/src/libultrahdr/lib/src/icc.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2022 The Android Open Source Project |
3 | | * |
4 | | * Licensed under the Apache License, Version 2.0 (the "License"); |
5 | | * you may not use this file except in compliance with the License. |
6 | | * You may obtain a copy of the License at |
7 | | * |
8 | | * http://www.apache.org/licenses/LICENSE-2.0 |
9 | | * |
10 | | * Unless required by applicable law or agreed to in writing, software |
11 | | * distributed under the License is distributed on an "AS IS" BASIS, |
12 | | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | | * See the License for the specific language governing permissions and |
14 | | * limitations under the License. |
15 | | */ |
16 | | |
17 | | #include <cstring> |
18 | | #include <cmath> |
19 | | |
20 | | #include "ultrahdr/ultrahdrcommon.h" |
21 | | #include "ultrahdr/icc.h" |
22 | | |
23 | | namespace ultrahdr { |
24 | | |
25 | 0 | static void Matrix3x3_apply(const Matrix3x3* m, float* x) { |
26 | 0 | float y0 = x[0] * m->vals[0][0] + x[1] * m->vals[0][1] + x[2] * m->vals[0][2]; |
27 | 0 | float y1 = x[0] * m->vals[1][0] + x[1] * m->vals[1][1] + x[2] * m->vals[1][2]; |
28 | 0 | float y2 = x[0] * m->vals[2][0] + x[1] * m->vals[2][1] + x[2] * m->vals[2][2]; |
29 | 0 | x[0] = y0; |
30 | 0 | x[1] = y1; |
31 | 0 | x[2] = y2; |
32 | 0 | } |
33 | | |
34 | 0 | bool Matrix3x3_invert(const Matrix3x3* src, Matrix3x3* dst) { |
35 | 0 | double a00 = src->vals[0][0]; |
36 | 0 | double a01 = src->vals[1][0]; |
37 | 0 | double a02 = src->vals[2][0]; |
38 | 0 | double a10 = src->vals[0][1]; |
39 | 0 | double a11 = src->vals[1][1]; |
40 | 0 | double a12 = src->vals[2][1]; |
41 | 0 | double a20 = src->vals[0][2]; |
42 | 0 | double a21 = src->vals[1][2]; |
43 | 0 | double a22 = src->vals[2][2]; |
44 | |
|
45 | 0 | double b0 = a00 * a11 - a01 * a10; |
46 | 0 | double b1 = a00 * a12 - a02 * a10; |
47 | 0 | double b2 = a01 * a12 - a02 * a11; |
48 | 0 | double b3 = a20; |
49 | 0 | double b4 = a21; |
50 | 0 | double b5 = a22; |
51 | |
|
52 | 0 | double determinant = b0 * b5 - b1 * b4 + b2 * b3; |
53 | |
|
54 | 0 | if (determinant == 0) { |
55 | 0 | return false; |
56 | 0 | } |
57 | | |
58 | 0 | double invdet = 1.0 / determinant; |
59 | 0 | if (invdet > +FLT_MAX || invdet < -FLT_MAX || !isfinitef_((float)invdet)) { |
60 | 0 | return false; |
61 | 0 | } |
62 | | |
63 | 0 | b0 *= invdet; |
64 | 0 | b1 *= invdet; |
65 | 0 | b2 *= invdet; |
66 | 0 | b3 *= invdet; |
67 | 0 | b4 *= invdet; |
68 | 0 | b5 *= invdet; |
69 | |
|
70 | 0 | dst->vals[0][0] = (float)(a11 * b5 - a12 * b4); |
71 | 0 | dst->vals[1][0] = (float)(a02 * b4 - a01 * b5); |
72 | 0 | dst->vals[2][0] = (float)(+b2); |
73 | 0 | dst->vals[0][1] = (float)(a12 * b3 - a10 * b5); |
74 | 0 | dst->vals[1][1] = (float)(a00 * b5 - a02 * b3); |
75 | 0 | dst->vals[2][1] = (float)(-b1); |
76 | 0 | dst->vals[0][2] = (float)(a10 * b4 - a11 * b3); |
77 | 0 | dst->vals[1][2] = (float)(a01 * b3 - a00 * b4); |
78 | 0 | dst->vals[2][2] = (float)(+b0); |
79 | |
|
80 | 0 | for (int r = 0; r < 3; ++r) |
81 | 0 | for (int c = 0; c < 3; ++c) { |
82 | 0 | if (!isfinitef_(dst->vals[r][c])) { |
83 | 0 | return false; |
84 | 0 | } |
85 | 0 | } |
86 | 0 | return true; |
87 | 0 | } |
88 | | |
89 | 0 | static Matrix3x3 Matrix3x3_concat(const Matrix3x3* A, const Matrix3x3* B) { |
90 | 0 | Matrix3x3 m = {{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}}; |
91 | 0 | for (int r = 0; r < 3; r++) |
92 | 0 | for (int c = 0; c < 3; c++) { |
93 | 0 | m.vals[r][c] = A->vals[r][0] * B->vals[0][c] + A->vals[r][1] * B->vals[1][c] + |
94 | 0 | A->vals[r][2] * B->vals[2][c]; |
95 | 0 | } |
96 | 0 | return m; |
97 | 0 | } |
98 | | |
99 | 0 | static void float_XYZD50_to_grid16_lab(const float* xyz_float, uint8_t* grid16_lab) { |
100 | 0 | float v[3] = { |
101 | 0 | xyz_float[0] / kD50_x, |
102 | 0 | xyz_float[1] / kD50_y, |
103 | 0 | xyz_float[2] / kD50_z, |
104 | 0 | }; |
105 | 0 | for (size_t i = 0; i < 3; ++i) { |
106 | 0 | v[i] = v[i] > 0.008856f ? cbrtf(v[i]) : v[i] * 7.787f + (16 / 116.0f); |
107 | 0 | } |
108 | 0 | const float L = v[1] * 116.0f - 16.0f; |
109 | 0 | const float a = (v[0] - v[1]) * 500.0f; |
110 | 0 | const float b = (v[1] - v[2]) * 200.0f; |
111 | 0 | const float Lab_unorm[3] = { |
112 | 0 | L * (1 / 100.f), |
