Coverage Report

Created: 2025-11-24 06:48

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libwebp/src/dsp/dec_sse2.c
Line
Count
Source
1
// Copyright 2011 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// SSE2 version of some decoding functions (idct, loop filtering).
11
//
12
// Author: somnath@google.com (Somnath Banerjee)
13
//         cduvivier@google.com (Christian Duvivier)
14
15
#include "src/dsp/dsp.h"
16
17
#if defined(WEBP_USE_SSE2)
18
19
// The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
20
// one it seems => disable it by default. Uncomment the following to enable:
21
#if !defined(USE_TRANSFORM_AC3)
22
#define USE_TRANSFORM_AC3 0  // ALTERNATE_CODE
23
#endif
24
25
#include <emmintrin.h>
26
27
#include "src/dec/vp8i_dec.h"
28
#include "src/dsp/common_sse2.h"
29
#include "src/dsp/cpu.h"
30
#include "src/utils/utils.h"
31
#include "src/webp/types.h"
32
33
//------------------------------------------------------------------------------
34
// Transforms (Paragraph 14.4)
35
36
static void Transform_SSE2(const int16_t* WEBP_RESTRICT in,
37
2.47M
                           uint8_t* WEBP_RESTRICT dst, int do_two) {
38
  // This implementation makes use of 16-bit fixed point versions of two
39
  // multiply constants:
40
  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
41
  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
42
  //
43
  // To be able to use signed 16-bit integers, we use the following trick to
44
  // have constants within range:
45
  // - Associated constants are obtained by subtracting the 16-bit fixed point
46
  //   version of one:
47
  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
48
  //      K1 = 85267  =>  k1 =  20091
49
  //      K2 = 35468  =>  k2 = -30068
50
  // - The multiplication of a variable by a constant become the sum of the
51
  //   variable and the multiplication of that variable by the associated
52
  //   constant:
53
  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
54
2.47M
  const __m128i k1 = _mm_set1_epi16(20091);
55
2.47M
  const __m128i k2 = _mm_set1_epi16(-30068);
56
2.47M
  __m128i T0, T1, T2, T3;
57
58
  // Load and concatenate the transform coefficients (we'll do two transforms
59
  // in parallel). In the case of only one transform, the second half of the
60
  // vectors will just contain random value we'll never use nor store.
61
2.47M
  __m128i in0, in1, in2, in3;
62
2.47M
  {
63
2.47M
    in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
64
2.47M
    in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
65
2.47M
    in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
66
2.47M
    in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
67
    // a00 a10 a20 a30   x x x x
68
    // a01 a11 a21 a31   x x x x
69
    // a02 a12 a22 a32   x x x x
70
    // a03 a13 a23 a33   x x x x
71
2.47M
    if (do_two) {
72
664k
      const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
73
664k
      const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
74
664k
      const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
75
664k
      const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
76
664k
      in0 = _mm_unpacklo_epi64(in0, inB0);
77
664k
      in1 = _mm_unpacklo_epi64(in1, inB1);
78
664k
      in2 = _mm_unpacklo_epi64(in2, inB2);
79
664k
      in3 = _mm_unpacklo_epi64(in3, inB3);
80
      // a00 a10 a20 a30   b00 b10 b20 b30
81
      // a01 a11 a21 a31   b01 b11 b21 b31
82
      // a02 a12 a22 a32   b02 b12 b22 b32
83
      // a03 a13 a23 a33   b03 b13 b23 b33
84
664k
    }
85
2.47M
  }
86
87
  // Vertical pass and subsequent transpose.
88
2.47M
  {
89
    // First pass, c and d calculations are longer because of the "trick"
90
    // multiplications.
91
2.47M
    const __m128i a = _mm_add_epi16(in0, in2);
92
2.47M
    const __m128i b = _mm_sub_epi16(in0, in2);
93
    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
94
2.47M
    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
95
2.47M
    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
96
2.47M
    const __m128i c3 = _mm_sub_epi16(in1, in3);
97
2.47M
    const __m128i c4 = _mm_sub_epi16(c1, c2);
98
2.47M
    const __m128i c = _mm_add_epi16(c3, c4);
99
    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
100
2.47M
    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
101
2.47M
    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
102
2.47M
    const __m128i d3 = _mm_add_epi16(in1, in3);
103
2.47M
    const __m128i d4 = _mm_add_epi16(d1, d2);
104
2.47M
    const __m128i d = _mm_add_epi16(d3, d4);
105
106
    // Second pass.
107
2.47M
    const __m128i tmp0 = _mm_add_epi16(a, d);
108
2.47M
    const __m128i tmp1 = _mm_add_epi16(b, c);
109
2.47M
    const __m128i tmp2 = _mm_sub_epi16(b, c);
110
2.47M
    const __m128i tmp3 = _mm_sub_epi16(a, d);
111
112
    // Transpose the two 4x4.
113
2.47M
    VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
114
2.47M
  }
115
116
  // Horizontal pass and subsequent transpose.
117
2.47M
  {
118
    // First pass, c and d calculations are longer because of the "trick"
119
    // multiplications.
120
2.47M
    const __m128i four = _mm_set1_epi16(4);
121
2.47M
    const __m128i dc = _mm_add_epi16(T0, four);
122
2.47M
    const __m128i a = _mm_add_epi16(dc, T2);
123
2.47M
    const __m128i b = _mm_sub_epi16(dc, T2);
124
    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
125
2.47M
    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
126
2.47M
    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
127
2.47M
    const __m128i c3 = _mm_sub_epi16(T1, T3);
128
2.47M
    const __m128i c4 = _mm_sub_epi16(c1, c2);
129
2.47M
    const __m128i c = _mm_add_epi16(c3, c4);
130
    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
131
2.47M
    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
132
2.47M
    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
133
2.47M
    const __m128i d3 = _mm_add_epi16(T1, T3);
134
2.47M
    const __m128i d4 = _mm_add_epi16(d1, d2);
135
2.47M
    const __m128i d = _mm_add_epi16(d3, d4);
136
137
    // Second pass.
138
2.47M
    const __m128i tmp0 = _mm_add_epi16(a, d);
139
2.47M
    const __m128i tmp1 = _mm_add_epi16(b, c);
140
2.47M
    const __m128i tmp2 = _mm_sub_epi16(b, c);
141
2.47M
    const __m128i tmp3 = _mm_sub_epi16(a, d);
142
2.47M
    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
143
2.47M
    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
144
2.47M
    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
145
2.47M
    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
146
147
    // Transpose the two 4x4.
148
2.47M
    VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
149
2.47M
                           &T2, &T3);
150
2.47M
  }
151
152
  // Add inverse transform to 'dst' and store.
153
2.47M
  {
154
2.47M
    const __m128i zero = _mm_setzero_si128();
155
    // Load the reference(s).
156
2.47M
    __m128i dst0, dst1, dst2, dst3;
157
2.47M
    if (do_two) {
158
      // Load eight bytes/pixels per line.
159
664k
      dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
160
664k
      dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
161
664k
      dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
162
664k
      dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
163
1.80M
    } else {
164
      // Load four bytes/pixels per line.
