Coverage Report

Created: 2025-11-11 06:59

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjpeg-turbo/src/jdhuff.c
Line
Count
Source
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
33.3k
{
81
33.3k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
33.3k
  int ci, blkn, dctbl, actbl;
83
33.3k
  d_derived_tbl **pdtbl;
84
33.3k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
33.3k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
27.9k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
6.26k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
68.0k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
34.7k
    compptr = cinfo->cur_comp_info[ci];
96
34.7k
    dctbl = compptr->dc_tbl_no;
97
34.7k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
34.7k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
34.7k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
34.7k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
34.7k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
34.7k
    entropy->saved.last_dc_val[ci] = 0;
106
34.7k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
69.1k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
35.7k
    ci = cinfo->MCU_membership[blkn];
111
35.7k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
35.7k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
35.7k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
35.7k
    if (compptr->component_needed) {
117
35.7k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
35.7k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
35.7k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
35.7k
  }
124
125
  /* Initialize bitread state variables */
126
33.3k
  entropy->bitstate.bits_left = 0;
127
33.3k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
33.3k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
33.3k
  entropy->restarts_to_go = cinfo->restart_interval;
132
33.3k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
101k
{
146
101k
  JHUFF_TBL *htbl;
147
101k
  d_derived_tbl *dtbl;
148
101k
  int p, i, l, si, numsymbols;
149
101k
  int lookbits, ctr;
150
101k
  char huffsize[257];
151
101k
  unsigned int huffcode[257];
152
101k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
101k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
361
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
101k
  htbl =
162
101k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
101k
  if (htbl == NULL)
164
333
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
101k
  if (*pdtbl == NULL)
168
79.8k
    *pdtbl = (d_derived_tbl *)
169
79.8k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
79.8k
                                  sizeof(d_derived_tbl));
171
101k
  dtbl = *pdtbl;
172
101k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
101k
  p = 0;
177
1.71M
  for (l = 1; l <= 16; l++) {
178
1.61M
    i = (int)htbl->bits[l];
179
1.61M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
8.44M
    while (i--)
182
6.83M
      huffsize[p++] = (char)l;
183
1.61M
  }
184
101k
  huffsize[p] = 0;
185
101k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
101k
  code = 0;
191
101k
  si = huffsize[0];
192
101k
  p = 0;
193
1.00M
  while (huffsize[p]) {
194
7.73M
    while (((int)huffsize[p]) == si) {
195
6.82M
      huffcode[p++] = code;
196
6.82M
      code++;
197
6.82M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
907k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
190
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
907k
    code <<= 1;
204
907k
    si++;
205
907k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
101k
  p = 0;
210
1.71M
  for (l = 1; l <= 16; l++) {
211
1.61M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
637k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
637k
      p += htbl->bits[l];
217
637k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
975k
    } else {
219
975k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
975k
    }
221
1.61M
  }
222
101k
  dtbl->valoffset[17] = 0;
223
101k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
25.9M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
25.8M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
101k
  p = 0;
236
908k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
2.39M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
1.58M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
16.5M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
14.9M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
14.9M
        lookbits++;
244
14.9M
      }
245
1.58M
    }
246
806k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
101k
  if (isDC) {
255
569k
    for (i = 0; i < numsymbols; i++) {
256
507k
      int sym = htbl->huffval[i];
257
507k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
271
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
507k
    }
260
62.4k
  }
261
101k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
6.76M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
1.55M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
1.55M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
1.55M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
1.55M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
1.55M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