113 | 0 | (a + 128.0f) * (1 / 255.0f), |
114 | 0 | (b + 128.0f) * (1 / 255.0f), |
115 | 0 | }; |
116 | | // This will encode L=1 as 0xFFFF. This matches how skcms will interpret the |
117 | | // table, but the spec appears to indicate that the value should be 0xFF00. |
118 | | // https://crbug.com/skia/13807 |
119 | 0 | for (size_t i = 0; i < 3; ++i) { |
120 | 0 | reinterpret_cast<uint16_t*>(grid16_lab)[i] = |
121 | 0 | Endian_SwapBE16(float_round_to_unorm16(Lab_unorm[i])); |
122 | 0 | } |
123 | 0 | } |
124 | | |
125 | | std::string IccHelper::get_desc_string(const uhdr_color_transfer_t tf, |
126 | 0 | const uhdr_color_gamut_t gamut) { |
127 | 0 | std::string result; |
128 | 0 | switch (gamut) { |
129 | 0 | case UHDR_CG_BT_709: |
130 | 0 | result += "sRGB"; |
131 | 0 | break; |
132 | 0 | case UHDR_CG_DISPLAY_P3: |
133 | 0 | result += "Display P3"; |
134 | 0 | break; |
135 | 0 | case UHDR_CG_BT_2100: |
136 | 0 | result += "Rec2020"; |
137 | 0 | break; |
138 | 0 | default: |
139 | 0 | result += "Unknown"; |
140 | 0 | break; |
141 | 0 | } |
142 | 0 | result += " Gamut with "; |
143 | 0 | switch (tf) { |
144 | 0 | case UHDR_CT_SRGB: |
145 | 0 | result += "sRGB"; |
146 | 0 | break; |
147 | 0 | case UHDR_CT_LINEAR: |
148 | 0 | result += "Linear"; |
149 | 0 | break; |
150 | 0 | case UHDR_CT_PQ: |
151 | 0 | result += "PQ"; |
152 | 0 | break; |
153 | 0 | case UHDR_CT_HLG: |
154 | 0 | result += "HLG"; |
155 | 0 | break; |
156 | 0 | default: |
157 | 0 | result += "Unknown"; |
158 | 0 | break; |
159 | 0 | } |
160 | 0 | result += " Transfer"; |
161 | 0 | return result; |
162 | 0 | } |
163 | | |
164 | 0 | std::shared_ptr<DataStruct> IccHelper::write_text_tag(const char* text) { |
165 | 0 | uint32_t text_length = strlen(text); |
166 | 0 | uint32_t header[] = { |
167 | 0 | Endian_SwapBE32(kTAG_TextType), // Type signature |
168 | 0 | 0, // Reserved |
169 | 0 | Endian_SwapBE32(1), // Number of records |
170 | 0 | Endian_SwapBE32(12), // Record size (must be 12) |
171 | 0 | Endian_SwapBE32(SetFourByteTag('e', 'n', 'U', 'S')), // English USA |
172 | 0 | Endian_SwapBE32(2 * text_length), // Length of string in bytes |
173 | 0 | Endian_SwapBE32(28), // Offset of string |
174 | 0 | }; |
175 | |
|
176 | 0 | uint32_t total_length = text_length * 2 + sizeof(header); |
177 | 0 | total_length = (((total_length + 2) >> 2) << 2); // 4 aligned |
178 | 0 | std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(total_length); |
179 | |
|
180 | 0 | if (!dataStruct->write(header, sizeof(header))) { |
181 | 0 | ALOGE("write_text_tag(): error in writing data"); |
182 | 0 | return dataStruct; |
183 | 0 | } |
184 | | |
185 | 0 | for (size_t i = 0; i < text_length; i++) { |
186 | | // Convert ASCII to big-endian UTF-16. |
187 | 0 | dataStruct->write8(0); |
188 | 0 | dataStruct->write8(text[i]); |
189 | 0 | } |
190 | |
|
191 | 0 | return dataStruct; |
192 | 0 | } |
193 | | |
194 | 0 | std::shared_ptr<DataStruct> IccHelper::write_xyz_tag(float x, float y, float z) { |
195 | 0 | uint32_t data[] = { |
196 | 0 | Endian_SwapBE32(kXYZ_PCSSpace), |
197 | 0 | 0, |
198 | 0 | static_cast<uint32_t>(Endian_SwapBE32(float_round_to_fixed(x))), |
199 | 0 | static_cast<uint32_t>(Endian_SwapBE32(float_round_to_fixed(y))), |
200 | 0 | static_cast<uint32_t>(Endian_SwapBE32(float_round_to_fixed(z))), |
201 | 0 | }; |
202 | 0 | std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(sizeof(data)); |
203 | 0 | dataStruct->write(&data, sizeof(data)); |
204 | 0 | return dataStruct; |
205 | 0 | } |
206 | | |
207 | | std::shared_ptr<DataStruct> IccHelper::write_trc_tag(const int table_entries, |
208 | 0 | const void* table_16) { |
209 | 0 | int total_length = 4 + 4 + 4 + table_entries * 2; |
210 | 0 | total_length = (((total_length + 2) >> 2) << 2); // 4 aligned |
211 | 0 | std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(total_length); |
212 | 0 | dataStruct->write32(Endian_SwapBE32(kTAG_CurveType)); // Type |
213 | 0 | dataStruct->write32(0); // Reserved |
214 | 0 | dataStruct->write32(Endian_SwapBE32(table_entries)); // Value count |
215 | 0 | for (int i = 0; i < table_entries; ++i) { |
216 | 0 | uint16_t value = reinterpret_cast<const uint16_t*>(table_16)[i]; |
217 | 0 | dataStruct->write16(value); |
218 | 0 | } |
219 | 0 | return dataStruct; |
220 | 0 | } |
221 | | |