165
1.80M
      dst0 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 0 * BPS));
166
1.80M
      dst1 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 1 * BPS));
167
1.80M
      dst2 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 2 * BPS));
168
1.80M
      dst3 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 3 * BPS));
169
1.80M
    }
170
    // Convert to 16b.
171
2.47M
    dst0 = _mm_unpacklo_epi8(dst0, zero);
172
2.47M
    dst1 = _mm_unpacklo_epi8(dst1, zero);
173
2.47M
    dst2 = _mm_unpacklo_epi8(dst2, zero);
174
2.47M
    dst3 = _mm_unpacklo_epi8(dst3, zero);
175
    // Add the inverse transform(s).
176
2.47M
    dst0 = _mm_add_epi16(dst0, T0);
177
2.47M
    dst1 = _mm_add_epi16(dst1, T1);
178
2.47M
    dst2 = _mm_add_epi16(dst2, T2);
179
2.47M
    dst3 = _mm_add_epi16(dst3, T3);
180
    // Unsigned saturate to 8b.
181
2.47M
    dst0 = _mm_packus_epi16(dst0, dst0);
182
2.47M
    dst1 = _mm_packus_epi16(dst1, dst1);
183
2.47M
    dst2 = _mm_packus_epi16(dst2, dst2);
184
2.47M
    dst3 = _mm_packus_epi16(dst3, dst3);
185
    // Store the results.
186
2.47M
    if (do_two) {
187
      // Store eight bytes/pixels per line.
188
664k
      _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
189
664k
      _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
190
664k
      _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
191
664k
      _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
192
1.80M
    } else {
193
      // Store four bytes/pixels per line.
194
1.80M
      WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
195
1.80M
      WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
196
1.80M
      WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
197
1.80M
      WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
198
1.80M
    }
199
2.47M
  }
200
2.47M
}
201
202
#if (USE_TRANSFORM_AC3 == 1)
203
204
static void TransformAC3_SSE2(const int16_t* WEBP_RESTRICT in,
205
                              uint8_t* WEBP_RESTRICT dst) {
206
  const __m128i A = _mm_set1_epi16(in[0] + 4);
207
  const __m128i c4 = _mm_set1_epi16(WEBP_TRANSFORM_AC3_MUL2(in[4]));
208
  const __m128i d4 = _mm_set1_epi16(WEBP_TRANSFORM_AC3_MUL1(in[4]));
209
  const int c1 = WEBP_TRANSFORM_AC3_MUL2(in[1]);
210
  const int d1 = WEBP_TRANSFORM_AC3_MUL1(in[1]);
211
  const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
212
  const __m128i B = _mm_adds_epi16(A, CD);
213
  const __m128i m0 = _mm_adds_epi16(B, d4);
214
  const __m128i m1 = _mm_adds_epi16(B, c4);
215
  const __m128i m2 = _mm_subs_epi16(B, c4);
216
  const __m128i m3 = _mm_subs_epi16(B, d4);
217
  const __m128i zero = _mm_setzero_si128();
218
  // Load the source pixels.
219
  __m128i dst0 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 0 * BPS));
220
  __m128i dst1 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 1 * BPS));
221
  __m128i dst2 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 2 * BPS));
222
  __m128i dst3 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 3 * BPS));
223
  // Convert to 16b.
224
  dst0 = _mm_unpacklo_epi8(dst0, zero);
225
  dst1 = _mm_unpacklo_epi8(dst1, zero);
226
  dst2 = _mm_unpacklo_epi8(dst2, zero);
227
  dst3 = _mm_unpacklo_epi8(dst3, zero);
228
  // Add the inverse transform.
229
  dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
230
  dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
231
  dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
232
  dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
233
  // Unsigned saturate to 8b.
234
  dst0 = _mm_packus_epi16(dst0, dst0);
235
  dst1 = _mm_packus_epi16(dst1, dst1);
236
  dst2 = _mm_packus_epi16(dst2, dst2);
237
  dst3 = _mm_packus_epi16(dst3, dst3);
238
  // Store the results.
239
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
240
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
241
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
242
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
243
}
244
245
#endif  // USE_TRANSFORM_AC3
246
247
//------------------------------------------------------------------------------
248
// Loop Filter (Paragraph 15)
249
250
// Compute abs(p - q) = subs(p - q) OR subs(q - p)
251
#define MM_ABS(p, q) \
252
117M
  _mm_or_si128(_mm_subs_epu8((q), (p)), _mm_subs_epu8((p), (q)))
253
254
// Shift each byte of "x" by 3 bits while preserving by the sign bit.
255
30.6M
static WEBP_INLINE void SignedShift8b_SSE2(__m128i* const x) {
256
30.6M
  const __m128i zero = _mm_setzero_si128();
257
30.6M
  const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
258
30.6M
  const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
259
30.6M
  const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
260
30.6M
  const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
261
30.6M
  *x = _mm_packs_epi16(lo_1, hi_1);
262
30.6M
}
263
264
#define FLIP_SIGN_BIT2(a, b)          \
265
55.8M
  do {                                \
266
55.8M
    (a) = _mm_xor_si128(a, sign_bit); \
267
55.8M
    (b) = _mm_xor_si128(b, sign_bit); \
268
55.8M
  } while (0)
269
270
#define FLIP_SIGN_BIT4(a, b, c, d) \
271
10.9M
  do {                             \
272
10.9M
    FLIP_SIGN_BIT2(a, b);          \
273
10.9M
    FLIP_SIGN_BIT2(c, d);          \
274
10.9M
  } while (0)
275
276
// input/output is uint8_t
277
static WEBP_INLINE void GetNotHEV_SSE2(const __m128i* const p1,
278
                                       const __m128i* const p0,
279
                                       const __m128i* const q0,
280
                                       const __m128i* const q1, int hev_thresh,
281
10.9M
                                       __m128i* const not_hev) {
282
10.9M
  const __m128i zero = _mm_setzero_si128();
283
10.9M
  const __m128i t_1 = MM_ABS(*p1, *p0);
284
10.9M
  const __m128i t_2 = MM_ABS(*q1, *q0);
285
286
10.9M
  const __m128i h = _mm_set1_epi8(hev_thresh);
287
10.9M
  const __m128i t_max = _mm_max_epu8(t_1, t_2);
288
289
10.9M
  const __m128i t_max_h = _mm_subs_epu8(t_max, h);
290
10.9M
  *not_hev = _mm_cmpeq_epi8(t_max_h, zero);  // not_hev <= t1 && not_hev <= t2
291
10.9M
}
292
293
// input pixels are int8_t
294
static WEBP_INLINE void GetBaseDelta_SSE2(const __m128i* const p1,
295
                                          const __m128i* const p0,
296
                                          const __m128i* const q0,
297
                                          const __m128i* const q1,
298
6.10M
                                          __m128i* const delta) {
299
  // beware of addition order, for saturation!
