
        /* We check for insufficient lookahead only every 8th comparison;
1389
         * the 256th check will be made at strstart + 258.
1390
         */
1391
0
        do {
1392
0
        } while (*++scan == *++match && *++scan == *++match &&
1393
0
                 *++scan == *++match && *++scan == *++match &&
1394
0
                 *++scan == *++match && *++scan == *++match &&
1395
0
                 *++scan == *++match && *++scan == *++match &&
1396
0
                 scan < strend);
1397
1398
0
        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1399
0
               "wild scan");
1400
1401
0
        len = MAX_MATCH - (int)(strend - scan);
1402
0
        scan = strend - MAX_MATCH;
1403
1404
0
#endif /* UNALIGNED_OK */
1405
1406
0
        if (len > best_len) {
1407
0
            s->match_start = cur_match;
1408
0
            best_len = len;
1409
0
            if (len >= nice_match) break;
1410
#ifdef UNALIGNED_OK
1411
            scan_end = *(ushf*)(scan + best_len - 1);
1412
#else
1413
0
            scan_end1  = scan[best_len - 1];
1414
0
            scan_end   = scan[best_len];
1415
0
#endif
1416
0
        }
1417
0
    } while ((cur_match = prev[cur_match & wmask]) > limit
1418
0
             && --chain_length != 0);
1419
1420
0
    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1421
0
    return s->lookahead;
1422
0
}
1423
1424
#else /* FASTEST */
1425
1426
/* ---------------------------------------------------------------------------
1427
 * Optimized version for FASTEST only
1428
 */
1429
local uInt longest_match(s, cur_match)
1430
    deflate_state *s;
1431
    IPos cur_match;                             /* current match */
1432
{
1433
    register Bytef *scan = s->window + s->strstart; /* current string */
1434
    register Bytef *match;                       /* matched string */
1435
    register int len;                           /* length of current match */
1436
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1437
1438
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1439
     * It is easy to get rid of this optimization if necessary.
1440
     */
1441
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1442
1443
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1444
           "need lookahead");
1445
1446
    Assert(cur_match < s->strstart, "no future");
1447
1448
    match = s->window + cur_match;
1449
1450
    /* Return failure if the match length is less than 2:
1451
     */
1452
    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1453
1454
    /* The check at best_len - 1 can be removed because it will be made
1455
     * again later. (This heuristic is not always a win.)
1456
     * It is not necessary to compare scan[2] and match[2] since they
1457
     * are always equal when the other bytes match, given that
1458
     * the hash keys are equal and that HASH_BITS >= 8.
1459
     */
1460
    scan += 2, match += 2;
1461
    Assert(*scan == *match, "match[2]?");
1462
1463
    /* We check for insufficient lookahead only every 8th comparison;
1464
     * the 256th check will be made at strstart + 258.
1465
     */
1466
    do {
1467
    } while (*++scan == *++match && *++scan == *++match &&
1468
             *++scan == *++match && *++scan == *++match &&
1469
             *++scan == *++match && *++scan == *++match &&
1470
             *++scan == *++match && *++scan == *++match &&
1471
             scan < strend);
1472
1473
    Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1474
1475
    len = MAX_MATCH - (int)(strend - scan);
1476
1477
    if (len < MIN_MATCH) return MIN_MATCH - 1;
1478
1479
    s->match_start = cur_match;
1480
    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1481
}
1482
1483
#endif /* FASTEST */
1484
1485
#ifdef ZLIB_DEBUG
1486
1487
#define EQUAL 0
1488
/* result of memcmp for equal strings */
1489
1490
/* ===========================================================================
1491
 * Check that the match at match_start is indeed a match.