222 | 0 | std::shared_ptr<DataStruct> IccHelper::write_trc_tag(const TransferFunction& fn) { |
223 | 0 | if (fn.a == 1.f && fn.b == 0.f && fn.c == 0.f && fn.d == 0.f && fn.e == 0.f && fn.f == 0.f) { |
224 | 0 | int total_length = 16; |
225 | 0 | std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(total_length); |
226 | 0 | dataStruct->write32(Endian_SwapBE32(kTAG_ParaCurveType)); // Type |
227 | 0 | dataStruct->write32(0); // Reserved |
228 | 0 | dataStruct->write32(Endian_SwapBE16(kExponential_ParaCurveType)); |
229 | 0 | dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.g))); |
230 | 0 | return dataStruct; |
231 | 0 | } |
232 | | |
233 | 0 | int total_length = 40; |
234 | 0 | std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(total_length); |
235 | 0 | dataStruct->write32(Endian_SwapBE32(kTAG_ParaCurveType)); // Type |
236 | 0 | dataStruct->write32(0); // Reserved |
237 | 0 | dataStruct->write32(Endian_SwapBE16(kGABCDEF_ParaCurveType)); |
238 | 0 | dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.g))); |
239 | 0 | dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.a))); |
240 | 0 | dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.b))); |
241 | 0 | dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.c))); |
242 | 0 | dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.d))); |
243 | 0 | dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.e))); |
244 | 0 | dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.f))); |
245 | 0 | return dataStruct; |
246 | 0 | } |
247 | | |
248 | 0 | float IccHelper::compute_tone_map_gain(const uhdr_color_transfer_t tf, float L) { |
249 | 0 | if (L <= 0.f) { |
250 | 0 | return 1.f; |
251 | 0 | } |
252 | 0 | if (tf == UHDR_CT_PQ) { |
253 | | // The PQ transfer function will map to the range [0, 1]. Linearly scale |
254 | | // it up to the range [0, 10,000/203]. We will then tone map that back |
255 | | // down to [0, 1]. |
256 | 0 | constexpr float kInputMaxLuminance = 10000 / 203.f; |
257 | 0 | constexpr float kOutputMaxLuminance = 1.0; |
258 | 0 | L *= kInputMaxLuminance; |
259 | | |
260 | | // Compute the tone map gain which will tone map from 10,000/203 to 1.0. |
261 | 0 | constexpr float kToneMapA = kOutputMaxLuminance / (kInputMaxLuminance * kInputMaxLuminance); |
262 | 0 | constexpr float kToneMapB = 1.f / kOutputMaxLuminance; |
263 | 0 | return kInputMaxLuminance * (1.f + kToneMapA * L) / (1.f + kToneMapB * L); |
264 | 0 | } |
265 | 0 | if (tf == UHDR_CT_HLG) { |
266 | | // Let Lw be the brightness of the display in nits. |
267 | 0 | constexpr float Lw = 203.f; |
268 | 0 | const float gamma = 1.2f + 0.42f * std::log(Lw / 1000.f) / std::log(10.f); |
269 | 0 | return std::pow(L, gamma - 1.f); |
270 | 0 | } |
271 | 0 | return 1.f; |
272 | 0 | } |
273 | | |
274 | | std::shared_ptr<DataStruct> IccHelper::write_cicp_tag(uint32_t color_primaries, |
275 | 0 | uint32_t transfer_characteristics) { |
276 | 0 | std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(kCicpTagSize); |
277 | 0 | dataStruct->write32(Endian_SwapBE32(kTAG_cicp)); // Type signature |
278 | 0 | dataStruct->write32(0); // Reserved |
279 | 0 | dataStruct->write8(color_primaries); // Color primaries |
280 | 0 | dataStruct->write8(transfer_characteristics); // Transfer characteristics |
281 | 0 | dataStruct->write8(0); // RGB matrix |
282 | 0 | dataStruct->write8(1); // Full range |
283 | 0 | return dataStruct; |
284 | 0 | } |
285 | | |
286 | 0 | void IccHelper::compute_lut_entry(const Matrix3x3& src_to_XYZD50, float rgb[3]) { |
287 | | // Compute the matrices to convert from source to Rec2020, and from Rec2020 to XYZD50. |
288 | 0 | Matrix3x3 src_to_rec2020; |
289 | 0 | const Matrix3x3 rec2020_to_XYZD50 = kRec2020; |
290 | 0 | { |
291 | 0 | Matrix3x3 XYZD50_to_rec2020; |
292 | 0 | Matrix3x3_invert(&rec2020_to_XYZD50, &XYZD50_to_rec2020); |
293 | 0 | src_to_rec2020 = Matrix3x3_concat(&XYZD50_to_rec2020, &src_to_XYZD50); |
294 | 0 | } |
295 | | |
296 | | // Convert the source signal to linear. |
297 | 0 | for (size_t i = 0; i < kNumChannels; ++i) { |
298 | 0 | rgb[i] = pqOetf(rgb[i]); |
299 | 0 | } |
300 | | |
301 | | // Convert source gamut to Rec2020. |
302 | 0 | Matrix3x3_apply(&src_to_rec2020, rgb); |
303 | | |
304 | | // Compute the luminance of the signal. |