300
6.10M
  const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1);   // p1 - q1
301
6.10M
  const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0);   // q0 - p0
302
6.10M
  const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0);  // p1 - q1 + 1 * (q0 - p0)
303
6.10M
  const __m128i s2 = _mm_adds_epi8(q0_p0, s1);     // p1 - q1 + 2 * (q0 - p0)
304
6.10M
  const __m128i s3 = _mm_adds_epi8(q0_p0, s2);     // p1 - q1 + 3 * (q0 - p0)
305
6.10M
  *delta = s3;
306
6.10M
}
307
308
// input and output are int8_t
309
static WEBP_INLINE void DoSimpleFilter_SSE2(__m128i* const p0,
310
                                            __m128i* const q0,
311
6.10M
                                            const __m128i* const fl) {
312
6.10M
  const __m128i k3 = _mm_set1_epi8(3);
313
6.10M
  const __m128i k4 = _mm_set1_epi8(4);
314
6.10M
  __m128i v3 = _mm_adds_epi8(*fl, k3);
315
6.10M
  __m128i v4 = _mm_adds_epi8(*fl, k4);
316
317
6.10M
  SignedShift8b_SSE2(&v4);       // v4 >> 3
318
6.10M
  SignedShift8b_SSE2(&v3);       // v3 >> 3
319
6.10M
  *q0 = _mm_subs_epi8(*q0, v4);  // q0 -= v4
320
6.10M
  *p0 = _mm_adds_epi8(*p0, v3);  // p0 += v3
321
6.10M
}
322
323
// Updates values of 2 pixels at MB edge during complex filtering.
324
// Update operations:
325
// q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
326
// Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
327
static WEBP_INLINE void Update2Pixels_SSE2(__m128i* const pi, __m128i* const qi,
328
                                           const __m128i* const a0_lo,
329
5.03M
                                           const __m128i* const a0_hi) {
330
5.03M
  const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
331
5.03M
  const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
332
5.03M
  const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
333
5.03M
  const __m128i sign_bit = _mm_set1_epi8((char)0x80);
334
5.03M
  *pi = _mm_adds_epi8(*pi, delta);
335
5.03M
  *qi = _mm_subs_epi8(*qi, delta);
336
5.03M
  FLIP_SIGN_BIT2(*pi, *qi);
337
5.03M
}
338
339
// input pixels are uint8_t
340
static WEBP_INLINE void NeedsFilter_SSE2(const __m128i* const p1,
341
                                         const __m128i* const p0,
342
                                         const __m128i* const q0,
343
                                         const __m128i* const q1, int thresh,
344
15.3M
                                         __m128i* const mask) {
345
15.3M
  const __m128i m_thresh = _mm_set1_epi8((char)thresh);
346
15.3M
  const __m128i t1 = MM_ABS(*p1, *q1);  // abs(p1 - q1)
347
15.3M
  const __m128i kFE = _mm_set1_epi8((char)0xFE);
348
15.3M
  const __m128i t2 = _mm_and_si128(t1, kFE);  // set lsb of each byte to zero
349
15.3M
  const __m128i t3 = _mm_srli_epi16(t2, 1);   // abs(p1 - q1) / 2
350
351
15.3M
  const __m128i t4 = MM_ABS(*p0, *q0);       // abs(p0 - q0)
352
15.3M
  const __m128i t5 = _mm_adds_epu8(t4, t4);  // abs(p0 - q0) * 2
353
15.3M
  const __m128i t6 = _mm_adds_epu8(t5, t3);  // abs(p0-q0)*2 + abs(p1-q1)/2
354
355
15.3M
  const __m128i t7 = _mm_subs_epu8(t6, m_thresh);  // mask <= m_thresh
356
15.3M
  *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
357
15.3M
}
358
359
//------------------------------------------------------------------------------
360
// Edge filtering functions
361
362
// Applies filter on 2 pixels (p0 and q0)
363
static WEBP_INLINE void DoFilter2_SSE2(__m128i* const p1, __m128i* const p0,
364
                                       __m128i* const q0, __m128i* const q1,
365
4.42M
                                       int thresh) {
366
4.42M
  __m128i a, mask;
367
4.42M
  const __m128i sign_bit = _mm_set1_epi8((char)0x80);
368
  // convert p1/q1 to int8_t (for GetBaseDelta_SSE2)
369
4.42M
  const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
370
4.42M
  const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
371
372
4.42M
  NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &mask);
373
374
4.42M
  FLIP_SIGN_BIT2(*p0, *q0);
375
4.42M
  GetBaseDelta_SSE2(&p1s, p0, q0, &q1s, &a);
376
4.42M
  a = _mm_and_si128(a, mask);  // mask filter values we don't care about
377
4.42M
  DoSimpleFilter_SSE2(p0, q0, &a);
378
4.42M
  FLIP_SIGN_BIT2(*p0, *q0);
379
4.42M
}
380
381
// Applies filter on 4 pixels (p1, p0, q0 and q1)
382
static WEBP_INLINE void DoFilter4_SSE2(__m128i* const p1, __m128i* const p0,
383
                                       __m128i* const q0, __m128i* const q1,
384
                                       const __m128i* const mask,
385
9.22M
                                       int hev_thresh) {
386
9.22M
  const __m128i zero = _mm_setzero_si128();
387
9.22M
  const __m128i sign_bit = _mm_set1_epi8((char)0x80);
388
9.22M
  const __m128i k64 = _mm_set1_epi8(64);
389
9.22M
  const __m128i k3 = _mm_set1_epi8(3);
390
9.22M
  const __m128i k4 = _mm_set1_epi8(4);
391
9.22M
  __m128i not_hev;
392
9.22M
  __m128i t1, t2, t3;
393
394
  // compute hev mask
395
9.22M
  GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);
396
397
  // convert to signed values
398
9.22M
  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
399
400
9.22M
  t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
401
9.22M
  t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
402
9.22M
  t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
403
9.22M
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
404
9.22M
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
405
9.22M
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
406
9.22M
  t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
407
408
9.22M
  t2 = _mm_adds_epi8(t1, k3);    // 3 * (q0 - p0) + hev(p1 - q1) + 3
409
9.22M
  t3 = _mm_adds_epi8(t1, k4);    // 3 * (q0 - p0) + hev(p1 - q1) + 4
410
9.22M
  SignedShift8b_SSE2(&t2);       // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
411
9.22M
  SignedShift8b_SSE2(&t3);       // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
412
9.22M
  *p0 = _mm_adds_epi8(*p0, t2);  // p0 += t2
413
9.22M
  *q0 = _mm_subs_epi8(*q0, t3);  // q0 -= t3
414
9.22M
  FLIP_SIGN_BIT2(*p0, *q0);
415
416
  // this is equivalent to signed (a + 1) >> 1 calculation
417
9.22M
  t2 = _mm_add_epi8(t3, sign_bit);
418
9.22M
  t3 = _mm_avg_epu8(t2, zero);
419
9.22M
  t3 = _mm_sub_epi8(t3, k64);
420
421
9.22M
  t3 = _mm_and_si128(not_hev, t3);  // if !hev
422
9.22M
  *q1 = _mm_subs_epi8(*q1, t3);     // q1 -= t3
423
9.22M
  *p1 = _mm_adds_epi8(*p1, t3);     // p1 += t3
424
9.22M
  FLIP_SIGN_BIT2(*p1, *q1);
425
9.22M
}
426
427
// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
428
static WEBP_INLINE void DoFilter6_SSE2(__m128i* const p2, __m128i* const p1,
429
                                       __m128i* const p0, __m128i* const q0,
430
                                       __m128i* const q1, __m128i* const q2,
431
                                       const __m128i* const mask,
432
1.67M
                                       int hev_thresh) {
433
1.67M
  const __m128i zero = _mm_setzero_si128();
434
1.67M
  const __m128i sign_bit = _mm_set1_epi8((char)0x80);
435
1.67M
  __m128i a, not_hev;
436
437
  // compute hev mask
438
1.67M
  GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);
439
440
1.67M