1492
 */
1493
local void check_match(s, start, match, length)
1494
    deflate_state *s;
1495
    IPos start, match;
1496
    int length;
1497
{
1498
    /* check that the match is indeed a match */
1499
    if (zmemcmp(s->window + match,
1500
                s->window + start, length) != EQUAL) {
1501
        fprintf(stderr, " start %u, match %u, length %d\n",
1502
                start, match, length);
1503
        do {
1504
            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1505
        } while (--length != 0);
1506
        z_error("invalid match");
1507
    }
1508
    if (z_verbose > 1) {
1509
        fprintf(stderr,"\\[%d,%d]", start - match, length);
1510
        do { putc(s->window[start++], stderr); } while (--length != 0);
1511
    }
1512
}
1513
#else
1514
#  define check_match(s, start, match, length)
1515
#endif /* ZLIB_DEBUG */
1516
1517
/* ===========================================================================
1518
 * Fill the window when the lookahead becomes insufficient.
1519
 * Updates strstart and lookahead.
1520
 *
1521
 * IN assertion: lookahead < MIN_LOOKAHEAD
1522
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1523
 *    At least one byte has been read, or avail_in == 0; reads are
1524
 *    performed for at least two bytes (required for the zip translate_eol
1525
 *    option -- not supported here).
1526
 */
1527
local void fill_window(s)
1528
    deflate_state *s;
1529
0
{
1530
0
    unsigned n;
1531
0
    unsigned more;    /* Amount of free space at the end of the window. */
1532
0
    uInt wsize = s->w_size;
1533
1534
0
    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1535
1536
0
    do {
1537
0
        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1538
1539
        /* Deal with !@#$% 64K limit: */
1540
0
        if (sizeof(int) <= 2) {
1541
0
            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1542
0
                more = wsize;
1543
1544
0
            } else if (more == (unsigned)(-1)) {
1545
                /* Very unlikely, but possible on 16 bit machine if
1546
                 * strstart == 0 && lookahead == 1 (input done a byte at time)
1547
                 */
1548
0
                more--;
1549
0
            }
1550
0
        }
1551
1552
        /* If the window is almost full and there is insufficient lookahead,
1553
         * move the upper half to the lower one to make room in the upper half.
1554
         */
1555
0
        if (s->strstart >= wsize + MAX_DIST(s)) {
1556
1557
0
            zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
1558
0
            s->match_start -= wsize;
1559
0
            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1560
0
            s->block_start -= (long) wsize;
1561
0
            if (s->insert > s->strstart)
1562
0
                s->insert = s->strstart;
1563
0
            slide_hash(s);
1564
0
            more += wsize;
1565
0
        }
1566
0
        if (s->strm->avail_in == 0) break;
1567
1568
        /* If there was no sliding:
1569
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1570
         *    more == window_size - lookahead - strstart
1571
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1572
         * => more >= window_size - 2*WSIZE + 2
1573
         * In the BIG_MEM or MMAP case (not yet supported),
1574
         *   window_size == input_size + MIN_LOOKAHEAD  &&
1575
         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1576
         * Otherwise, window_size == 2*WSIZE so more >= 2.
1577
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1578
         */
1579
0
        Assert(more >= 2, "more < 2");
1580
1581
0
        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1582
0
        s->lookahead += n;
1583
1584
        /* Initialize the hash value now that we have some input: */
1585
0
        if (s->lookahead + s->insert >= MIN_MATCH) {
1586
0
            uInt str = s->strstart - s->insert;
1587
0
            s->ins_h = s->window[str];
1588
0
            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1589
#if MIN_MATCH != 3
1590
            Call UPDATE_HASH() MIN_MATCH-3 more times
1591
#endif
1592
0
            while (s->insert) {
1593
0
                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1594
0
#ifndef FASTEST
1595
0
                s->prev[str & s->w_mask] = s->head[s->ins_h];
1596
0
#endif
1597
0
                s->head[s->ins_h] = (Pos)str;
1598
0
                str++;
1599
0
                s->insert--;
1600
0
                if (s->lookahead + s->insert < MIN_MATCH)
1601
0
                    break;
1602
0
            }
1603
0
        }
1604
        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1605
         * but this is not important since only literal bytes will be emitted.