305 | 0 | float L = bt2100Luminance({{{rgb[0], rgb[1], rgb[2]}}}); |
306 | | |
307 | | // Compute the tone map gain based on the luminance. |
308 | 0 | float tone_map_gain = compute_tone_map_gain(UHDR_CT_PQ, L); |
309 | | |
310 | | // Apply the tone map gain. |
311 | 0 | for (size_t i = 0; i < kNumChannels; ++i) { |
312 | 0 | rgb[i] *= tone_map_gain; |
313 | 0 | } |
314 | | |
315 | | // Convert from Rec2020-linear to XYZD50. |
316 | 0 | Matrix3x3_apply(&rec2020_to_XYZD50, rgb); |
317 | 0 | } |
318 | | |
319 | | std::shared_ptr<DataStruct> IccHelper::write_clut(const uint8_t* grid_points, |
320 | 0 | const uint8_t* grid_16) { |
321 | 0 | uint32_t value_count = kNumChannels; |
322 | 0 | for (uint32_t i = 0; i < kNumChannels; ++i) { |
323 | 0 | value_count *= grid_points[i]; |
324 | 0 | } |
325 | |
|
326 | 0 | int total_length = 20 + 2 * value_count; |
327 | 0 | total_length = (((total_length + 2) >> 2) << 2); // 4 aligned |
328 | 0 | std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(total_length); |
329 | |
|
330 | 0 | for (size_t i = 0; i < 16; ++i) { |
331 | 0 | dataStruct->write8(i < kNumChannels ? grid_points[i] : 0); // Grid size |
332 | 0 | } |
333 | 0 | dataStruct->write8(2); // Grid byte width (always 16-bit) |
334 | 0 | dataStruct->write8(0); // Reserved |
335 | 0 | dataStruct->write8(0); // Reserved |
336 | 0 | dataStruct->write8(0); // Reserved |
337 | |
|
338 | 0 | for (uint32_t i = 0; i < value_count; ++i) { |
339 | 0 | uint16_t value = reinterpret_cast<const uint16_t*>(grid_16)[i]; |
340 | 0 | dataStruct->write16(value); |
341 | 0 | } |
342 | |
|
343 | 0 | return dataStruct; |
344 | 0 | } |
345 | | |
346 | | std::shared_ptr<DataStruct> IccHelper::write_mAB_or_mBA_tag(uint32_t type, bool has_a_curves, |
347 | | const uint8_t* grid_points, |
348 | 0 | const uint8_t* grid_16) { |
349 | 0 | const size_t b_curves_offset = 32; |
350 | 0 | std::shared_ptr<DataStruct> b_curves_data[kNumChannels]; |
351 | 0 | std::shared_ptr<DataStruct> a_curves_data[kNumChannels]; |
352 | 0 | size_t clut_offset = 0; |
353 | 0 | std::shared_ptr<DataStruct> clut; |
354 | 0 | size_t a_curves_offset = 0; |
355 | | |
356 | | // The "B" curve is required. |
357 | 0 | for (size_t i = 0; i < kNumChannels; ++i) { |
358 | 0 | b_curves_data[i] = write_trc_tag(kLinear_TransFun); |
359 | 0 | } |
360 | | |
361 | | // The "A" curve and CLUT are optional. |
362 | 0 | if (has_a_curves) { |
363 | 0 | clut_offset = b_curves_offset; |
364 | 0 | for (size_t i = 0; i < kNumChannels; ++i) { |
365 | 0 | clut_offset += b_curves_data[i]->getLength(); |
366 | 0 | } |
367 | 0 | clut = write_clut(grid_points, grid_16); |
368 | |
|
369 | 0 | a_curves_offset = clut_offset + clut->getLength(); |
370 | 0 | for (size_t i = 0; i < kNumChannels; ++i) { |
371 | 0 | a_curves_data[i] = write_trc_tag(kLinear_TransFun); |
372 | 0 | } |
373 | 0 | } |
374 | |
|
375 | 0 | int total_length = b_curves_offset; |
376 | 0 | for (size_t i = 0; i < kNumChannels; ++i) { |
377 | 0 | total_length += b_curves_data[i]->getLength(); |
378 | 0 | } |
379 | 0 | if (has_a_curves) { |
380 | 0 | total_length += clut->getLength(); |
381 | 0 | for (size_t i = 0; i < kNumChannels; ++i) { |
382 | 0 | total_length += a_curves_data[i]->getLength(); |
383 | 0 | } |
384 | 0 | } |
385 | 0 | std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(total_length); |
386 | 0 | dataStruct->write32(Endian_SwapBE32(type)); // Type signature |
387 | 0 | dataStruct->write32(0); // Reserved |
388 | 0 | dataStruct->write8(kNumChannels); // Input channels |
389 | 0 | dataStruct->write8(kNumChannels); // Output channels |
390 | 0 | dataStruct->write16(0); // Reserved |
391 | 0 | dataStruct->write32(Endian_SwapBE32(b_curves_offset)); // B curve offset |
392 | 0 | dataStruct->write32(Endian_SwapBE32(0)); // Matrix offset (ignored) |
393 | 0 | dataStruct->write32(Endian_SwapBE32(0)); // M curve offset (ignored) |
394 | 0 | dataStruct->write32(Endian_SwapBE32(clut_offset)); // CLUT offset |
395 | 0 | dataStruct->write32(Endian_SwapBE32(a_curves_offset)); // A curve offset |
396 | 0 | for (size_t i = 0; i < kNumChannels; ++i) { |
397 | 0 | if (dataStruct->write(b_curves_data[i]->getData(), b_curves_data[i]->getLength())) { |
398 | 0 | return dataStruct; |
399 | 0 | } |
400 | 0 | } |
401 | 0 | if (has_a_curves) { |
402 | 0 | dataStruct->write(clut->getData(), clut->getLength()); |
