Coverage Report

Created: 2024-05-21 06:30

/src/libjpeg-turbo/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
39.7k
{
81
39.7k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
39.7k
  int ci, blkn, dctbl, actbl;
83
39.7k
  d_derived_tbl **pdtbl;
84
39.7k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
39.7k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
39.7k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
7.38k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
80.2k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
40.4k
    compptr = cinfo->cur_comp_info[ci];
96
40.4k
    dctbl = compptr->dc_tbl_no;
97
40.4k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
40.4k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
40.4k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
40.4k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
40.4k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
40.4k
    entropy->saved.last_dc_val[ci] = 0;
106
40.4k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
80.2k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
40.4k
    ci = cinfo->MCU_membership[blkn];
111
40.4k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
40.4k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
40.4k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
40.4k
    if (compptr->component_needed) {
117
40.4k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
40.4k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
40.4k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
40.4k
  }
124
125
  /* Initialize bitread state variables */
126
39.7k
  entropy->bitstate.bits_left = 0;
127
39.7k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
39.7k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
39.7k
  entropy->restarts_to_go = cinfo->restart_interval;
132
39.7k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
96.7k
{
146
96.7k
  JHUFF_TBL *htbl;
147
96.7k
  d_derived_tbl *dtbl;
148
96.7k
  int p, i, l, si, numsymbols;
149
96.7k
  int lookbits, ctr;
150
96.7k
  char huffsize[257];
151
96.7k
  unsigned int huffcode[257];
152
96.7k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
96.7k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
257
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
96.7k
  htbl =
162
96.7k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
96.7k
  if (htbl == NULL)
164
237
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
96.7k
  if (*pdtbl == NULL)
168
87.8k
    *pdtbl = (d_derived_tbl *)
169
87.8k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
87.8k
                                  sizeof(d_derived_tbl));
171
96.7k
  dtbl = *pdtbl;
172
96.7k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
96.7k
  p = 0;
177
1.63M
  for (l = 1; l <= 16; l++) {
178
1.54M
    i = (int)htbl->bits[l];
179
1.54M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
7.03M
    while (i--)
182
5.49M
      huffsize[p++] = (char)l;
183
1.54M
  }
184
96.7k
  huffsize[p] = 0;
185
96.7k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
96.7k
  code = 0;
191
96.7k
  si = huffsize[0];
192
96.7k
  p = 0;
193
1.05M
  while (huffsize[p]) {
194
6.44M
    while (((int)huffsize[p]) == si) {
195
5.49M
      huffcode[p++] = code;
196
5.49M
      code++;
197
5.49M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
955k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
150
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
955k
    code <<= 1;
204
955k
    si++;
205
955k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
96.7k
  p = 0;
210
1.63M
  for (l = 1; l <= 16; l++) {
211
1.53M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
671k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
671k
      p += htbl->bits[l];
217
671k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
867k
    } else {
219
867k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
867k
    }
221
1.53M
  }
222
96.7k
  dtbl->valoffset[17] = 0;
223
96.7k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
24.7M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
24.6M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
96.7k
  p = 0;
236
866k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
2.38M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
1.61M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
16.3M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
14.7M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
14.7M
        lookbits++;
244
14.7M
      }
245
1.61M
    }
246
769k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
96.7k
  if (isDC) {
255
617k
    for (i = 0; i < numsymbols; i++) {
256
564k
      int sym = htbl->huffval[i];
257
564k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
346
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
564k
    }
260
53.4k
  }
261
96.7k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
9.31M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
2.14M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
2.14M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
2.14M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
2.14M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
2.14M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
7.74M
    while (bits_left < MIN_GET_BITS) {
303
6.78M