1606
         */
1607
1608
0
    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1609
1610
    /* If the WIN_INIT bytes after the end of the current data have never been
1611
     * written, then zero those bytes in order to avoid memory check reports of
1612
     * the use of uninitialized (or uninitialised as Julian writes) bytes by
1613
     * the longest match routines.  Update the high water mark for the next
1614
     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1615
     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1616
     */
1617
0
    if (s->high_water < s->window_size) {
1618
0
        ulg curr = s->strstart + (ulg)(s->lookahead);
1619
0
        ulg init;
1620
1621
0
        if (s->high_water < curr) {
1622
            /* Previous high water mark below current data -- zero WIN_INIT
1623
             * bytes or up to end of window, whichever is less.
1624
             */
1625
0
            init = s->window_size - curr;
1626
0
            if (init > WIN_INIT)
1627
0
                init = WIN_INIT;
1628
0
            zmemzero(s->window + curr, (unsigned)init);
1629
0
            s->high_water = curr + init;
1630
0
        }
1631
0
        else if (s->high_water < (ulg)curr + WIN_INIT) {
1632
            /* High water mark at or above current data, but below current data
1633
             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1634
             * to end of window, whichever is less.
1635
             */
1636
0
            init = (ulg)curr + WIN_INIT - s->high_water;
1637
0
            if (init > s->window_size - s->high_water)
1638
0
                init = s->window_size - s->high_water;
1639
0
            zmemzero(s->window + s->high_water, (unsigned)init);
1640
0
            s->high_water += init;
1641
0
        }
1642
0
    }
1643
1644
0
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1645
0
           "not enough room for search");
1646
0
}
1647
1648
/* ===========================================================================
1649
 * Flush the current block, with given end-of-file flag.
1650
 * IN assertion: strstart is set to the end of the current match.
1651
 */
1652
0
#define FLUSH_BLOCK_ONLY(s, last) { \
1653
0
   _tr_flush_block(s, (s->block_start >= 0L ? \
1654
0
                   (charf *)&s->window[(unsigned)s->block_start] : \
1655
0
                   (charf *)Z_NULL), \
1656
0
                (ulg)((long)s->strstart - s->block_start), \
1657
0
                (last)); \
1658
0
   s->block_start = s->strstart; \
1659
0
   flush_pending(s->strm); \
1660
0
   Tracev((stderr,"[FLUSH]")); \
1661
0
}
1662
1663
/* Same but force premature exit if necessary. */
1664
0
#define FLUSH_BLOCK(s, last) { \
1665
0
   FLUSH_BLOCK_ONLY(s, last); \
1666
0
   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1667
0
}
1668
1669
/* Maximum stored block length in deflate format (not including header). */
1670
0
#define MAX_STORED 65535
1671
1672
/* Minimum of a and b. */
1673
0
#define MIN(a, b) ((a) > (b) ? (b) : (a))
1674
1675
/* ===========================================================================
1676
 * Copy without compression as much as possible from the input stream, return
1677
 * the current block state.
1678
 *
1679
 * In case deflateParams() is used to later switch to a non-zero compression
1680
 * level, s->matches (otherwise unused when storing) keeps track of the number
1681
 * of hash table slides to perform. If s->matches is 1, then one hash table
1682
 * slide will be done when switching. If s->matches is 2, the maximum value
1683
 * allowed here, then the hash table will be cleared, since two or more slides
1684
 * is the same as a clear.
1685
 *
1686
 * deflate_stored() is written to minimize the number of times an input byte is
1687
 * copied. It is most efficient with large input and output buffers, which
1688
 * maximizes the opportunities to have a single copy from next_in to next_out.
1689
 */
1690
local block_state deflate_stored(s, flush)
1691
    deflate_state *s;
1692
    int flush;
1693
0
{
1694
    /* Smallest worthy block size when not flushing or finishing. By default
1695
     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1696
     * large input and output buffers, the stored block size will be larger.
1697
     */
1698
0
    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1699
1700
    /* Copy as many min_block or larger stored blocks directly to next_out as
1701
     * possible. If flushing, copy the remaining available input to next_out as
1702
     * stored blocks, if there is enough space.
1703
     */
1704
0
    unsigned len, left, have, last = 0;
1705
0
    unsigned used = s->strm->avail_in;
1706
0
    do {
1707
        /* Set len to the maximum size block that we can copy directly with the
1708
         * available input data and output space. Set left to how much of that
1709
         * would be copied from what's left in the window.