403 | 0 | for (size_t i = 0; i < kNumChannels; ++i) { |
404 | 0 | dataStruct->write(a_curves_data[i]->getData(), a_curves_data[i]->getLength()); |
405 | 0 | } |
406 | 0 | } |
407 | 0 | return dataStruct; |
408 | 0 | } |
409 | | |
410 | | std::shared_ptr<DataStruct> IccHelper::writeIccProfile(uhdr_color_transfer_t tf, |
411 | 0 | uhdr_color_gamut_t gamut) { |
412 | 0 | ICCHeader header; |
413 | |
|
414 | 0 | std::vector<std::pair<uint32_t, std::shared_ptr<DataStruct>>> tags; |
415 | | |
416 | | // Compute profile description tag |
417 | 0 | std::string desc = get_desc_string(tf, gamut); |
418 | 0 | tags.emplace_back(kTAG_desc, write_text_tag(desc.c_str())); |
419 | |
|
420 | 0 | Matrix3x3 toXYZD50; |
421 | 0 | switch (gamut) { |
422 | 0 | case UHDR_CG_BT_709: |
423 | 0 | toXYZD50 = kSRGB; |
424 | 0 | break; |
425 | 0 | case UHDR_CG_DISPLAY_P3: |
426 | 0 | toXYZD50 = kDisplayP3; |
427 | 0 | break; |
428 | 0 | case UHDR_CG_BT_2100: |
429 | 0 | toXYZD50 = kRec2020; |
430 | 0 | break; |
431 | 0 | default: |
432 | | // Should not fall here. |
433 | 0 | return nullptr; |
434 | 0 | } |
435 | | |
436 | | // Compute primaries. |
437 | 0 | { |
438 | 0 | tags.emplace_back(kTAG_rXYZ, |
439 | 0 | write_xyz_tag(toXYZD50.vals[0][0], toXYZD50.vals[1][0], toXYZD50.vals[2][0])); |
440 | 0 | tags.emplace_back(kTAG_gXYZ, |
441 | 0 | write_xyz_tag(toXYZD50.vals[0][1], toXYZD50.vals[1][1], toXYZD50.vals[2][1])); |
442 | 0 | tags.emplace_back(kTAG_bXYZ, |
443 | 0 | write_xyz_tag(toXYZD50.vals[0][2], toXYZD50.vals[1][2], toXYZD50.vals[2][2])); |
444 | 0 | } |
445 | | |
446 | | // Compute white point tag (must be D50) |
447 | 0 | tags.emplace_back(kTAG_wtpt, write_xyz_tag(kD50_x, kD50_y, kD50_z)); |
448 | | |
449 | | // Compute transfer curves. |
450 | 0 | if (tf != UHDR_CT_PQ) { |
451 | 0 | if (tf == UHDR_CT_HLG) { |
452 | 0 | std::vector<uint8_t> trc_table; |
453 | 0 | trc_table.resize(kTrcTableSize * 2); |
454 | 0 | for (uint32_t i = 0; i < kTrcTableSize; ++i) { |
455 | 0 | float x = i / (kTrcTableSize - 1.f); |
456 | 0 | float y = hlgOetf(x); |
457 | 0 | y *= compute_tone_map_gain(tf, y); |
458 | 0 | float_to_table16(y, &trc_table[2 * i]); |
459 | 0 | } |
460 | |
|
461 | 0 | tags.emplace_back(kTAG_rTRC, |
462 | 0 | write_trc_tag(kTrcTableSize, reinterpret_cast<uint8_t*>(trc_table.data()))); |
463 | 0 | tags.emplace_back(kTAG_gTRC, |
464 | 0 | write_trc_tag(kTrcTableSize, reinterpret_cast<uint8_t*>(trc_table.data()))); |
465 | 0 | tags.emplace_back(kTAG_bTRC, |
466 | 0 | write_trc_tag(kTrcTableSize, reinterpret_cast<uint8_t*>(trc_table.data()))); |
467 | 0 | } else if (tf == UHDR_CT_SRGB) { |
468 | 0 | tags.emplace_back(kTAG_rTRC, write_trc_tag(kSRGB_TransFun)); |
469 | 0 | tags.emplace_back(kTAG_gTRC, write_trc_tag(kSRGB_TransFun)); |
470 | 0 | tags.emplace_back(kTAG_bTRC, write_trc_tag(kSRGB_TransFun)); |
471 | 0 | } else if (tf == UHDR_CT_LINEAR) { |
472 | 0 | tags.emplace_back(kTAG_rTRC, write_trc_tag(kLinear_TransFun)); |
473 | 0 | tags.emplace_back(kTAG_gTRC, write_trc_tag(kLinear_TransFun)); |
474 | 0 | tags.emplace_back(kTAG_bTRC, write_trc_tag(kLinear_TransFun)); |
475 | 0 | } |
476 | 0 | } |
477 | | |
478 | | // Compute CICP - for hdr images icc profile shall contain cicp. |
479 | 0 | if (tf == UHDR_CT_HLG || tf == UHDR_CT_PQ || tf == UHDR_CT_LINEAR) { |
480 | | // The CICP tag is present in ICC 4.4, so update the header's version. |
481 | 0 | header.version = Endian_SwapBE32(0x04400000); |
482 | |
|
483 | 0 | uint32_t color_primaries = kCICPPrimariesUnSpecified; |
484 | 0 | if (gamut == UHDR_CG_BT_709) { |
485 | 0 | color_primaries = kCICPPrimariesSRGB; |
486 | 0 | } else if (gamut == UHDR_CG_DISPLAY_P3) { |
487 | 0 | color_primaries = kCICPPrimariesP3; |
488 | 0 | } else if (gamut == UHDR_CG_BT_2100) { |
489 | 0 | color_primaries = kCICPPrimariesRec2020; |
490 | 0 | } |
491 | |
|
492 | 0 | uint32_t transfer_characteristics = kCICPTrfnUnSpecified; |
493 | 0 | if (tf == UHDR_CT_SRGB) { |
494 | 0 | transfer_characteristics = kCICPTrfnSRGB; |
495 | 0 | } else if (tf == UHDR_CT_LINEAR) { |
496 | 0 | transfer_characteristics = kCICPTrfnLinear; |
497 | 0 | } else if (tf == UHDR_CT_PQ) { |
498 | 0 | transfer_characteristics = kCICPTrfnPQ; |
499 | 0 | } else if (tf == UHDR_CT_HLG) { |
500 | 0 | transfer_characteristics = kCICPTrfnHLG; |