  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
441
1.67M
  FLIP_SIGN_BIT2(*p2, *q2);
442
1.67M
  GetBaseDelta_SSE2(p1, p0, q0, q1, &a);
443
444
1.67M
  {  // do simple filter on pixels with hev
445
1.67M
    const __m128i m = _mm_andnot_si128(not_hev, *mask);
446
1.67M
    const __m128i f = _mm_and_si128(a, m);
447
1.67M
    DoSimpleFilter_SSE2(p0, q0, &f);
448
1.67M
  }
449
450
1.67M
  {  // do strong filter on pixels with not hev
451
1.67M
    const __m128i k9 = _mm_set1_epi16(0x0900);
452
1.67M
    const __m128i k63 = _mm_set1_epi16(63);
453
454
1.67M
    const __m128i m = _mm_and_si128(not_hev, *mask);
455
1.67M
    const __m128i f = _mm_and_si128(a, m);
456
457
1.67M
    const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
458
1.67M
    const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
459
460
1.67M
    const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9);  // Filter (lo) * 9
461
1.67M
    const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9);  // Filter (hi) * 9
462
463
1.67M
    const __m128i a2_lo = _mm_add_epi16(f9_lo, k63);  // Filter * 9 + 63
464
1.67M
    const __m128i a2_hi = _mm_add_epi16(f9_hi, k63);  // Filter * 9 + 63
465
466
1.67M
    const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo);  // Filter * 18 + 63
467
1.67M
    const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi);  // Filter * 18 + 63
468
469
1.67M
    const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo);  // Filter * 27 + 63
470
1.67M
    const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi);  // Filter * 27 + 63
471
472
1.67M
    Update2Pixels_SSE2(p2, q2, &a2_lo, &a2_hi);
473
1.67M
    Update2Pixels_SSE2(p1, q1, &a1_lo, &a1_hi);
474
1.67M
    Update2Pixels_SSE2(p0, q0, &a0_lo, &a0_hi);
475
1.67M
  }
476
1.67M
}
477
478
// reads 8 rows across a vertical edge.
479
static WEBP_INLINE void Load8x4_SSE2(const uint8_t* const b, int stride,
480
21.6M
                                     __m128i* const p, __m128i* const q) {
481
  // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
482
  // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
483
21.6M
  const __m128i A0 = _mm_set_epi32(
484
21.6M
      WebPMemToInt32(&b[6 * stride]), WebPMemToInt32(&b[2 * stride]),
485
21.6M
      WebPMemToInt32(&b[4 * stride]), WebPMemToInt32(&b[0 * stride]));
486
21.6M
  const __m128i A1 = _mm_set_epi32(
487
21.6M
      WebPMemToInt32(&b[7 * stride]), WebPMemToInt32(&b[3 * stride]),
488
21.6M
      WebPMemToInt32(&b[5 * stride]), WebPMemToInt32(&b[1 * stride]));
489
490
  // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
491
  // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
492
21.6M
  const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
493
21.6M
  const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
494
495
  // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
496
  // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
497
21.6M
  const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
498
21.6M
  const __m128i C1 = _mm_unpackhi_epi16(B0, B1);
499
500
  // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
501
  // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
502
21.6M
  *p = _mm_unpacklo_epi32(C0, C1);
503
21.6M
  *q = _mm_unpackhi_epi32(C0, C1);
504
21.6M
}
505
506
static WEBP_INLINE void Load16x4_SSE2(const uint8_t* const r0,
507
                                      const uint8_t* const r8, int stride,
508
                                      __m128i* const p1, __m128i* const p0,
509
10.8M
                                      __m128i* const q0, __m128i* const q1) {
510
  // Assume the pixels around the edge (|) are numbered as follows
511
  //                00 01 | 02 03
512
  //                10 11 | 12 13
513
  //                 ...  |  ...
514
  //                e0 e1 | e2 e3
515
  //                f0 f1 | f2 f3
516
  //
517
  // r0 is pointing to the 0th row (00)
518
  // r8 is pointing to the 8th row (80)
519
520
  // Load
521
  // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
522
  // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
523
  // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
524
  // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
525
10.8M
  Load8x4_SSE2(r0, stride, p1, q0);
526
10.8M
  Load8x4_SSE2(r8, stride, p0, q1);
527
528
10.8M
  {
529
    // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
530
    // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
531
    // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
532
    // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
533
10.8M
    const __m128i t1 = *p1;
534
10.8M
    const __m128i t2 = *q0;
535
10.8M
    *p1 = _mm_unpacklo_epi64(t1, *p0);
536
10.8M
    *p0 = _mm_unpackhi_epi64(t1, *p0);
537
10.8M
    *q0 = _mm_unpacklo_epi64(t2, *q1);
538
10.8M
    *q1 = _mm_unpackhi_epi64(t2, *q1);
539
10.8M
  }
540
10.8M
}
541
542
static WEBP_INLINE void Store4x4_SSE2(__m128i* const x, uint8_t* dst,
543
34.0M
                                      int stride) {
544
34.0M
  int i;
545
170M
  for (i = 0; i < 4; ++i, dst += stride) {
546
136M
    WebPInt32ToMem(dst, _mm_cvtsi128_si32(*x));
547
136M
    *x = _mm_srli_si128(*x, 4);
548
136M
  }
549
34.0M
}
550
551
// Transpose back and store
552
static WEBP_INLINE void Store16x4_SSE2(const __m128i* const p1,
553
                                       const __m128i* const p0,
554
                                       const __m128i* const q0,
555
                                       const __m128i* const q1, uint8_t* r0,
556
8.51M
                                       uint8_t* r8, int stride) {
557
8.51M
  __m128i t1, p1_s, p0_s, q0_s, q1_s;
558
559
  // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
560
  // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
561
8.51M
  t1 = *p0;
562
8.51M
  p0_s = _mm_unpacklo_epi8(*p1, t1);
563
8.51M
  p1_s = _mm_unpackhi_epi8(*p1, t1);
564
565
  // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
566
  // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
567
8.51M
  t1 = *q0;
568
8.51M
  q0_s = _mm_unpacklo_epi8(t1, *q1);
569
8.51M
  q1_s = _mm_unpackhi_epi8(t1, *q1);
570
571
  // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
572
  // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
573
8.51M
  t1 = p0_s;
574
8.51M
  p0_s = _mm_unpacklo_epi16(t1, q0_s);
575
8.51M
  q0_s = _mm_unpackhi_epi16(t1, q0_s);
576
577
  // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
578
  // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
579
8.51M
  t1 = p1_s;
580
8.51M
  p1_s = _mm_unpacklo_epi16(t1, q1_s);
581
8.51M
  q1_s = _mm_unpackhi_epi16(t1, q1_s);
582
583
8.51M
  Store4x4_SSE2(&p0_s, r0, stride);
584
8.51M
  r0 += 4 * stride;
585
8.51M
  Store4x4_SSE2(&q0_s, r0, stride);
586
587
8.51M
  Store4x4_SSE2(&p1_s, r8, stride);
588
8.51M
  r8 += 4 * stride;
589
8.51M
  Store4x4_SSE2(&q1_s, r8, stride);
590
8.51M
}
591
592
//------------------------------------------------------------------------------
593
// Simple In-loop filtering (Paragraph 15.2)
594
595
2.22M
static void SimpleVFilter16_SSE2(uint8_t* p, int stride, int thresh) {
596
  // Load
597
2.22M
  __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
598
2.22M