1710
         */
1711
0
        len = MAX_STORED;       /* maximum deflate stored block length */
1712
0
        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1713
0
        if (s->strm->avail_out < have)          /* need room for header */
1714
0
            break;
1715
            /* maximum stored block length that will fit in avail_out: */
1716
0
        have = s->strm->avail_out - have;
1717
0
        left = s->strstart - s->block_start;    /* bytes left in window */
1718
0
        if (len > (ulg)left + s->strm->avail_in)
1719
0
            len = left + s->strm->avail_in;     /* limit len to the input */
1720
0
        if (len > have)
1721
0
            len = have;                         /* limit len to the output */
1722
1723
        /* If the stored block would be less than min_block in length, or if
1724
         * unable to copy all of the available input when flushing, then try
1725
         * copying to the window and the pending buffer instead. Also don't
1726
         * write an empty block when flushing -- deflate() does that.
1727
         */
1728
0
        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1729
0
                                flush == Z_NO_FLUSH ||
1730
0
                                len != left + s->strm->avail_in))
1731
0
            break;
1732
1733
        /* Make a dummy stored block in pending to get the header bytes,
1734
         * including any pending bits. This also updates the debugging counts.
1735
         */
1736
0
        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1737
0
        _tr_stored_block(s, (char *)0, 0L, last);
1738
1739
        /* Replace the lengths in the dummy stored block with len. */
1740
0
        s->pending_buf[s->pending - 4] = len;
1741
0
        s->pending_buf[s->pending - 3] = len >> 8;
1742
0
        s->pending_buf[s->pending - 2] = ~len;
1743
0
        s->pending_buf[s->pending - 1] = ~len >> 8;
1744
1745
        /* Write the stored block header bytes. */
1746
0
        flush_pending(s->strm);
1747
1748
#ifdef ZLIB_DEBUG
1749
        /* Update debugging counts for the data about to be copied. */
1750
        s->compressed_len += len << 3;
1751
        s->bits_sent += len << 3;
1752
#endif
1753
1754
        /* Copy uncompressed bytes from the window to next_out. */
1755
0
        if (left) {
1756
0
            if (left > len)
1757
0
                left = len;
1758
0
            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1759
0
            s->strm->next_out += left;
1760
0
            s->strm->avail_out -= left;
1761
0
            s->strm->total_out += left;
1762
0
            s->block_start += left;
1763
0
            len -= left;
1764
0
        }
1765
1766
        /* Copy uncompressed bytes directly from next_in to next_out, updating
1767
         * the check value.
1768
         */
1769
0
        if (len) {
1770
0
            read_buf(s->strm, s->strm->next_out, len);
1771
0
            s->strm->next_out += len;
1772
0
            s->strm->avail_out -= len;
1773
0
            s->strm->total_out += len;
1774
0
        }
1775
0
    } while (last == 0);
1776
1777
    /* Update the sliding window with the last s->w_size bytes of the copied
1778
     * data, or append all of the copied data to the existing window if less
1779
     * than s->w_size bytes were copied. Also update the number of bytes to
1780
     * insert in the hash tables, in the event that deflateParams() switches to
1781
     * a non-zero compression level.
1782
     */
1783
0
    used -= s->strm->avail_in;      /* number of input bytes directly copied */
1784
0
    if (used) {
1785
        /* If any input was used, then no unused input remains in the window,
1786
         * therefore s->block_start == s->strstart.