501 | 0 | } |
502 | 0 | tags.emplace_back(kTAG_cicp, write_cicp_tag(color_primaries, transfer_characteristics)); |
503 | 0 | } |
504 | | |
505 | | // Compute A2B0. |
506 | 0 | if (tf == UHDR_CT_PQ) { |
507 | 0 | std::vector<uint8_t> a2b_grid; |
508 | 0 | a2b_grid.resize(kGridSize * kGridSize * kGridSize * kNumChannels * 2); |
509 | 0 | size_t a2b_grid_index = 0; |
510 | 0 | for (uint32_t r_index = 0; r_index < kGridSize; ++r_index) { |
511 | 0 | for (uint32_t g_index = 0; g_index < kGridSize; ++g_index) { |
512 | 0 | for (uint32_t b_index = 0; b_index < kGridSize; ++b_index) { |
513 | 0 | float rgb[3] = { |
514 | 0 | r_index / (kGridSize - 1.f), |
515 | 0 | g_index / (kGridSize - 1.f), |
516 | 0 | b_index / (kGridSize - 1.f), |
517 | 0 | }; |
518 | 0 | compute_lut_entry(toXYZD50, rgb); |
519 | 0 | float_XYZD50_to_grid16_lab(rgb, &a2b_grid[a2b_grid_index]); |
520 | 0 | a2b_grid_index += 6; |
521 | 0 | } |
522 | 0 | } |
523 | 0 | } |
524 | 0 | const uint8_t* grid_16 = reinterpret_cast<const uint8_t*>(a2b_grid.data()); |
525 | |
|
526 | 0 | uint8_t grid_points[kNumChannels]; |
527 | 0 | for (size_t i = 0; i < kNumChannels; ++i) { |
528 | 0 | grid_points[i] = kGridSize; |
529 | 0 | } |
530 | |
|
531 | 0 | auto a2b_data = write_mAB_or_mBA_tag(kTAG_mABType, |
532 | 0 | /* has_a_curves */ true, grid_points, grid_16); |
533 | 0 | tags.emplace_back(kTAG_A2B0, std::move(a2b_data)); |
534 | 0 | } |
535 | | |
536 | | // Compute B2A0. |
537 | 0 | if (tf == UHDR_CT_PQ) { |
538 | 0 | auto b2a_data = write_mAB_or_mBA_tag(kTAG_mBAType, |
539 | 0 | /* has_a_curves */ false, |
540 | 0 | /* grid_points */ nullptr, |
541 | 0 | /* grid_16 */ nullptr); |
542 | 0 | tags.emplace_back(kTAG_B2A0, std::move(b2a_data)); |
543 | 0 | } |
544 | | |
545 | | // Compute copyright tag |
546 | 0 | tags.emplace_back(kTAG_cprt, write_text_tag("Google Inc. 2022")); |
547 | | |
548 | | // Compute the size of the profile. |
549 | 0 | size_t tag_data_size = 0; |
550 | 0 | for (const auto& tag : tags) { |
551 | 0 | tag_data_size += tag.second->getLength(); |
552 | 0 | } |
553 | 0 | size_t tag_table_size = kICCTagTableEntrySize * tags.size(); |
554 | 0 | size_t profile_size = kICCHeaderSize + tag_table_size + tag_data_size; |
555 | |
|
556 | 0 | std::shared_ptr<DataStruct> dataStruct = |
557 | 0 | std::make_shared<DataStruct>(profile_size + kICCIdentifierSize); |
558 | | |
559 | | // Write identifier, chunk count, and chunk ID |
560 | 0 | if (!dataStruct->write(kICCIdentifier, sizeof(kICCIdentifier)) || !dataStruct->write8(1) || |
561 | 0 | !dataStruct->write8(1)) { |
562 | 0 | ALOGE("writeIccProfile(): error in identifier"); |
563 | 0 | return dataStruct; |
564 | 0 | } |
565 | | |
566 | | // Write the header. |
567 | 0 | header.data_color_space = Endian_SwapBE32(Signature_RGB); |
568 | 0 | header.pcs = Endian_SwapBE32(tf == UHDR_CT_PQ ? Signature_Lab : Signature_XYZ); |
569 | 0 | header.size = Endian_SwapBE32(profile_size); |
570 | 0 | header.tag_count = Endian_SwapBE32(tags.size()); |
571 | |
|
572 | 0 | if (!dataStruct->write(&header, sizeof(header))) { |
573 | 0 | ALOGE("writeIccProfile(): error in header"); |
574 | 0 | return dataStruct; |
575 | 0 | } |
576 | | |
577 | | // Write the tag table. Track the offset and size of the previous tag to |
578 | | // compute each tag's offset. An empty SkData indicates that the previous |
579 | | // tag is to be reused. |
580 | 0 | uint32_t last_tag_offset = sizeof(header) + tag_table_size; |
581 | 0 | uint32_t last_tag_size = 0; |
582 | 0 | for (const auto& tag : tags) { |
583 | 0 | last_tag_offset = last_tag_offset + last_tag_size; |
584 | 0 | last_tag_size = tag.second->getLength(); |
585 | 0 | uint32_t tag_table_entry[3] = { |
586 | 0 | Endian_SwapBE32(tag.first), |
587 | 0 | Endian_SwapBE32(last_tag_offset), |
588 | 0 | Endian_SwapBE32(last_tag_size), |
589 | 0 | }; |
590 | 0 | if (!dataStruct->write(tag_table_entry, sizeof(tag_table_entry))) { |
591 | 0 | ALOGE("writeIccProfile(): error in writing tag table"); |
592 | 0 | return dataStruct; |
593 | 0 | } |
594 | 0 | } |
595 | | |
596 | | // Write the tags. |
597 | 0 | for (const auto& tag : tags) { |
598 | 0 | if (!dataStruct->write(tag.second->getData(), tag.second->getLength())) { |
599 | 0 | ALOGE("writeIccProfile(): error in writing tags"); |