5.66M
    while (bits_left < MIN_GET_BITS) {
303
4.99M
      register int c;
304
305
      /* Attempt to read a byte */
306
4.99M
      if (bytes_in_buffer == 0) {
307
52.5k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
52.5k
        next_input_byte = cinfo->src->next_input_byte;
310
52.5k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
52.5k
      }
312
4.99M
      bytes_in_buffer--;
313
4.99M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
4.99M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
420k
        do {
323
420k
          if (bytes_in_buffer == 0) {
324
5.05k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
5.05k
            next_input_byte = cinfo->src->next_input_byte;
327
5.05k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
5.05k
          }
329
420k
          bytes_in_buffer--;
330
420k
          c = *next_input_byte++;
331
420k
        } while (c == 0xFF);
332
333
120k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
51.1k
          c = 0xFF;
336
68.9k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
68.9k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
68.9k
          goto no_more_bytes;
348
68.9k
        }
349
120k
      }
350
351
      /* OK, load c into get_buffer */
352
4.92M
      get_buffer = (get_buffer << 8) | c;
353
4.92M
      bits_left += 8;
354
4.92M
    } /* end while */
355
823k
  } else {
356
892k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
892k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
553k
      if (!cinfo->entropy->insufficient_data) {
368
67.0k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
67.0k
        cinfo->entropy->insufficient_data = TRUE;
370
67.0k
      }
371
      /* Fill the buffer with zero bits */
372
553k
      get_buffer <<= MIN_GET_BITS - bits_left;
373
553k
      bits_left = MIN_GET_BITS;
374
553k
    }
375
892k
  }
376
377
  /* Unload the local registers */
378
1.55M
  state->next_input_byte = next_input_byte;
379
1.55M
  state->bytes_in_buffer = bytes_in_buffer;
380
1.55M
  state->get_buffer = get_buffer;
381
1.55M
  state->bits_left = bits_left;
382
383
1.55M
  return TRUE;
384
1.55M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
755k
#define GET_BYTE { \
392
755k
  register int c0, c1; \
393
755k
  c0 = *buffer++; \
394
755k
  c1 = *buffer; \
395
755k
  /* Pre-execute most common case */ \
396
755k
  get_buffer = (get_buffer << 8) | c0; \
397
755k
  bits_left += 8; \
398
755k
  if (c0 == 0xFF) { \
399
137k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
137k
    buffer++; \
401
137k
    if (c1 != 0) { \
402
126k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
126k
      cinfo->unread_marker = c1; \
404
126k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
126k
      buffer -= 2; \
406
126k
      get_buffer &= ~0xFF; \
407
126k
    } \
408
137k
  } \
409
755k
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
1.15M
  if (bits_left <= 16) { \
416
125k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
125k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
926k
{
440
926k
  register int l = min_bits;
441
926k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
926k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
926k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
6.63M
  while (code > htbl->maxcode[l]) {
453
5.71M
    code <<= 1;
454
5.71M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
5.71M
    code |= GET_BITS(1);
456
5.71M
    l++;
457
5.71M
  }
458
459
  /* Unload the local registers */
460
926k
  state->get_buffer = get_buffer;
461
926k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
926k
  if (l > 16) {
466
599k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
599k
    return 0;                   /* fake a zero as the safest result */
468
599k
  }
469
470
327k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
926k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
3.29M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
3.29M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
18.0k
{
514
18.0k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
18.0k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
18.0k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
18.0k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
18.0k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
49.9k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
31.8k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
18.0k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
18.0k
  if (cinfo->unread_marker == 0)
539
10.0k
    entropy->pub.insufficient_data = FALSE;
540
541
18.0k
  return TRUE;
542
18.0k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
561k
{
554
561k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
561k
  BITREAD_STATE_VARS;
556
561k
  int blkn;
557
561k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
561k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
561k
  state = entropy->saved;
563
564
1.44M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
887k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
887k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
887k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
887k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
887k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