1787
         */
1788
0
        if (used >= s->w_size) {    /* supplant the previous history */
1789
0
            s->matches = 2;         /* clear hash */
1790
0
            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1791
0
            s->strstart = s->w_size;
1792
0
            s->insert = s->strstart;
1793
0
        }
1794
0
        else {
1795
0
            if (s->window_size - s->strstart <= used) {
1796
                /* Slide the window down. */
1797
0
                s->strstart -= s->w_size;
1798
0
                zmemcpy(s->window, s->window + s->w_size, s->strstart);
1799
0
                if (s->matches < 2)
1800
0
                    s->matches++;   /* add a pending slide_hash() */
1801
0
                if (s->insert > s->strstart)
1802
0
                    s->insert = s->strstart;
1803
0
            }
1804
0
            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1805
0
            s->strstart += used;
1806
0
            s->insert += MIN(used, s->w_size - s->insert);
1807
0
        }
1808
0
        s->block_start = s->strstart;
1809
0
    }
1810
0
    if (s->high_water < s->strstart)
1811
0
        s->high_water = s->strstart;
1812
1813
    /* If the last block was written to next_out, then done. */
1814
0
    if (last)
1815
0
        return finish_done;
1816
1817
    /* If flushing and all input has been consumed, then done. */
1818
0
    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1819
0
        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1820
0
        return block_done;
1821
1822
    /* Fill the window with any remaining input. */
1823
0
    have = s->window_size - s->strstart;
1824
0
    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1825
        /* Slide the window down. */
1826
0
        s->block_start -= s->w_size;
1827
0
        s->strstart -= s->w_size;
1828
0
        zmemcpy(s->window, s->window + s->w_size, s->strstart);
1829
0
        if (s->matches < 2)
1830
0
            s->matches++;           /* add a pending slide_hash() */
1831
0
        have += s->w_size;          /* more space now */
1832
0
        if (s->insert > s->strstart)
1833
0
            s->insert = s->strstart;
1834
0
    }
1835
0
    if (have > s->strm->avail_in)
1836
0
        have = s->strm->avail_in;
1837
0
    if (have) {
1838
0
        read_buf(s->strm, s->window + s->strstart, have);
1839
0
        s->strstart += have;
1840
0
        s->insert += MIN(have, s->w_size - s->insert);
1841
0
    }
1842
0
    if (s->high_water < s->strstart)
1843
0
        s->high_water = s->strstart;
1844
1845
    /* There was not enough avail_out to write a complete worthy or flushed
1846
     * stored block to next_out. Write a stored block to pending instead, if we
1847
     * have enough input for a worthy block, or if flushing and there is enough
1848
     * room for the remaining input as a stored block in the pending buffer.
1849
     */
1850
0
    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1851
        /* maximum stored block length that will fit in pending: */
1852
0
    have = MIN(s->pending_buf_size - have, MAX_STORED);
1853
0
    min_block = MIN(have, s->w_size);
1854
0
    left = s->strstart - s->block_start;
1855
0
    if (left >= min_block ||
1856
0
        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1857
0
         s->strm->avail_in == 0 && left <= have)) {
1858
0
        len = MIN(left, have);
1859
0
        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1860
0
               len == left ? 1 : 0;
1861
0
        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1862
0
        s->block_start += len;
1863
0
        flush_pending(s->strm);
1864
0
    }
1865
1866
    /* We've done all we can with the available input and output. */
1867
0
    return last ? finish_started : need_more;
1868
0
}
1869
1870
/* ===========================================================================
1871
 * Compress as much as possible from the input stream, return the current
1872
 * block state.
1873
 * This function does not perform lazy evaluation of matches and inserts
1874
 * new strings in the dictionary only for unmatched strings or for short
1875
 * matches. It is used only for the fast compression options.
1876
 */
1877
local block_state deflate_fast(s, flush)
1878
    deflate_state *s;
1879
    int flush;
1880
0
{
1881
0
    IPos hash_head;       /* head of the hash chain */
1882
0
    int bflush;           /* set if current block must be flushed */
1883
1884
0
    for (;;) {
1885
        /* Make sure that we always have enough lookahead, except
1886
         * at the end of the input file. We need MAX_MATCH bytes
1887
         * for the next match, plus MIN_MATCH bytes to insert the
1888
         * string following the next match.
1889
         */
1890
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1891
0
            fill_window(s);
1892
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1893
0
                return need_more;
1894
0
            }
1895
0
            if (s->lookahead == 0) break; /* flush the current block */
1896
0
        }
1897
1898
        /* Insert the string window[strstart .. strstart + 2] in the
1899
         * dictionary, and set hash_head to the head of the hash chain:
1900
         */
1901
0
        hash_head = NIL;
1902
0
        if (s->lookahead >= MIN_MATCH) {
1903
0
            INSERT_STRING(s, s->strstart, hash_head);
1904
0
        }
1905
1906
        /* Find the longest match, discarding those <= prev_length.