600 | 0 | return dataStruct; |
601 | 0 | } |
602 | 0 | } |
603 | | |
604 | 0 | return dataStruct; |
605 | 0 | } |
606 | | |
607 | | bool IccHelper::tagsEqualToMatrix(const Matrix3x3& matrix, const uint8_t* red_tag, |
608 | 9 | const uint8_t* green_tag, const uint8_t* blue_tag) { |
609 | 9 | const float tolerance = 0.001f; |
610 | 9 | Fixed r_x_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(red_tag))[2]); |
611 | 9 | Fixed r_y_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(red_tag))[3]); |
612 | 9 | Fixed r_z_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(red_tag))[4]); |
613 | 9 | float r_x = FixedToFloat(r_x_fixed); |
614 | 9 | float r_y = FixedToFloat(r_y_fixed); |
615 | 9 | float r_z = FixedToFloat(r_z_fixed); |
616 | 9 | if (fabs(r_x - matrix.vals[0][0]) > tolerance || fabs(r_y - matrix.vals[1][0]) > tolerance || |
617 | 9 | fabs(r_z - matrix.vals[2][0]) > tolerance) { |
618 | 9 | return false; |
619 | 9 | } |
620 | | |
621 | 0 | Fixed g_x_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(green_tag))[2]); |
622 | 0 | Fixed g_y_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(green_tag))[3]); |
623 | 0 | Fixed g_z_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(green_tag))[4]); |
624 | 0 | float g_x = FixedToFloat(g_x_fixed); |
625 | 0 | float g_y = FixedToFloat(g_y_fixed); |
626 | 0 | float g_z = FixedToFloat(g_z_fixed); |
627 | 0 | if (fabs(g_x - matrix.vals[0][1]) > tolerance || fabs(g_y - matrix.vals[1][1]) > tolerance || |
628 | 0 | fabs(g_z - matrix.vals[2][1]) > tolerance) { |
629 | 0 | return false; |
630 | 0 | } |
631 | | |
632 | 0 | Fixed b_x_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(blue_tag))[2]); |
633 | 0 | Fixed b_y_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(blue_tag))[3]); |
634 | 0 | Fixed b_z_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(blue_tag))[4]); |
635 | 0 | float b_x = FixedToFloat(b_x_fixed); |
636 | 0 | float b_y = FixedToFloat(b_y_fixed); |
637 | 0 | float b_z = FixedToFloat(b_z_fixed); |
638 | 0 | if (fabs(b_x - matrix.vals[0][2]) > tolerance || fabs(b_y - matrix.vals[1][2]) > tolerance || |
639 | 0 | fabs(b_z - matrix.vals[2][2]) > tolerance) { |
640 | 0 | return false; |
641 | 0 | } |
642 | | |
643 | 0 | return true; |
644 | 0 | } |
645 | | |
646 | 6.25k | uhdr_color_gamut_t IccHelper::readIccColorGamut(void* icc_data, size_t icc_size) { |
647 | | // Each tag table entry consists of 3 fields of 4 bytes each. |
648 | 6.25k | static const size_t kTagTableEntrySize = 12; |
649 | | |
650 | 6.25k | if (icc_data == nullptr || icc_size < sizeof(ICCHeader) + kICCIdentifierSize) { |
651 | 5.41k | return UHDR_CG_UNSPECIFIED; |
652 | 5.41k | } |
653 | | |
654 | 835 | if (memcmp(icc_data, kICCIdentifier, sizeof(kICCIdentifier)) != 0) { |
655 | 0 | return UHDR_CG_UNSPECIFIED; |
656 | 0 | } |
657 | | |
658 | 835 | uint8_t* icc_bytes = reinterpret_cast<uint8_t*>(icc_data) + kICCIdentifierSize; |
659 | 835 | auto alignment_needs = alignof(ICCHeader); |
660 | 835 | uint8_t* aligned_block = nullptr; |
661 | 835 | if (((uintptr_t)icc_bytes) % alignment_needs != 0) { |
662 | 835 | aligned_block = static_cast<uint8_t*>( |
663 | 835 | ::operator new[](icc_size - kICCIdentifierSize, std::align_val_t(alignment_needs))); |
664 | 835 | if (!aligned_block) { |
665 | 0 | ALOGE("unable allocate memory, icc parsing failed"); |
666 | 0 | return UHDR_CG_UNSPECIFIED; |
667 | 0 | } |
668 | 835 | std::memcpy(aligned_block, icc_bytes, icc_size - kICCIdentifierSize); |
669 | 835 | icc_bytes = aligned_block; |
670 | 835 | } |
671 | 835 | ICCHeader* header = reinterpret_cast<ICCHeader*>(icc_bytes); |
672 | | |
673 | | // Use 0 to indicate not found, since offsets are always relative to start |
674 | | // of ICC data and therefore a tag offset of zero would never be valid. |
675 | 835 | size_t red_primary_offset = 0, green_primary_offset = 0, blue_primary_offset = 0; |
676 | 835 | size_t red_primary_size = 0, green_primary_size = 0, blue_primary_size = 0; |
677 | 835 | size_t cicp_size = 0, cicp_offset = 0; |
678 | 26.9k | for (size_t tag_idx = 0; tag_idx < Endian_SwapBE32(header->tag_count); ++tag_idx) { |
679 | 26.5k | if (icc_size < kICCIdentifierSize + sizeof(ICCHeader) + ((tag_idx + 1) * kTagTableEntrySize)) { |
680 | 449 | ALOGE( |