      register int c;
304
305
      /* Attempt to read a byte */
306
6.78M
      if (bytes_in_buffer == 0) {
307
62.3k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
62.3k
        next_input_byte = cinfo->src->next_input_byte;
310
62.3k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
62.3k
      }
312
6.78M
      bytes_in_buffer--;
313
6.78M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
6.78M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
394k
        do {
323
394k
          if (bytes_in_buffer == 0) {
324
3.14k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
3.14k
            next_input_byte = cinfo->src->next_input_byte;
327
3.14k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
3.14k
          }
329
394k
          bytes_in_buffer--;
330
394k
          c = *next_input_byte++;
331
394k
        } while (c == 0xFF);
332
333
98.8k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
34.6k
          c = 0xFF;
336
64.1k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
64.1k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
64.1k
          goto no_more_bytes;
348
64.1k
        }
349
98.8k
      }
350
351
      /* OK, load c into get_buffer */
352
6.72M
      get_buffer = (get_buffer << 8) | c;
353
6.72M
      bits_left += 8;
354
6.72M
    } /* end while */
355
1.12M
  } else {
356
1.18M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
1.18M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
782k
      if (!cinfo->entropy->insufficient_data) {
368
61.7k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
61.7k
        cinfo->entropy->insufficient_data = TRUE;
370
61.7k
      }
371
      /* Fill the buffer with zero bits */
372
782k
      get_buffer <<= MIN_GET_BITS - bits_left;
373
782k
      bits_left = MIN_GET_BITS;
374
782k
    }
375
1.18M
  }
376
377
  /* Unload the local registers */
378
2.14M
  state->next_input_byte = next_input_byte;
379
2.14M
  state->bytes_in_buffer = bytes_in_buffer;
380
2.14M
  state->get_buffer = get_buffer;
381
2.14M
  state->bits_left = bits_left;
382
383
2.14M
  return TRUE;
384
2.14M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
697k
#define GET_BYTE { \
392
697k
  register int c0, c1; \
393
697k
  c0 = *buffer++; \
394
697k
  c1 = *buffer; \
395
697k
  /* Pre-execute most common case */ \
396
697k
  get_buffer = (get_buffer << 8) | c0; \
397
697k
  bits_left += 8; \
398
697k
  if (c0 == 0xFF) { \
399
56.4k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
56.4k
    buffer++; \
401
56.4k
    if (c1 != 0) { \
402
41.3k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
41.3k
      cinfo->unread_marker = c1; \
404
41.3k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
41.3k
      buffer -= 2; \
406
41.3k
      get_buffer &= ~0xFF; \
407
41.3k
    } \
408
56.4k
  } \
409
697k
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
1.68M
  if (bits_left <= 16) { \
416
116k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
116k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
1.04M
{
440
1.04M
  register int l = min_bits;
441
1.04M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
1.04M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
1.04M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
6.76M
  while (code > htbl->maxcode[l]) {
453
5.72M
    code <<= 1;
454
5.72M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
5.72M
    code |= GET_BITS(1);
456
5.72M
    l++;
457
5.72M
  }
458
459
  /* Unload the local registers */
460
1.04M
  state->get_buffer = get_buffer;
461
1.04M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
1.04M
  if (l > 16) {
466
584k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
584k
    return 0;                   /* fake a zero as the safest result */
468
584k
  }
469
470
462k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
1.04M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
3.63M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
3.63M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
71.8k
{
514
71.8k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
71.8k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
71.8k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
71.8k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
71.8k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
146k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
74.7k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
71.8k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
71.8k
  if (cinfo->unread_marker == 0)
539
9.79k
    entropy->pub.insufficient_data = FALSE;
540
541
71.8k
  return TRUE;
542
71.8k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
526k
{
554
526k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
526k
  BITREAD_STATE_VARS;
556
526k
  int blkn;
557
526k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
526k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
526k
  state = entropy->saved;
563
564
1.26M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
743k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
743k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
743k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
743k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
743k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
742k
    if (s) {
575