1907
         * At this point we have always match_length < MIN_MATCH
1908
         */
1909
0
        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1910
            /* To simplify the code, we prevent matches with the string
1911
             * of window index 0 (in particular we have to avoid a match
1912
             * of the string with itself at the start of the input file).
1913
             */
1914
0
            s->match_length = longest_match (s, hash_head);
1915
            /* longest_match() sets match_start */
1916
0
        }
1917
0
        if (s->match_length >= MIN_MATCH) {
1918
0
            check_match(s, s->strstart, s->match_start, s->match_length);
1919
1920
0
            _tr_tally_dist(s, s->strstart - s->match_start,
1921
0
                           s->match_length - MIN_MATCH, bflush);
1922
1923
0
            s->lookahead -= s->match_length;
1924
1925
            /* Insert new strings in the hash table only if the match length
1926
             * is not too large. This saves time but degrades compression.
1927
             */
1928
0
#ifndef FASTEST
1929
0
            if (s->match_length <= s->max_insert_length &&
1930
0
                s->lookahead >= MIN_MATCH) {
1931
0
                s->match_length--; /* string at strstart already in table */
1932
0
                do {
1933
0
                    s->strstart++;
1934
0
                    INSERT_STRING(s, s->strstart, hash_head);
1935
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1936
                     * always MIN_MATCH bytes ahead.
1937
                     */
1938
0
                } while (--s->match_length != 0);
1939
0
                s->strstart++;
1940
0
            } else
1941
0
#endif
1942
0
            {
1943
0
                s->strstart += s->match_length;
1944
0
                s->match_length = 0;
1945
0
                s->ins_h = s->window[s->strstart];
1946
0
                UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1947
#if MIN_MATCH != 3
1948
                Call UPDATE_HASH() MIN_MATCH-3 more times
1949
#endif
1950
                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1951
                 * matter since it will be recomputed at next deflate call.
1952
                 */
1953
0
            }
1954
0
        } else {
1955
            /* No match, output a literal byte */
1956
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
1957
0
            _tr_tally_lit(s, s->window[s->strstart], bflush);
1958
0
            s->lookahead--;
1959
0
            s->strstart++;
1960
0
        }
1961
0
        if (bflush) FLUSH_BLOCK(s, 0);
1962
0
    }
1963
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1964
0
    if (flush == Z_FINISH) {
1965
0
        FLUSH_BLOCK(s, 1);
1966
0
        return finish_done;
1967
0
    }
1968
0
    if (s->sym_next)
1969
0
        FLUSH_BLOCK(s, 0);
1970
0
    return block_done;
1971
0
}
1972
1973
#ifndef FASTEST
1974
/* ===========================================================================
1975
 * Same as above, but achieves better compression. We use a lazy
1976
 * evaluation for matches: a match is finally adopted only if there is
1977
 * no better match at the next window position.
1978
 */
1979
local block_state deflate_slow(s, flush)
1980
    deflate_state *s;
1981
    int flush;
1982
0
{
1983
0
    IPos hash_head;          /* head of hash chain */
1984
0
    int bflush;              /* set if current block must be flushed */
1985
1986
    /* Process the input block. */
1987
0
    for (;;) {
1988
        /* Make sure that we always have enough lookahead, except
1989
         * at the end of the input file. We need MAX_MATCH bytes
1990
         * for the next match, plus MIN_MATCH bytes to insert the
1991
         * string following the next match.
1992
         */
1993
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1994
0
            fill_window(s);
1995
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1996
0
                return need_more;
1997
0
            }
1998
0
            if (s->lookahead == 0) break; /* flush the current block */
1999
0
        }
2000
2001
        /* Insert the string window[strstart .. strstart + 2] in the
2002
         * dictionary, and set hash_head to the head of the hash chain:
2003
         */
2004
0
        hash_head = NIL;
2005
0
        if (s->lookahead >= MIN_MATCH) {
2006
0
            INSERT_STRING(s, s->strstart, hash_head);
2007
0
        }
2008
2009
        /* Find the longest match, discarding those <= prev_length.