  __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
599
2.22M
  __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
600
2.22M
  __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
601
602
2.22M
  DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
603
604
  // Store
605
2.22M
  _mm_storeu_si128((__m128i*)&p[-stride], p0);
606
2.22M
  _mm_storeu_si128((__m128i*)&p[0], q0);
607
2.22M
}
608
609
2.20M
static void SimpleHFilter16_SSE2(uint8_t* p, int stride, int thresh) {
610
2.20M
  __m128i p1, p0, q0, q1;
611
612
2.20M
  p -= 2;  // beginning of p1
613
614
2.20M
  Load16x4_SSE2(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
615
2.20M
  DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
616
2.20M
  Store16x4_SSE2(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
617
2.20M
}
618
619
694k
static void SimpleVFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
620
694k
  int k;
621
2.77M
  for (k = 3; k > 0; --k) {
622
2.08M
    p += 4 * stride;
623
2.08M
    SimpleVFilter16_SSE2(p, stride, thresh);
624
2.08M
  }
625
694k
}
626
627
694k
static void SimpleHFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
628
694k
  int k;
629
2.77M
  for (k = 3; k > 0; --k) {
630
2.08M
    p += 4;
631
2.08M
    SimpleHFilter16_SSE2(p, stride, thresh);
632
2.08M
  }
633
694k
}
634
635
//------------------------------------------------------------------------------
636
// Complex In-loop filtering (Paragraph 15.3)
637
638
#define MAX_DIFF1(p3, p2, p1, p0, m)       \
639
10.9M
  do {                                     \
640
10.9M
    (m) = MM_ABS(p1, p0);                  \
641
10.9M
    (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \
642
10.9M
    (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \
643
10.9M
  } while (0)
644
645
#define MAX_DIFF2(p3, p2, p1, p0, m)       \
646
10.9M
  do {                                     \
647
10.9M
    (m) = _mm_max_epu8(m, MM_ABS(p1, p0)); \
648
10.9M
    (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \
649
10.9M
    (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \
650
10.9M
  } while (0)
651
652
#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4)          \
653
5.44M
  do {                                                    \
654
5.44M
    (e1) = _mm_loadu_si128((__m128i*)&(p)[0 * (stride)]); \
655
5.44M
    (e2) = _mm_loadu_si128((__m128i*)&(p)[1 * (stride)]); \
656
5.44M
    (e3) = _mm_loadu_si128((__m128i*)&(p)[2 * (stride)]); \
657
5.44M
    (e4) = _mm_loadu_si128((__m128i*)&(p)[3 * (stride)]); \
658
5.44M
  } while (0)
659
660
#define LOADUV_H_EDGE(p, u, v, stride)                           \
661
12.5M
  do {                                                           \
662
12.5M
    const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \
663
12.5M
    const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]); \
664
12.5M
    (p) = _mm_unpacklo_epi64(U, V);                              \
665
12.5M
  } while (0)
666
667
#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) \
668
3.13M
  do {                                                \
669
3.13M
    LOADUV_H_EDGE(e1, u, v, 0 * (stride));            \
670
3.13M
    LOADUV_H_EDGE(e2, u, v, 1 * (stride));            \
671
3.13M
    LOADUV_H_EDGE(e3, u, v, 2 * (stride));            \
672
3.13M
    LOADUV_H_EDGE(e4, u, v, 3 * (stride));            \
673
3.13M
  } while (0)
674
675
#define STOREUV(p, u, v, stride)                   \
676
7.10M
  do {                                             \
677
7.10M
    _mm_storel_epi64((__m128i*)&(u)[(stride)], p); \
678
7.10M
    (p) = _mm_srli_si128(p, 8);                    \
679
7.10M
    _mm_storel_epi64((__m128i*)&(v)[(stride)], p); \
680
7.10M
  } while (0)
681
682
static WEBP_INLINE void ComplexMask_SSE2(const __m128i* const p1,
683
                                         const __m128i* const p0,
684
                                         const __m128i* const q0,
685
                                         const __m128i* const q1, int thresh,
686
10.9M
                                         int ithresh, __m128i* const mask) {
687
10.9M
  const __m128i it = _mm_set1_epi8(ithresh);
688
10.9M
  const __m128i diff = _mm_subs_epu8(*mask, it);
689
10.9M
  const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
690
10.9M
  __m128i filter_mask;
691
10.9M
  NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &filter_mask);
692
10.9M
  *mask = _mm_and_si128(thresh_mask, filter_mask);
693
10.9M
}
694
695
// on macroblock edges
696
static void VFilter16_SSE2(uint8_t* p, int stride, int thresh, int ithresh,
697
414k
                           int hev_thresh) {
698
414k
  __m128i t1;
699
414k
  __m128i mask;
700
414k
  __m128i p2, p1, p0, q0, q1, q2;
701
702
  // Load p3, p2, p1, p0
703
414k
  LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
704
414k
  MAX_DIFF1(t1, p2, p1, p0, mask);
705
706
  // Load q0, q1, q2, q3
707
414k
  LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
708
414k
  MAX_DIFF2(t1, q2, q1, q0, mask);
709
710
414k
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
711
414k
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
712
713
  // Store
714
414k
  _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
715
414k
  _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
716
414k
  _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
717
414k
  _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
718
414k
  _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
719
414k
  _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
720
414k
}
721
722
static void HFilter16_SSE2(uint8_t* p, int stride, int thresh, int ithresh,
723
425k
                           int hev_thresh) {
724
425k
  __m128i mask;
725
425k
  __m128i p3, p2, p1, p0, q0, q1, q2, q3;
726
727
425k
  uint8_t* const b = p - 4;
728
425k
  Load16x4_SSE2(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
729
425k
  MAX_DIFF1(p3, p2, p1, p0, mask);
730
731
425k
  Load16x4_SSE2(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
732
425k
  MAX_DIFF2(q3, q2, q1, q0, mask);
733
734
425k
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
735
425k
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
736
737
425k
  Store16x4_SSE2(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
738
425k
  Store16x4_SSE2(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
739
425k
}
740
741
// on three inner edges
742
static void VFilter16i_SSE2(uint8_t* p, int stride, int thresh, int ithresh,
743
1.15M
                            int hev_thresh) {
744
1.15M
  int k;
745
1.15M
  __m128i p3, p2, p1, p0;  // loop invariants
746
747
1.15M
  LOAD_H_EDGES4(p, stride, p3, p2, p1, p0);  // prologue
748
749
4.61M
  for (k = 3; k > 0; --k) {
750
3.46M
    __m128i mask, tmp1, tmp2;
751
3.46M
    uint8_t* const b = p + 2 * stride;  // beginning of p1
752
3.46M
    p += 4 * stride;
753
754
3.46M
    MAX_DIFF1(p3, p2, p1, p0, mask);  // compute partial mask
755
3.46M
    LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
756
3.46M
    MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
757
758
    // p3 and p2 are not just temporary variables here: they will be
759
    // re-used for next span. And q2/q3 will become p1/p0 accordingly.