681 | 449 | "Insufficient buffer size during icc parsing. tag index %zu, header %zu, tag size %zu, " |
682 | 449 | "icc size %zu", |
683 | 449 | tag_idx, kICCIdentifierSize + sizeof(ICCHeader), kTagTableEntrySize, icc_size); |
684 | 449 | if (aligned_block) ::operator delete[](aligned_block, std::align_val_t(alignment_needs)); |
685 | 449 | return UHDR_CG_UNSPECIFIED; |
686 | 449 | } |
687 | 26.1k | uint32_t* tag_entry_start = |
688 | 26.1k | reinterpret_cast<uint32_t*>(icc_bytes + sizeof(ICCHeader) + tag_idx * kTagTableEntrySize); |
689 | | // first 4 bytes are the tag signature, next 4 bytes are the tag offset, |
690 | | // last 4 bytes are the tag length in bytes. |
691 | 26.1k | if (red_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_rXYZ)) { |
692 | 244 | red_primary_offset = Endian_SwapBE32(*(tag_entry_start + 1)); |
693 | 244 | red_primary_size = Endian_SwapBE32(*(tag_entry_start + 2)); |
694 | 25.8k | } else if (green_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_gXYZ)) { |
695 | 215 | green_primary_offset = Endian_SwapBE32(*(tag_entry_start + 1)); |
696 | 215 | green_primary_size = Endian_SwapBE32(*(tag_entry_start + 2)); |
697 | 25.6k | } else if (blue_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_bXYZ)) { |
698 | 191 | blue_primary_offset = Endian_SwapBE32(*(tag_entry_start + 1)); |
699 | 191 | blue_primary_size = Endian_SwapBE32(*(tag_entry_start + 2)); |
700 | 25.4k | } else if (cicp_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_cicp)) { |
701 | 213 | cicp_offset = Endian_SwapBE32(*(tag_entry_start + 1)); |
702 | 213 | cicp_size = Endian_SwapBE32(*(tag_entry_start + 2)); |
703 | 213 | } |
704 | 26.1k | } |
705 | | |
706 | 386 | if (cicp_offset != 0 && cicp_size == kCicpTagSize && |
707 | 386 | kICCIdentifierSize + cicp_offset + cicp_size <= icc_size) { |
708 | 82 | uint8_t* cicp = icc_bytes + cicp_offset; |
709 | 82 | uint8_t primaries = cicp[8]; |
710 | 82 | uhdr_color_gamut_t gamut = UHDR_CG_UNSPECIFIED; |
711 | 82 | if (primaries == kCICPPrimariesSRGB) { |
712 | 16 | gamut = UHDR_CG_BT_709; |
713 | 66 | } else if (primaries == kCICPPrimariesP3) { |
714 | 34 | gamut = UHDR_CG_DISPLAY_P3; |
715 | 34 | } else if (primaries == kCICPPrimariesRec2020) { |
716 | 29 | gamut = UHDR_CG_BT_2100; |
717 | 29 | } |
718 | 82 | if (gamut != UHDR_CG_UNSPECIFIED) { |
719 | 79 | if (aligned_block) ::operator delete[](aligned_block, std::align_val_t(alignment_needs)); |
720 | 79 | return gamut; |
721 | 79 | } |
722 | 82 | } |
723 | | |
724 | 307 | if (red_primary_offset == 0 || red_primary_size != kColorantTagSize || |
725 | 307 | kICCIdentifierSize + red_primary_offset + red_primary_size > icc_size || |
726 | 307 | green_primary_offset == 0 || green_primary_size != kColorantTagSize || |
727 | 307 | kICCIdentifierSize + green_primary_offset + green_primary_size > icc_size || |
728 | 307 | blue_primary_offset == 0 || blue_primary_size != kColorantTagSize || |
729 | 307 | kICCIdentifierSize + blue_primary_offset + blue_primary_size > icc_size) { |
730 | 304 | if (aligned_block) ::operator delete[](aligned_block, std::align_val_t(alignment_needs)); |
731 | 304 | return UHDR_CG_UNSPECIFIED; |
732 | 304 | } |
733 | | |
734 | 3 | uint8_t* red_tag = icc_bytes + red_primary_offset; |
735 | 3 | uint8_t* green_tag = icc_bytes + green_primary_offset; |
736 | 3 | uint8_t* blue_tag = icc_bytes + blue_primary_offset; |
737 | | |
738 | | // Serialize tags as we do on encode and compare what we find to that to |
739 | | // determine the gamut (since we don't have a need yet for full deserialize). |
740 | 3 | uhdr_color_gamut_t gamut = UHDR_CG_UNSPECIFIED; |
741 | 3 | if (tagsEqualToMatrix(kSRGB, red_tag, green_tag, blue_tag)) { |
742 | 0 | gamut = UHDR_CG_BT_709; |
743 | 3 | } else if (tagsEqualToMatrix(kDisplayP3, red_tag, green_tag, blue_tag)) { |
744 | 0 | gamut = UHDR_CG_DISPLAY_P3; |
745 | 3 | } else if (tagsEqualToMatrix(kRec2020, red_tag, green_tag, blue_tag)) { |
746 | 0 | gamut = UHDR_CG_BT_2100; |
747 | 0 | } |
748 | | |
749 | 3 | if (aligned_block) ::operator delete[](aligned_block, std::align_val_t(alignment_needs)); |
750 | | // Didn't find a match to one of the profiles we write; indicate the gamut |
751 | | // is unspecified since we don't understand it. |
752 | 3 | return gamut; |
753 | 307 | } |
754 | | |
755 | | } // namespace ultrahdr |