2010
         */
2011
0
        s->prev_length = s->match_length, s->prev_match = s->match_start;
2012
0
        s->match_length = MIN_MATCH-1;
2013
2014
0
        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2015
0
            s->strstart - hash_head <= MAX_DIST(s)) {
2016
            /* To simplify the code, we prevent matches with the string
2017
             * of window index 0 (in particular we have to avoid a match
2018
             * of the string with itself at the start of the input file).
2019
             */
2020
0
            s->match_length = longest_match (s, hash_head);
2021
            /* longest_match() sets match_start */
2022
2023
0
            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2024
0
#if TOO_FAR <= 32767
2025
0
                || (s->match_length == MIN_MATCH &&
2026
0
                    s->strstart - s->match_start > TOO_FAR)
2027
0
#endif
2028
0
                )) {
2029
2030
                /* If prev_match is also MIN_MATCH, match_start is garbage
2031
                 * but we will ignore the current match anyway.
2032
                 */
2033
0
                s->match_length = MIN_MATCH-1;
2034
0
            }
2035
0
        }
2036
        /* If there was a match at the previous step and the current
2037
         * match is not better, output the previous match:
2038
         */
2039
0
        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2040
0
            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2041
            /* Do not insert strings in hash table beyond this. */
2042
2043
0
            check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
2044
2045
0
            _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
2046
0
                           s->prev_length - MIN_MATCH, bflush);
2047
2048
            /* Insert in hash table all strings up to the end of the match.
2049
             * strstart - 1 and strstart are already inserted. If there is not
2050
             * enough lookahead, the last two strings are not inserted in
2051
             * the hash table.
2052
             */
2053
0
            s->lookahead -= s->prev_length - 1;
2054
0
            s->prev_length -= 2;
2055
0
            do {
2056
0
                if (++s->strstart <= max_insert) {
2057
0
                    INSERT_STRING(s, s->strstart, hash_head);
2058
0
                }
2059
0
            } while (--s->prev_length != 0);
2060
0
            s->match_available = 0;
2061
0
            s->match_length = MIN_MATCH-1;
2062
0
            s->strstart++;
2063
2064
0
            if (bflush) FLUSH_BLOCK(s, 0);
2065
2066
0
        } else if (s->match_available) {
2067
            /* If there was no match at the previous position, output a
2068
             * single literal. If there was a match but the current match
2069
             * is longer, truncate the previous match to a single literal.
2070
             */
2071
0
            Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2072
0
            _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2073
0
            if (bflush) {
2074
0
                FLUSH_BLOCK_ONLY(s, 0);
2075
0
            }
2076
0
            s->strstart++;
2077
0
            s->lookahead--;
2078
0
            if (s->strm->avail_out == 0) return need_more;
2079
0
        } else {
2080
            /* There is no previous match to compare with, wait for
2081
             * the next step to decide.
2082
             */
2083
0
            s->match_available = 1;
2084
0
            s->strstart++;
2085
0
            s->lookahead--;
2086
0
        }
2087
0
    }
2088
0
    Assert (flush != Z_NO_FLUSH, "no flush?");
2089
0
    if (s->match_available) {
2090
0
        Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2091
0
        _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2092
0
        s->match_available = 0;
2093
0
    }
2094
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2095
0
    if (flush == Z_FINISH) {
2096
0
        FLUSH_BLOCK(s, 1);
2097
0
        return finish_done;
2098
0
    }
2099
0
    if (s->sym_next)
2100
0
        FLUSH_BLOCK(s, 0);
2101
0
    return block_done;
2102
0
}
2103
#endif /* FASTEST */
2104
2105
/* ===========================================================================
2106
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2107
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2108
 * deflate switches away from Z_RLE.)
2109
 */
2110
local block_state deflate_rle(s, flush)
2111
    deflate_state *s;
2112
    int flush;
2113
0
{
2114
0
    int bflush;             /* set if current block must be flushed */
2115
0
    uInt prev;              /* byte at distance one to match */
2116
0
    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2117
2118
0
    for (;;) {
2119
        /* Make sure that we always have enough lookahead, except
2120
         * at the end of the input file. We need MAX_MATCH bytes
2121
         * for the longest run, plus one for the unrolled loop.