883k
    if (s) {
575
332k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
332k
      r = GET_BITS(s);
577
332k
      s = HUFF_EXTEND(r, s);
578
332k
    }
579
580
883k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
883k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
883k
      s += state.last_dc_val[ci];
592
883k
      state.last_dc_val[ci] = s;
593
883k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
883k
        (*block)[0] = (JCOEF)s;
596
883k
      }
597
883k
    }
598
599
883k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
3.43M
      for (k = 1; k < DCTSIZE2; k++) {
604
3.40M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
3.40M
        r = s >> 4;
607
3.40M
        s &= 15;
608
609
3.40M
        if (s) {
610
2.55M
          k += r;
611
2.55M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
2.55M
          r = GET_BITS(s);
613
2.55M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
2.55M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
2.55M
        } else {
620
852k
          if (r != 15)
621
850k
            break;
622
1.96k
          k += 15;
623
1.96k
        }
624
3.40M
      }
625
626
883k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
0
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
0
    }
647
883k
  }
648
649
  /* Completed MCU, so update state */
650
557k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
557k
  entropy->saved = state;
652
557k
  return TRUE;
653
561k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
182k
{
665
182k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
182k
  BITREAD_STATE_VARS;
667
182k
  JOCTET *buffer;
668
182k
  int blkn;
669
182k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
182k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
182k
  buffer = (JOCTET *)br_state.next_input_byte;
675
182k
  state = entropy->saved;
676
677
368k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
186k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
186k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
186k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
186k
    register int s, k, r, l;
682
683
186k
    HUFF_DECODE_FAST(s, l, dctbl);
684
186k
    if (s) {
685
31.4k
      FILL_BIT_BUFFER_FAST
686
31.4k
      r = GET_BITS(s);
687
31.4k
      s = HUFF_EXTEND(r, s);
688
31.4k
    }
689
690
186k
    if (entropy->dc_needed[blkn]) {
691
186k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
186k
      s += state.last_dc_val[ci];
696
186k
      state.last_dc_val[ci] = s;
697
186k
      if (block)
698
186k
        (*block)[0] = (JCOEF)s;
699
186k
    }
700
701
186k
    if (entropy->ac_needed[blkn] && block) {
702
703
562k
      for (k = 1; k < DCTSIZE2; k++) {
704
557k
        HUFF_DECODE_FAST(s, l, actbl);
705
557k
        r = s >> 4;
706
557k
        s &= 15;
707
708
557k
        if (s) {
709
375k
          k += r;
710
375k
          FILL_BIT_BUFFER_FAST
711
375k
          r = GET_BITS(s);
712
375k
          s = HUFF_EXTEND(r, s);
713
375k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
375k
        } else {
715
181k
          if (r != 15) break;
716
321
          k += 15;
717
321
        }
718
557k
      }
719
720
186k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
186k
  }
738
739
182k
  if (cinfo->unread_marker != 0) {
740
6.13k
    cinfo->unread_marker = 0;
741
6.13k
    return FALSE;
742
6.13k
  }
743
744
175k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
175k
  br_state.next_input_byte = buffer;
746
175k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
175k
  entropy->saved = state;
748
175k
  return TRUE;
749
182k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
33.7M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
33.7M
{
772
33.7M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
33.7M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
33.7M
  if (cinfo->restart_interval) {
777
943k
    if (entropy->restarts_to_go == 0)
778
18.0k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
943k
    usefast = 0;
781
943k
  }
782
783
33.7M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
4.37M
      cinfo->unread_marker != 0)
785
33.5M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
33.7M
  if (!entropy->pub.insufficient_data) {
791
792
737k
    if (usefast) {
793
182k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
555k
    } else {
795
561k
use_slow:
796
561k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
561k
    }
798
799
737k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
33.7M
  if (cinfo->restart_interval)
803
937k
    entropy->restarts_to_go--;
804
805
33.7M
  return TRUE;
806
33.7M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
32.3k
{
816
32.3k
  huff_entropy_ptr entropy;
817
32.3k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
32.3k
  std_huff_tables((j_common_ptr)cinfo);
824
825
32.3k
  entropy = (huff_entropy_ptr)
826
32.3k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
32.3k
                                sizeof(huff_entropy_decoder));
828
32.3k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
32.3k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
32.3k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
161k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
129k
  }
836
32.3k
}