240k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
240k
      r = GET_BITS(s);
577
240k
      s = HUFF_EXTEND(r, s);
578
240k
    }
579
580
742k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
742k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
742k
      s += state.last_dc_val[ci];
592
742k
      state.last_dc_val[ci] = s;
593
742k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
742k
        (*block)[0] = (JCOEF)s;
596
742k
      }
597
742k
    }
598
599
742k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
3.41M
      for (k = 1; k < DCTSIZE2; k++) {
604
3.35M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
3.35M
        r = s >> 4;
607
3.35M
        s &= 15;
608
609
3.35M
        if (s) {
610
2.64M
          k += r;
611
2.64M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
2.64M
          r = GET_BITS(s);
613
2.64M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
2.64M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
2.64M
        } else {
620
709k
          if (r != 15)
621
688k
            break;
622
21.2k
          k += 15;
623
21.2k
        }
624
3.35M
      }
625
626
742k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
15
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
15
    }
647
742k
  }
648
649
  /* Completed MCU, so update state */
650
525k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
525k
  entropy->saved = state;
652
525k
  return TRUE;
653
526k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
108k
{
665
108k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
108k
  BITREAD_STATE_VARS;
667
108k
  JOCTET *buffer;
668
108k
  int blkn;
669
108k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
108k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
108k
  buffer = (JOCTET *)br_state.next_input_byte;
675
108k
  state = entropy->saved;
676
677
217k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
108k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
108k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
108k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
108k
    register int s, k, r, l;
682
683
108k
    HUFF_DECODE_FAST(s, l, dctbl);
684
108k
    if (s) {
685
18.2k
      FILL_BIT_BUFFER_FAST
686
18.2k
      r = GET_BITS(s);
687
18.2k
      s = HUFF_EXTEND(r, s);
688
18.2k
    }
689
690
108k
    if (entropy->dc_needed[blkn]) {
691
108k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
108k
      s += state.last_dc_val[ci];
696
108k
      state.last_dc_val[ci] = s;
697
108k
      if (block)
698
108k
        (*block)[0] = (JCOEF)s;
699
108k
    }
700
701
108k
    if (entropy->ac_needed[blkn] && block) {
702
703
839k
      for (k = 1; k < DCTSIZE2; k++) {
704
826k
        HUFF_DECODE_FAST(s, l, actbl);
705
826k
        r = s >> 4;
706
826k
        s &= 15;
707
708
826k
        if (s) {
709
726k
          k += r;
710
726k
          FILL_BIT_BUFFER_FAST
711
726k
          r = GET_BITS(s);
712
726k
          s = HUFF_EXTEND(r, s);
713
726k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
726k
        } else {
715
100k
          if (r != 15) break;
716
4.70k
          k += 15;
717
4.70k
        }
718
826k
      }
719
720
108k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
108k
  }
738
739
108k
  if (cinfo->unread_marker != 0) {
740
5.73k
    cinfo->unread_marker = 0;
741
5.73k
    return FALSE;
742
5.73k
  }
743
744
102k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
102k
  br_state.next_input_byte = buffer;
746
102k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
102k
  entropy->saved = state;
748
102k
  return TRUE;
749
108k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
69.5M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
69.5M
{
772
69.5M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
69.5M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
69.5M
  if (cinfo->restart_interval) {
777
5.32M
    if (entropy->restarts_to_go == 0)
778
71.8k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
5.32M
    usefast = 0;
781
5.32M
  }
782
783
69.5M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
69.5M
      cinfo->unread_marker != 0)
785
69.2M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
69.5M
  if (!entropy->pub.insufficient_data) {
791
792
629k
    if (usefast) {
793
108k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
521k
    } else {
795
526k
use_slow:
796
526k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
526k
    }
798
799
629k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
69.5M
  if (cinfo->restart_interval)
803
5.31M
    entropy->restarts_to_go--;
804
805
69.5M
  return TRUE;
806
69.5M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
39.5k
{
816
39.5k
  huff_entropy_ptr entropy;
817
39.5k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
39.5k
  std_huff_tables((j_common_ptr)cinfo);
824
825
39.5k
  entropy = (huff_entropy_ptr)
826
39.5k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
39.5k
                                sizeof(huff_entropy_decoder));
828
39.5k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
39.5k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
39.5k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
197k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
158k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
158k
  }
836
39.5k
}