760
3.46M
    ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
761
3.46M
    DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
762
763
    // Store
764
3.46M
    _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
765
3.46M
    _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
766
3.46M
    _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
767
3.46M
    _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
768
769
    // rotate samples
770
3.46M
    p1 = tmp1;
771
3.46M
    p0 = tmp2;
772
3.46M
  }
773
1.15M
}
774
775
static void HFilter16i_SSE2(uint8_t* p, int stride, int thresh, int ithresh,
776
1.15M
                            int hev_thresh) {
777
1.15M
  int k;
778
1.15M
  __m128i p3, p2, p1, p0;  // loop invariants
779
780
1.15M
  Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0);  // prologue
781
782
4.61M
  for (k = 3; k > 0; --k) {
783
3.46M
    __m128i mask, tmp1, tmp2;
784
3.46M
    uint8_t* const b = p + 2;  // beginning of p1
785
786
3.46M
    p += 4;  // beginning of q0 (and next span)
787
788
3.46M
    MAX_DIFF1(p3, p2, p1, p0, mask);  // compute partial mask
789
3.46M
    Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
790
3.46M
    MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
791
792
3.46M
    ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
793
3.46M
    DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
794
795
3.46M
    Store16x4_SSE2(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
796
797
    // rotate samples
798
3.46M
    p1 = tmp1;
799
3.46M
    p0 = tmp2;
800
3.46M
  }
801
1.15M
}
802
803
// 8-pixels wide variant, for chroma filtering
804
static void VFilter8_SSE2(uint8_t* WEBP_RESTRICT u, uint8_t* WEBP_RESTRICT v,
805
414k
                          int stride, int thresh, int ithresh, int hev_thresh) {
806
414k
  __m128i mask;
807
414k
  __m128i t1, p2, p1, p0, q0, q1, q2;
808
809
  // Load p3, p2, p1, p0
810
414k
  LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
811
414k
  MAX_DIFF1(t1, p2, p1, p0, mask);
812
813
  // Load q0, q1, q2, q3
814
414k
  LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
815
414k
  MAX_DIFF2(t1, q2, q1, q0, mask);
816
817
414k
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
818
414k
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
819
820
  // Store
821
414k
  STOREUV(p2, u, v, -3 * stride);
822
414k
  STOREUV(p1, u, v, -2 * stride);
823
414k
  STOREUV(p0, u, v, -1 * stride);
824
414k
  STOREUV(q0, u, v, 0 * stride);
825
414k
  STOREUV(q1, u, v, 1 * stride);
826
414k
  STOREUV(q2, u, v, 2 * stride);
827
414k
}
828
829
static void HFilter8_SSE2(uint8_t* WEBP_RESTRICT u, uint8_t* WEBP_RESTRICT v,
830
425k
                          int stride, int thresh, int ithresh, int hev_thresh) {
831
425k
  __m128i mask;
832
425k
  __m128i p3, p2, p1, p0, q0, q1, q2, q3;
833
834
425k
  uint8_t* const tu = u - 4;
835
425k
  uint8_t* const tv = v - 4;
836
425k
  Load16x4_SSE2(tu, tv, stride, &p3, &p2, &p1, &p0);
837
425k
  MAX_DIFF1(p3, p2, p1, p0, mask);
838
839
425k
  Load16x4_SSE2(u, v, stride, &q0, &q1, &q2, &q3);
840
425k
  MAX_DIFF2(q3, q2, q1, q0, mask);
841
842
425k
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
843
425k
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
844
845
425k
  Store16x4_SSE2(&p3, &p2, &p1, &p0, tu, tv, stride);
846
425k
  Store16x4_SSE2(&q0, &q1, &q2, &q3, u, v, stride);
847
425k
}
848
849
static void VFilter8i_SSE2(uint8_t* WEBP_RESTRICT u, uint8_t* WEBP_RESTRICT v,
850
                           int stride, int thresh, int ithresh,
851
1.15M
                           int hev_thresh) {
852
1.15M
  __m128i mask;
853
1.15M
  __m128i t1, t2, p1, p0, q0, q1;
854
855
  // Load p3, p2, p1, p0
856
1.15M
  LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
857
1.15M
  MAX_DIFF1(t2, t1, p1, p0, mask);
858
859
1.15M
  u += 4 * stride;
860
1.15M
  v += 4 * stride;
861
862
  // Load q0, q1, q2, q3
863
1.15M
  LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
864
1.15M
  MAX_DIFF2(t2, t1, q1, q0, mask);
865
866
1.15M
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
867
1.15M
  DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
868
869
  // Store
870
1.15M
  STOREUV(p1, u, v, -2 * stride);
871
1.15M
  STOREUV(p0, u, v, -1 * stride);
872
1.15M
  STOREUV(q0, u, v, 0 * stride);
873
1.15M
  STOREUV(q1, u, v, 1 * stride);
874
1.15M
}
875
876
static void HFilter8i_SSE2(uint8_t* WEBP_RESTRICT u, uint8_t* WEBP_RESTRICT v,
877
                           int stride, int thresh, int ithresh,
878
1.15M
                           int hev_thresh) {
879
1.15M
  __m128i mask;
880
1.15M
  __m128i t1, t2, p1, p0, q0, q1;
881
1.15M
  Load16x4_SSE2(u, v, stride, &t2, &t1, &p1, &p0);  // p3, p2, p1, p0
882
1.15M
  MAX_DIFF1(t2, t1, p1, p0, mask);
883
884
1.15M
  u += 4;  // beginning of q0
885
1.15M
  v += 4;
886
1.15M
  Load16x4_SSE2(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
887
1.15M
  MAX_DIFF2(t2, t1, q1, q0, mask);
888
889
1.15M
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
890
1.15M
  DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
891
892
1.15M
  u -= 2;  // beginning of p1
893
1.15M
  v -= 2;
894
1.15M
  Store16x4_SSE2(&p1, &p0, &q0, &q1, u, v, stride);
895
1.15M
}
896
897
//------------------------------------------------------------------------------
898
// 4x4 predictions
899
900
631k
#define DST(x, y) dst[(x) + (y) * BPS]
901
326k
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
902
903
// We use the following 8b-arithmetic tricks:
904
//     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
905
//   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
906
// and:
907
//     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
908
//   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
909
//   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
910
911
375k
static void VE4_SSE2(uint8_t* dst) {  // vertical
912
375k
  const __m128i one = _mm_set1_epi8(1);
913
375k
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
914
375k
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
915
375k
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
916
375k
  const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
917
375k
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
918
375k
  const __m128i b = _mm_subs_epu8(a, lsb);
919
375k
  const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
920
375k
  const int vals = _mm_cvtsi128_si32(avg);
921
375k
  int i;
922
1.87M
  for (i = 0; i < 4; ++i) {
923
1.50M
    WebPInt32ToMem(dst + i * BPS, vals);
924
1.50M
  }
925
375k
}
926
927
169k
static void LD4_SSE2(uint8_t* dst) {  // Down-Left
928
169k
  const __m128i one = _mm_set1_epi8(1);
929
169k
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
930
169k
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