2122
         */
2123
0
        if (s->lookahead <= MAX_MATCH) {
2124
0
            fill_window(s);
2125
0
            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2126
0
                return need_more;
2127
0
            }
2128
0
            if (s->lookahead == 0) break; /* flush the current block */
2129
0
        }
2130
2131
        /* See how many times the previous byte repeats */
2132
0
        s->match_length = 0;
2133
0
        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2134
0
            scan = s->window + s->strstart - 1;
2135
0
            prev = *scan;
2136
0
            if (prev == *++scan && prev == *++scan && prev == *++scan) {
2137
0
                strend = s->window + s->strstart + MAX_MATCH;
2138
0
                do {
2139
0
                } while (prev == *++scan && prev == *++scan &&
2140
0
                         prev == *++scan && prev == *++scan &&
2141
0
                         prev == *++scan && prev == *++scan &&
2142
0
                         prev == *++scan && prev == *++scan &&
2143
0
                         scan < strend);
2144
0
                s->match_length = MAX_MATCH - (uInt)(strend - scan);
2145
0
                if (s->match_length > s->lookahead)
2146
0
                    s->match_length = s->lookahead;
2147
0
            }
2148
0
            Assert(scan <= s->window + (uInt)(s->window_size - 1),
2149
0
                   "wild scan");
2150
0
        }
2151
2152
        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2153
0
        if (s->match_length >= MIN_MATCH) {
2154
0
            check_match(s, s->strstart, s->strstart - 1, s->match_length);
2155
2156
0
            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2157
2158
0
            s->lookahead -= s->match_length;
2159
0
            s->strstart += s->match_length;
2160
0
            s->match_length = 0;
2161
0
        } else {
2162
            /* No match, output a literal byte */
2163
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
2164
0
            _tr_tally_lit(s, s->window[s->strstart], bflush);
2165
0
            s->lookahead--;
2166
0
            s->strstart++;
2167
0
        }
2168
0
        if (bflush) FLUSH_BLOCK(s, 0);
2169
0
    }
2170
0
    s->insert = 0;
2171
0
    if (flush == Z_FINISH) {
2172
0
        FLUSH_BLOCK(s, 1);
2173
0
        return finish_done;
2174
0
    }
2175
0
    if (s->sym_next)
2176
0
        FLUSH_BLOCK(s, 0);
2177
0
    return block_done;
2178
0
}
2179
2180
/* ===========================================================================
2181
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2182
 * (It will be regenerated if this run of deflate switches away from Huffman.)
2183
 */
2184
local block_state deflate_huff(s, flush)
2185
    deflate_state *s;
2186
    int flush;
2187
0
{
2188
0
    int bflush;             /* set if current block must be flushed */
2189
2190
0
    for (;;) {
2191
        /* Make sure that we have a literal to write. */
2192
0
        if (s->lookahead == 0) {
2193
0
            fill_window(s);
2194
0
            if (s->lookahead == 0) {
2195
0
                if (flush == Z_NO_FLUSH)
2196
0
                    return need_more;
2197
0
                break;      /* flush the current block */
2198
0
            }
2199
0
        }
2200
2201
        /* Output a literal byte */
2202
0
        s->match_length = 0;
2203
0
        Tracevv((stderr,"%c", s->window[s->strstart]));
2204
0
        _tr_tally_lit(s, s->window[s->strstart], bflush);
2205
0
        s->lookahead--;
2206
0
        s->strstart++;
2207
0
        if (bflush) FLUSH_BLOCK(s, 0);
2208
0
    }
2209
0
    s->insert = 0;
2210
0
    if (flush == Z_FINISH) {
2211
0
        FLUSH_BLOCK(s, 1);
2212
0
        return finish_done;
2213
0
    }
2214
0
    if (s->sym_next)
2215
0
        FLUSH_BLOCK(s, 0);
2216
0
    return block_done;
2217
0
}