931
169k
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
932
169k
  const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
933
169k
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
934
169k
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
935
169k
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
936
169k
  const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
937
169k
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(abcdefg));
938
169k
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
939
169k
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
940
169k
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
941
169k
}
942
943
163k
static void VR4_SSE2(uint8_t* dst) {  // Vertical-Right
944
163k
  const __m128i one = _mm_set1_epi8(1);
945
163k
  const int I = dst[-1 + 0 * BPS];
946
163k
  const int J = dst[-1 + 1 * BPS];
947
163k
  const int K = dst[-1 + 2 * BPS];
948
163k
  const int X = dst[-1 - BPS];
949
163k
  const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
950
163k
  const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
951
163k
  const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
952
163k
  const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
953
163k
  const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0);
954
163k
  const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
955
163k
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
956
163k
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
957
163k
  const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
958
163k
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(abcd));
959
163k
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(efgh));
960
163k
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
961
163k
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
962
963
  // these two are hard to implement in SSE2, so we keep the C-version:
964
163k
  DST(0, 2) = AVG3(J, I, X);
965
163k
  DST(0, 3) = AVG3(K, J, I);
966
163k
}
967
968
152k
static void VL4_SSE2(uint8_t* dst) {  // Vertical-Left
969
152k
  const __m128i one = _mm_set1_epi8(1);
970
152k
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
971
152k
  const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
972
152k
  const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
973
152k
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
974
152k
  const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
975
152k
  const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
976
152k
  const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
977
152k
  const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
978
152k
  const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
979
152k
  const __m128i abbc = _mm_or_si128(ab, bc);
980
152k
  const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
981
152k
  const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
982
152k
  const uint32_t extra_out =
983
152k
      (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
984
152k
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(avg1));
985
152k
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(avg4));
986
152k
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
987
152k
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
988
989
  // these two are hard to get and irregular
990
152k
  DST(3, 2) = (extra_out >> 0) & 0xff;
991
152k
  DST(3, 3) = (extra_out >> 8) & 0xff;
992
152k
}
993
994
126k
static void RD4_SSE2(uint8_t* dst) {  // Down-right
995
126k
  const __m128i one = _mm_set1_epi8(1);
996
126k
  const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
997
126k
  const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
998
126k
  const uint32_t I = dst[-1 + 0 * BPS];
999
126k
  const uint32_t J = dst[-1 + 1 * BPS];
1000
126k
  const uint32_t K = dst[-1 + 2 * BPS];
1001
126k
  const uint32_t L = dst[-1 + 3 * BPS];
1002
126k
  const __m128i LKJI_____ =
1003
126k
      _mm_cvtsi32_si128((int)(L | (K << 8) | (J << 16) | (I << 24)));
1004
126k
  const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
1005
126k
  const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
1006
126k
  const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
1007
126k
  const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
1008
126k
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
1009
126k
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
1010
126k
  const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
1011
126k
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(abcdefg));
1012
126k
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1013
126k
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1014
126k
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1015
126k
}
1016
1017
#undef DST
1018
#undef AVG3
1019
1020
//------------------------------------------------------------------------------
1021
// Luma 16x16
1022
1023
1.48M
static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, int size) {
1024
1.48M
  const uint8_t* top = dst - BPS;
1025
1.48M
  const __m128i zero = _mm_setzero_si128();
1026
1.48M
  int y;
1027
1.48M
  if (size == 4) {
1028
1.17M
    const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top));
1029
1.17M
    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1030
5.85M
    for (y = 0; y < 4; ++y, dst += BPS) {
1031
4.68M
      const int val = dst[-1] - top[-1];
1032
4.68M
      const __m128i base = _mm_set1_epi16(val);
1033
4.68M
      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1034
4.68M
      WebPInt32ToMem(dst, _mm_cvtsi128_si32(out));
1035
4.68M
    }
1036
1.17M
  } else if (size == 8) {
1037
184k
    const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
1038
184k
    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1039
1.66M
    for (y = 0; y < 8; ++y, dst += BPS) {
1040
1.47M
      const int val = dst[-1] - top[-1];
1041
1.47M
      const __m128i base = _mm_set1_epi16(val);
1042
1.47M
      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1043
1.47M
      _mm_storel_epi64((__m128i*)dst, out);
1044
1.47M
    }
1045
184k
  } else {
1046
128k
    const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
1047
128k
    const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
1048
128k
    const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
1049
2.18M
    for (y = 0; y < 16; ++y, dst += BPS) {
1050
2.05M
      const int val = dst[-1] - top[-1];
1051
2.05M
      const __m128i base = _mm_set1_epi16(val);
1052
2.05M
      const __m128i out_0 = _mm_add_epi16(base, top_base_0);
1053
2.05M
      const __m128i out_1 = _mm_add_epi16(base, top_base_1);
1054
2.05M
      const __m128i out = _mm_packus_epi16(out_0, out_1);
1055
2.05M
      _mm_storeu_si128((__m128i*)dst, out);
1056
2.05M
    }
1057
128k
  }
1058
1.48M
}
1059
1060
1.17M
static void TM4_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 4); }
1061
184k
static void TM8uv_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 8); }
1062
128k
static void TM16_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 16); }
1063
1064
90.0k
static void VE16_SSE2(uint8_t* dst) {
1065
90.0k
  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1066
90.0k
  int j;
1067
1.53M
  for (j = 0; j < 16; ++j) {
1068
1.44M
    _mm_storeu_si128((__m128i*)(dst + j * BPS), top);
1069
1.44M
  }
1070
90.0k
}
1071
1072
3.07k
static void HE16_SSE2(uint8_t* dst) {  // horizontal
1073
3.07k
  int j;
1074
52.3k
  for (j = 16; j > 0; --j) {
1075
49.2k
    const __m128i values = _mm_set1_epi8((char)dst[-1]);
1076
49.2k
    _mm_storeu_si128((__m128i*)dst, values);
1077
49.2k
    dst += BPS;
1078
49.2k
  }
1079
3.07k
}
1080
1081
247k
static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
1082
247k
  int j;
1083
247k
  const __m128i values = _mm_set1_epi8((char)v);
1084
4.21M
  for (j = 0; j < 16; ++j) {
1085
3.96M
    _mm_storeu_si128((__m128i*)(dst + j * BPS), values);
1086
3.96M
  }
1087
247k
}
1088
1089
120k
static void DC16_SSE2(uint8_t* dst) {  // DC
1090
120k
  const __m128i zero = _mm_setzero_si128();
1091
120k
  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1092
120k
  const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1093
  // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1094
120k
  const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1095
120k
  int left = 0;
1096
120k
  int j;
1097
2.05M
  for (j = 0; j < 16; ++j) {
1098
1.93M
    left += dst[-1 + j * BPS];
1099
1.93M
  }
1100
120k
  {
1101
120k
    const int DC = _mm_cvtsi128_si32(sum) + left + 16;
1102
120k
    Put16_SSE2(DC >> 5, dst);
1103
120k
  }
1104
120k
}
1105
1106
57.7k
static void DC16NoTop_SSE2(uint8_t* dst) {  // DC with top samples unavailable
1107
57.7k
  int DC = 8;
1108
57.7k
  int j;
1109
981k
  for (j = 0; j < 16; ++j) {
1110
923k
    DC += dst[-1 + j * BPS];
1111
923k
  }
1112
57.7k
  Put16_SSE2(DC >> 4, dst);
1113
57.7k
}
1114
1115
63.1k
static void DC16NoLeft_SSE2(uint8_t* dst) {  // DC with left samples unavailable
1116
63.1k
  const __m128i zero = _mm_setzero_si128();
1117
63.1k
  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1118
63.1k
  const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1119
  // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1120
63.1k
  const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1121
63.1k
  const int DC = _mm_cvtsi128_si32(sum) + 8;
1122
63.1k
  Put16_SSE2(DC >> 4, dst);
1123
63.1k
}
1124
1125
5.91k
static void DC16NoTopLeft_SSE2(uint8_t* dst) {  // DC with no top & left samples
1126
5.91k
  Put16_SSE2(0x80, dst);
1127
5.91k
}
1128
1129
//------------------------------------------------------------------------------
1130
// Chroma
1131
1132
288k
static void VE8uv_SSE2(uint8_t* dst) {  // vertical
1133
288k
  int j;
1134
288k
  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1135
2.59M
  for (j = 0; j < 8; ++j) {
1136
2.30M
    _mm_storel_epi64((__m128i*)(dst + j * BPS), top);
1137
2.30M
  }
1138
288k
}
1139
1140
// helper for chroma-DC predictions
1141
1.15M
static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
1142
1.15M
  int j;
1143
1.15M
  const __m128i values = _mm_set1_epi8((char)v);
1144
10.3M
  for (j = 0; j < 8; ++j) {
1145
9.20M
    _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
1146
9.20M
  }
1147
1.15M
}
1148
1149
617k
static void DC8uv_SSE2(uint8_t* dst) {  // DC
1150
617k
  const __m128i zero = _mm_setzero_si128();
1151
617k
  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1152
617k
  const __m128i sum = _mm_sad_epu8(top, zero);
1153
617k
  int left = 0;
1154
617k
  int j;
1155
5.56M
  for (j = 0; j < 8; ++j) {
1156
4.94M
    left += dst[-1 + j * BPS];
1157
4.94M
  }
1158
617k
  {
1159
617k
    const int DC = _mm_cvtsi128_si32(sum) + left + 8;
1160
617k
    Put8x8uv_SSE2(DC >> 4, dst);
1161
617k
  }
1162
617k
}
1163
1164
268k
static void DC8uvNoLeft_SSE2(uint8_t* dst) {  // DC with no left samples
1165
268k
  const __m128i zero = _mm_setzero_si128();
1166
268k
  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1167
268k
  const __m128i sum = _mm_sad_epu8(top, zero);
1168
268k
  const int DC = _mm_cvtsi128_si32(sum) + 4;
1169
268k
  Put8x8uv_SSE2(DC >> 3, dst);
1170
268k
}
1171
1172
236k
static void DC8uvNoTop_SSE2(uint8_t* dst) {  // DC with no top samples
1173
236k
  int dc0 = 4;
1174
236k
  int i;
1175
2.13M
  for (i = 0; i < 8; ++i) {
1176
1.89M
    dc0 += dst[-1 + i * BPS];
1177
1.89M
  }
1178
236k
  Put8x8uv_SSE2(dc0 >> 3, dst);
1179
236k
}
1180
1181
27.6k
static void DC8uvNoTopLeft_SSE2(uint8_t* dst) {  // DC with nothing
1182
27.6k
  Put8x8uv_SSE2(0x80, dst);
1183
27.6k
}
1184
1185
//------------------------------------------------------------------------------
1186
// Entry point
1187
1188
extern void VP8DspInitSSE2(void);
1189
1190
8.29k
WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
1191
8.29k
  VP8Transform = Transform_SSE2;
1192
#if (USE_TRANSFORM_AC3 == 1)
1193
  VP8TransformAC3 = TransformAC3_SSE2;
1194
#endif
1195
1196
8.29k
  VP8VFilter16 = VFilter16_SSE2;
1197
8.29k
  VP8HFilter16 = HFilter16_SSE2;
1198
8.29k
  VP8VFilter8 = VFilter8_SSE2;
1199
8.29k
  VP8HFilter8 = HFilter8_SSE2;
1200
8.29k
  VP8VFilter16i = VFilter16i_SSE2;
1201
8.29k
  VP8HFilter16i = HFilter16i_SSE2;
1202
8.29k
  VP8VFilter8i = VFilter8i_SSE2;
1203
8.29k
  VP8HFilter8i = HFilter8i_SSE2;
1204
1205
8.29k
  VP8SimpleVFilter16 = SimpleVFilter16_SSE2;
1206
8.29k
  VP8SimpleHFilter16 = SimpleHFilter16_SSE2;
1207
8.29k
  VP8SimpleVFilter16i = SimpleVFilter16i_SSE2;
1208
8.29k
  VP8SimpleHFilter16i = SimpleHFilter16i_SSE2;
1209
1210
8.29k
  VP8PredLuma4[1] = TM4_SSE2;
1211
8.29k
  VP8PredLuma4[2] = VE4_SSE2;
1212
8.29k
  VP8PredLuma4[4] = RD4_SSE2;
1213
8.29k
  VP8PredLuma4[5] = VR4_SSE2;
1214
8.29k
  VP8PredLuma4[6] = LD4_SSE2;
1215
8.29k
  VP8PredLuma4[7] = VL4_SSE2;
1216
1217
8.29k
  VP8PredLuma16[0] = DC16_SSE2;
1218
8.29k
  VP8PredLuma16[1] = TM16_SSE2;
1219
8.29k
  VP8PredLuma16[2] = VE16_SSE2;
1220
8.29k
  VP8PredLuma16[3] = HE16_SSE2;
1221
8.29k
  VP8PredLuma16[4] = DC16NoTop_SSE2;
1222
8.29k
  VP8PredLuma16[5] = DC16NoLeft_SSE2;
1223
8.29k
  VP8PredLuma16[6] = DC16NoTopLeft_SSE2;
1224
1225
8.29k
  VP8PredChroma8[0] = DC8uv_SSE2;
1226
8.29k
  VP8PredChroma8[1] = TM8uv_SSE2;
1227
8.29k
  VP8PredChroma8[2] = VE8uv_SSE2;
1228
8.29k
  VP8PredChroma8[4] = DC8uvNoTop_SSE2;
1229
8.29k
  VP8PredChroma8[5] = DC8uvNoLeft_SSE2;
1230
8.29k
  VP8PredChroma8[6] = DC8uvNoTopLeft_SSE2;
1231
8.29k
}
1232
1233
#else  // !WEBP_USE_SSE2
1234
1235
WEBP_DSP_INIT_STUB(VP8DspInitSSE2)
1236
1237
#endif  // WEBP_USE_SSE2